
MATLAB® Coder™

User's Guide

R2016b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Coder™ User's Guide
© COPYRIGHT 2011–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

April 2011 Online only New for Version 2 (R2011a)
September 2011 Online only Revised for Version 2.1 (Release 2011b)
March 2012 Online only Revised for Version 2.2 (Release 2012a)
September 2012 Online only Revised for Version 2.3 (Release 2012b)
March 2013 Online only Revised for Version 2.4 (Release 2013a)
September 2013 Online only Revised for Version 2.5 (Release 2013b)
March 2014 Online only Revised for Version 2.6 (Release 2014a)
October 2014 Online only Revised for Version 2.7 (Release 2014b)
March 2015 Online only Revised for Version 2.8 (Release 2015a)
September 2015 Online only Revised for Version 3.0 (Release 2015b)
October 2015 Online only Rereleased for Version 2.8.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 3.1 (Release 2016a)
September 2016 Online only Revised for Version 3.2 (Release 2016b)

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Contents

About MATLAB Coder
1

MATLAB Coder Product Description 1-2
Key Features . 1-2

Product Overview . 1-3
When to Use MATLAB Coder . 1-3
Code Generation for Embedded Software Applications 1-3
Code Generation for Fixed-Point Algorithms 1-3

Code Generation Workflow . 1-5
See Also . 1-5

Design Considerations for C/C++ Code Generation
2

When to Generate Code from MATLAB Algorithms 2-2
When Not to Generate Code from MATLAB Algorithms 2-2

Which Code Generation Feature to Use 2-4

Prerequisites for C/C++ Code Generation from MATLAB . . . 2-5

MATLAB Code Design Considerations for Code Generation 2-6
See Also . 2-7

Differences in Behavior After Compiling MATLAB Code . . . 2-8
Why Are There Differences? . 2-8
Character Size . 2-8
Order of Evaluation in Expressions . 2-8
Termination Behavior . 2-10

vii

Size of Variable-Size N-D Arrays . 2-10
Size of Empty Arrays . 2-10
Size of Empty Array That Results from Deleting Elements of an

Array . 2-10
Floating-Point Numerical Results . 2-11
NaN and Infinity Patterns . 2-12
Code Generation Target . 2-12
MATLAB Class Initial Values . 2-12
Variable-Size Support for Code Generation 2-12
Complex Numbers . 2-12

MATLAB Language Features Supported for C/C++ Code
Generation . 2-13

MATLAB Features That Code Generation Supports 2-13
MATLAB Language Features That Code Generation Does Not

Support . 2-14

System Objects Supported for Code Generation
3

Code Generation for System Objects 3-2

Functions, Classes, and System Objects Supported
for Code Generation

4
Functions and Objects Supported for C/C++ Code Generation

— Alphabetical List . 4-2

Functions and Objects Supported for C/C++ Code Generation
— Category List . 4-199

Aerospace Toolbox . 4-201
Arithmetic Operations in MATLAB 4-201
Audio System Toolbox . 4-203
Bit-Wise Operations MATLAB . 4-204
Casting in MATLAB . 4-205
Character Functions in MATLAB 4-205

viii Contents

Communications System Toolbox 4-208
Complex Numbers in MATLAB . 4-215
Computer Vision System Toolbox 4-216
Control Flow in MATLAB . 4-225
Control System Toolbox . 4-225
Data and File Management in MATLAB 4-226
Data Types in MATLAB . 4-230
Desktop Environment in MATLAB 4-231
Discrete Math in MATLAB . 4-232
DSP System Toolbox . 4-232
Error Handling in MATLAB . 4-245
Exponents in MATLAB . 4-246
Filtering and Convolution in MATLAB 4-246
Fixed-Point Designer . 4-247
HDL Coder . 4-257
Histograms in MATLAB . 4-257
Image Acquisition Toolbox . 4-258
Image Processing in MATLAB . 4-258
Image Processing Toolbox . 4-258
Input and Output Arguments in MATLAB 4-274
Interpolation and Computational Geometry in MATLAB . . 4-275
Linear Algebra in MATLAB . 4-279
Logical and Bit-Wise Operations in MATLAB 4-280
MATLAB Compiler . 4-281
Matrices and Arrays in MATLAB 4-281
Neural Network Toolbox . 4-290
Numerical Integration and Differentiation in MATLAB . . . 4-290
Optimization Functions in MATLAB 4-291
Phased Array System Toolbox . 4-292
Polynomials in MATLAB . 4-303
Programming Utilities in MATLAB 4-304
Relational Operators in MATLAB 4-304
Robotics System Toolbox . 4-305
Rounding and Remainder Functions in MATLAB 4-306
Set Operations in MATLAB . 4-307
Signal Processing in MATLAB . 4-311
Signal Processing Toolbox . 4-312
Special Values in MATLAB . 4-317
Specialized Math in MATLAB . 4-318
Statistics in MATLAB . 4-318
Statistics and Machine Learning Toolbox 4-319
System Identification Toolbox . 4-333
Trigonometry in MATLAB . 4-335
Wavelet Toolbox . 4-337

ix

WLAN System Toolbox . 4-340

Defining MATLAB Variables for C/C++ Code
Generation

5
Variables Definition for Code Generation 5-2

Best Practices for Defining Variables for C/C++ Code
Generation . 5-3

Define Variables By Assignment Before Using Them 5-3
Use Caution When Reassigning Variables 5-5
Use Type Cast Operators in Variable Definitions 5-5
Define Matrices Before Assigning Indexed Variables 5-6

Eliminate Redundant Copies of Variables in Generated
Code . 5-7

When Redundant Copies Occur . 5-7
How to Eliminate Redundant Copies by Defining Uninitialized

Variables . 5-7
Defining Uninitialized Variables . 5-8

Reassignment of Variable Properties 5-9

Reuse the Same Variable with Different Properties 5-10
When You Can Reuse the Same Variable with Different

Properties . 5-10
When You Cannot Reuse Variables 5-10
Limitations of Variable Reuse . 5-13

Avoid Overflows in for-Loops . 5-14

Supported Variable Types . 5-16

x Contents

Defining Data for Code Generation
6

Data Definition for Code Generation 6-2

Code Generation for Complex Data . 6-4
Restrictions When Defining Complex Variables 6-4
Code Generation for Complex Data with Zero-Valued Imaginary

Parts . 6-4
Results of Expressions That Have Complex Operands 6-8

Code Generation for Character Arrays 6-9

Array Size Restrictions for Code Generation 6-10
See Also . 6-10

Code Generation for Constants in Structures and Arrays . 6-11

Code Generation for Variable-Size Data
7

What Is Variable-Size Data? . 7-2

Variable-Size Data Definition for Code Generation 7-3

Bounded Versus Unbounded Variable-Size Data 7-4

Control Memory Allocation of Variable-Size Data 7-5

Specify Variable-Size Data Without Dynamic Memory
Allocation . 7-6

Fixing Upper Bounds Errors . 7-6
Specifying Upper Bounds for Variable-Size Data 7-6

Variable-Size Data in Code Generation Reports 7-9
What Reports Tell You About Size . 7-9
How Size Appears in Code Generation Reports 7-10
How to Generate a Code Generation Report 7-10

xi

Define Variable-Size Data for Code Generation 7-11
When to Define Variable-Size Data Explicitly 7-11
Using a Matrix Constructor with Nonconstant Dimensions . 7-11
Inferring Variable Size from Multiple Assignments 7-12
Defining Variable-Size Data Explicitly Using coder.varsize . 7-13

C Code Interface for Arrays . 7-17
C Code Interface for Statically Allocated Arrays 7-17
C Code Interface for Dynamically Allocated Arrays 7-18
Utility Functions for Creating emxArray Data Structures . . 7-20

Diagnose and Fix Variable-Size Data Errors 7-22
Diagnosing and Fixing Size Mismatch Errors 7-22
Diagnosing and Fixing Errors in Detecting Upper Bounds . . 7-24

Incompatibilities with MATLAB in Variable-Size Support for
Code Generation . 7-26

Incompatibility with MATLAB for Scalar Expansion 7-26
Incompatibility with MATLAB in Determining Size of Variable-

Size N-D Arrays . 7-28
Incompatibility with MATLAB in Determining Size of Empty

Arrays . 7-29
Incompatibility with MATLAB in Determining Class of Empty

Arrays . 7-30
Incompatibility with MATLAB in Vector-Vector Indexing . . 7-31
Incompatibility with MATLAB in Matrix Indexing Operations

for Code Generation . 7-32
Incompatibility with MATLAB in Concatenating Variable-Size

Matrices . 7-33
Differences When Curly-Brace Indexing of Variable-Size Cell

Array Inside Concatenation Returns No Elements 7-33
Dynamic Memory Allocation Not Supported for MATLAB

Function Blocks . 7-34

Variable-Sizing Restrictions for Code Generation of Toolbox
Functions . 7-35

Common Restrictions . 7-35
Toolbox Functions with Restrictions For Variable-Size Data 7-36

xii Contents

Code Generation for MATLAB Structures
8

Structure Definition for Code Generation 8-2

Structure Operations Allowed for Code Generation 8-3

Define Scalar Structures for Code Generation 8-4
Restrictions When Defining Scalar Structures by

Assignment . 8-4
Adding Fields in Consistent Order on Each Control Flow

Path . 8-4
Restriction on Adding New Fields After First Use 8-5

Define Arrays of Structures for Code Generation 8-6
Ensuring Consistency of Fields . 8-6
Using repmat to Define an Array of Structures with Consistent

Field Properties . 8-6
Defining an Array of Structures by Using struct 8-7
Defining an Array of Structures Using Concatenation 8-7

Index Substructures and Fields . 8-8

Assign Values to Structures and Fields 8-10

Code Generation for Cell Arrays
9

Code Generation for Cell Arrays . 9-2
Homogeneous vs. Heterogeneous Cell Arrays 9-2
Controlling Whether a Cell Array Is Homogeneous or

Heterogeneous . 9-3
Naming the Structure Type That Represents a Heterogeneous

Cell Array in the Generated Code 9-4
Cell Arrays in Reports . 9-4

Control Whether a Cell Array Is Variable-Size 9-6

Define Cell Array Inputs . 9-9

xiii

Cell Array Limitations for Code Generation 9-10
Cell Array Element Assignment . 9-10
Definition of Variable-Size Cell Array by Using cell 9-11
Cell Array Indexing . 9-14
Growing a Cell Array by Using {end + 1} 9-15
Variable-Size Cell Arrays . 9-16
Cell Array Contents . 9-17
Cell Arrays in Structures . 9-17
Passing Cell Arrays to External C/C++ Functions 9-17

Code Generation for Enumerated Data
10

Code Generation for Enumerations 10-2
Define Enumerations for Code Generation 10-2
Use Allowed Operations on Enumerations 10-3
Use MATLAB Toolbox Functions That Support

Enumerations . 10-4

Customize Enumerated Types in Generated Code 10-6
Specify a Default Enumeration Value 10-7
Specify a Header File . 10-8
Include Class Name Prefix in Generated Enumerated Type

Value Names . 10-8

Code Generation for MATLAB Classes
11

MATLAB Classes Definition for Code Generation 11-2
Language Limitations . 11-2
Code Generation Features Not Compatible with Classes . . . 11-3
Defining Class Properties for Code Generation 11-4
Calls to Base Class Constructor . 11-5
Inheritance from Built-In MATLAB Classes Not Supported . 11-7

Classes That Support Code Generation 11-8

xiv Contents

Generate Code for MATLAB Value Classes 11-9

Generate Code for MATLAB Handle Classes and System
Objects . 11-14

MATLAB Classes in Code Generation Reports 11-17
What Reports Tell You About Classes 11-17
How Classes Appear in Code Generation Reports 11-17

Troubleshooting Code Generation Issues with MATLAB
Classes . 11-20

Class class does not have a property with name name 11-20

Handle Object Limitations for Code Generation 11-22
A Variable Outside a Loop Cannot Refer to a Handle Object

Created Inside a Loop . 11-22
A Handle Object That a Persistent Variable Refers To Must Be

a Singleton Object . 11-22

System Objects Requirements and Limitations for Code
Generation . 11-25

Code Generation for Function Handles
12

Function Handle Limitations for Code Generation 12-2

Code Generation for Anonymous Functions 12-4
Anonymous Function Limitations for Code Generation 12-4

Defining Functions for Code Generation
13

Specify Variable Numbers of Arguments 13-2

Supported Index Expressions . 13-3

xv

Apply Operations to a Variable Number of Arguments 13-4
When to Force Loop Unrolling . 13-4
Using Variable Numbers of Arguments in a for-Loop 13-5

Implement Wrapper Functions . 13-6
Passing Variable Numbers of Arguments from One Function to

Another . 13-6

Variable Length Argument Lists for Code Generation 13-7

Calling Functions for Code Generation
14

Resolution of Function Calls for Code Generation 14-2
Key Points About Resolving Function Calls 14-4
Compile Path Search Order . 14-4
When to Use the Code Generation Path 14-5

Resolution of File Types on Code Generation Path 14-6

Compilation Directive %#codegen . 14-8

Call Local Functions . 14-9

Call Supported Toolbox Functions 14-10

Extrinsic Functions . 14-11
Declaring MATLAB Functions as Extrinsic Functions 14-12
Calling MATLAB Functions Using feval 14-16
Resolution of Extrinsic Functions During Simulation 14-16
Working with mxArrays . 14-17
Restrictions on Extrinsic Functions for Code Generation . . 14-19
Limit on Function Arguments . 14-19

Code Generation for Recursive Functions 14-20
Compile-Time Recursion . 14-20
Run-Time Recursion . 14-22
Disallow Recursion . 14-22
Disable Run-Time Recursion . 14-22
Recursive Function Limitations for Code Generation 14-23

xvi Contents

Force Code Generator to Use Run-Time Recursion 14-24
Make the Input to the Recursive Function Variable-Size . . 14-24
Assign Output Variable Before the Recursive Call 14-25

Fixed-Point Conversion
15

Detect Dead and Constant-Folded Code 15-2
What Is Dead Code? . 15-2
Detect Dead Code . 15-3
Fix Dead Code . 15-4

Convert MATLAB Code to Fixed-Point C Code 15-5

Propose Fixed-Point Data Types Based on Simulation
Ranges . 15-7

Propose Fixed-Point Data Types Based on Derived
Ranges . 15-21

Specify Type Proposal Options . 15-34

Detect Overflows . 15-38

Replace the exp Function with a Lookup Table 15-47

Replace a Custom Function with a Lookup Table 15-56

Enable Plotting Using the Simulation Data Inspector . . . 15-65

Visualize Differences Between Floating-Point and Fixed-
Point Results . 15-66

View and Modify Variable Information 15-77
View Variable Information . 15-77
Modify Variable Information . 15-77
Revert Changes . 15-79
Promote Sim Min and Sim Max Values 15-80

xvii

Automated Fixed-Point Conversion 15-81
Automated Fixed-Point Conversion Capabilities 15-81
Code Coverage . 15-82
Proposing Data Types . 15-86
Locking Proposed Data Types . 15-88
Viewing Functions . 15-88
Viewing Variables . 15-95
Log Data for Histogram . 15-97
Function Replacements . 15-99
Validating Types . 15-100
Testing Numerics . 15-100
Detecting Overflows . 15-101

Convert Fixed-Point Conversion Project to MATLAB
Scripts . 15-102

Generated Fixed-Point Code . 15-105
Location of Generated Fixed-Point Files 15-105
Minimizing fi-casts to Improve Code Readability 15-106
Avoiding Overflows in the Generated Fixed-Point Code . . 15-106
Controlling Bit Growth . 15-107
Avoiding Loss of Range or Precision 15-107
Handling Non-Constant mpower Exponents 15-109

Fixed-Point Code for MATLAB Classes 15-111
Automated Conversion Support for MATLAB Classes . . . 15-111
Unsupported Constructs . 15-111
Coding Style Best Practices . 15-112

Automated Fixed-Point Conversion Best Practices 15-114
Create a Test File . 15-114
Prepare Your Algorithm for Code Acceleration or Code

Generation . 15-115
Check for Fixed-Point Support for Functions Used in Your

Algorithm . 15-116
Manage Data Types and Control Bit Growth 15-116
Convert to Fixed Point . 15-117
Use the Histogram to Fine-Tune Data Type Settings 15-118
Optimize Your Algorithm . 15-119
Avoid Explicit Double and Single Casts 15-121

Replacing Functions Using Lookup Table
Approximations . 15-122

xviii Contents

MATLAB Language Features Supported for Automated
Fixed-Point Conversion . 15-123

Inspecting Data Using the Simulation Data Inspector . . 15-125
What Is the Simulation Data Inspector? 15-125
Import Logged Data . 15-125
Export Logged Data . 15-125
Group Signals . 15-126
Run Options . 15-126
Create Report . 15-126
Comparison Options . 15-126
Enabling Plotting Using the Simulation Data Inspector . . 15-126
Save and Load Simulation Data Inspector Sessions 15-127

Custom Plot Functions . 15-128

Data Type Issues in Generated Code 15-130
Enable the Highlight Option in the MATLAB Coder App . 15-130
Enable the Highlight Option at the Command Line 15-130
Stowaway Doubles . 15-130
Stowaway Singles . 15-131
Expensive Fixed-Point Operations 15-131

Automated Fixed-Point Conversion Using
Programmatic Workflow

16
Convert MATLAB Code to Fixed-Point C Code 16-2

Propose Fixed-Point Data Types Based on Simulation
Ranges . 16-5

Propose Fixed-Point Data Types Based on Derived
Ranges . 16-11

Detect Overflows . 16-20

Replace the exp Function with a Lookup Table 16-24

Replace a Custom Function with a Lookup Table 16-26

xix

Enable Plotting Using the Simulation Data Inspector . . . 16-28

Visualize Differences Between Floating-Point and Fixed-
Point Results . 16-29

Single-Precision Conversion
17

Generate Single-Precision C Code at the Command Line . . 17-2
Prerequisites . 17-2
Create a Folder and Copy Relevant Files 17-2
Determine the Type of the Input Argument 17-4
Generate and Run Single-Precision MEX to Verify Numerical

Behavior . 17-5
Generate Single-Precision C Code . 17-5
View the Generated Single-Precision C Code 17-6
View Potential Data Type Issues . 17-6

Generate Single-Precision C Code Using the MATLAB Coder
App . 17-8

Prerequisites . 17-8
Create a Folder and Copy Relevant Files 17-8
Open the MATLAB Coder App . 17-10
Enable Single-Precision Conversion 17-11
Select the Source Files . 17-11
Define Input Types . 17-12
Check for Run-Time Issues . 17-12
Generate Single-Precision C Code 17-12
View the Generated C Code . 17-13
View Potential Data Type Issues . 17-13

Generate Single-Precision MATLAB Code 17-14
Prerequisites . 17-14
Create a Folder and Copy Relevant Files 17-14
Set Up the Single-Precision Configuration Object 17-16
Generate Single-Precision MATLAB Code 17-16
View the Type Proposal Report . 17-17
View Generated Single-Precision MATLAB Code 17-18
View Potential Data Type Issues . 17-19

xx Contents

Compare the Double-Precision and Single-Precision
Variables . 17-19

Optionally Generate Single-Precision C Code 17-21

Choose a Single-Precision Conversion Workflow 17-23

Single-Precision Conversion Best Practices 17-24
Use Integers for Index Variables . 17-24
Limit Use of assert Statements . 17-24
Initialize MATLAB Class Properties in Constructor 17-24
Provide a Test File That Calls Your MATLAB Function . . 17-24
Prepare Your Code for Code Generation 17-25
Verify Double-Precision Code Before Single-Precision

Conversion . 17-25
Best Practices for Generation of Single-Precision C/C++

Code . 17-25
Best Practices for Generation of Single-Precision MATLAB

Code . 17-26

Warnings from Conversion to Single-Precision C/C++
Code . 17-28

Function Uses Double-Precision in the C89/C90 Standard . 17-28
Built-In Function Is Implemented in Double-Precision . . . 17-29
Built-In Function Returns Double-Precision 17-30

Combining Integers and Double-Precision Numbers 17-32

MATLAB Language Features Supported for Single-Precision
Conversion . 17-33

MATLAB Language Features Supported for Single-Precision
Conversion . 17-33

MATLAB Language Features Not Supported for Single-
Precision Conversion . 17-34

Setting Up a MATLAB Coder Project
18

Set Up a MATLAB Coder Project . 18-2
Create a Project . 18-2
Open an Existing Project . 18-2

xxi

Specify Properties of Entry-Point Function Inputs Using the
App . 18-3

Why Specify Input Properties? . 18-3
Specify an Input Definition Using the App 18-3

Automatically Define Input Types by Using the App 18-4

Make Dimensions Variable-Size When They Meet Size
Threshold . 18-5

Define Input Parameter by Example by Using the App . . . 18-7
Define an Input Parameter by Example 18-7
Specify Input Parameters by Example 18-8
Specify a Structure Type Input Parameter by Example 18-9
Specify a Cell Array Type Input Parameter by Example . . . 18-9
Specify an Enumerated Type Input Parameter by Example 18-11
Specify a Fixed-Point Input Parameter by Example 18-12

Define or Edit Input Parameter Type by Using the App . . 18-14
Define or Edit an Input Parameter Type 18-14
Specify an Enumerated Type Input Parameter by Type . . . 18-15
Specify a Fixed-Point Input Parameter by Type 18-16
Specify a Structure Input Parameter 18-16
Specify a Cell Array Input Parameter 18-19

Define Constant Input Parameters Using the App 18-24

Define Inputs Programmatically in the MATLAB File . . . 18-25

Add Global Variables by Using the App 18-26

Specify Global Variable Type and Initial Value Using the
App . 18-27

Why Specify a Type Definition for Global Variables? 18-27
Specify a Global Variable Type . 18-27
Define a Global Variable by Example 18-27
Define or Edit Global Variable Type 18-28
Define Global Variable Initial Value 18-29
Define Global Variable Constant Value 18-30
Remove Global Variables . 18-30

Undo and Redo Changes to Type Definitions in the App . 18-31

xxii Contents

Changing Output Type . 18-32
Project Settings . 18-32
Configuration Object Parameters 18-33

Code Generation Readiness Screening in the MATLAB Coder
App . 18-35

Slow Operations in MATLAB Coder App 18-37

Unable to Open a MATLAB Coder Project 18-38

Preparing MATLAB Code for C/C++ Code Generation
19

Workflow for Preparing MATLAB Code for Code
Generation . 19-2

See Also . 19-3

Fixing Errors Detected at Design Time 19-4
See Also . 19-4

Using the Code Analyzer . 19-5

Check Code with the Code Analyzer 19-6

Check Code by Using the Code Generation Readiness
Tool . 19-8

Run Code Generation Readiness Tool at the Command Line 19-8
Run Code Generation Readiness Tool from the Current Folder

Browser . 19-8
Run the Code Generation Readiness Tool Using the MATLAB

Coder App . 19-8

Code Generation Readiness Tool . 19-9
Information That the Code Generation Readiness Tool

Provides . 19-9
Summary Tab . 19-10
Code Structure Tab . 19-12

Unable to Determine Code Generation Readiness 19-15

xxiii

Generate MEX Functions by Using the MATLAB Coder
App . 19-16

Workflow for Generating MEX Functions Using the MATLAB
Coder App . 19-16

Generate a MEX Function Using the MATLAB Coder App 19-16
Configure Project Settings . 19-19
Build a MATLAB Coder Project . 19-19
See Also . 19-20

Generate MEX Functions at the Command Line 19-21
Command-line Workflow for Generating MEX Functions . . 19-21
Generate a MEX Function at the Command Line 19-21

Fix Errors Detected at Code Generation Time 19-23
See Also . 19-23

Design Considerations When Writing MATLAB Code for Code
Generation . 19-24

See Also . 19-25

Running MEX Functions . 19-26
Debugging MEX Functions . 19-26

Debugging Strategies . 19-27

Collect and View Line Execution Counts for Your MATLAB
Code . 19-28

Testing MEX Functions in MATLAB
20

Why Test MEX Functions in MATLAB? 20-2

Workflow for Testing MEX Functions in MATLAB 20-3
See Also . 20-3

Running MEX Functions . 20-5
Debugging MEX Functions . 20-5

Check for Run-Time Issues by Using the App 20-6

xxiv Contents

Verify MEX Functions in the MATLAB Coder App 20-8

Verify MEX Functions at the Command Line 20-9

Debug Run-Time Errors . 20-10
Viewing Errors in the Run-Time Stack 20-10
Handling Run-Time Errors . 20-12

Using MEX Functions That MATLAB Coder Generates . . 20-13

Generating C/C++ Code from MATLAB Code
21

Code Generation Workflow . 21-3
See Also . 21-3

C/C++ Code Generation . 21-4
Specify Custom Files to Build . 21-4

Generating C/C++ Static Libraries from MATLAB Code . . . 21-5
Generate a C Static Library Using the MATLAB Coder App 21-5
Generate a C Static Library at the Command Line 21-7

Generating C/C++ Dynamically Linked Libraries from
MATLAB Code . 21-9

Dynamic Libraries Generated by MATLAB Coder 21-9
Generate a C Dynamically Linked Library Using the MATLAB

Coder App . 21-9
Generate a C Dynamic Library at the Command Line 21-12

Generating Standalone C/C++ Executables from MATLAB
Code . 21-14

Generate a C Executable Using the MATLAB Coder App . 21-14
Generate a C Executable at the Command Line 21-23
Specifying main Functions for C/C++ Executables 21-24
Specify main Functions . 21-25

Configure Build Settings . 21-26
Specify Build Type . 21-26
Specify a Language for Code Generation 21-28

xxv

Specify Output File Name . 21-30
Specify Output File Locations . 21-30
Parameter Specification Methods 21-32
Specify Build Configuration Parameters 21-32

Specify Data Types Used in Generated Code 21-38
Specify Data Type Using the MATLAB Coder App 21-38
Specify Data Type at the Command Line 21-38

Change the Standard Math Library 21-39

Share Build Configuration Settings 21-40
Export Settings . 21-40
Import Settings . 21-41
See Also . 21-41

Convert MATLAB Coder Project to MATLAB Script 21-42
Convert a Project Using the MATLAB Coder App 21-42
Convert a Project Using the Command-Line Interface 21-42
Run the Script . 21-42

Preserve Variable Names in Generated Code 21-44

Primary Function Input Specification 21-46
Why You Must Specify Input Properties 21-46
Properties to Specify . 21-46
Rules for Specifying Properties of Primary Inputs 21-49
Methods for Defining Properties of Primary Inputs 21-50
Define Input Properties by Example at the Command Line 21-51
Specify Constant Inputs at the Command Line 21-53
Specify Variable-Size Inputs at the Command Line 21-54

Specify Cell Array Inputs at the Command Line 21-56
Specify Cell Array Inputs by Example 21-56
Specify the Type of the Cell Array Input 21-57
Make a Homogeneous Copy of a Type 21-58
Make a Heterogeneous Copy of a Type 21-59
Specify Variable-Size Cell Array Inputs 21-60
Specify Type Name for Heterogeneous Cell Array Inputs . . 21-61
Specify Constant Cell Array Inputs 21-61

xxvi Contents

Control Constant Inputs in MEX Function Signatures . . . 21-63
Control MEX Function Signature Using the MATLAB Coder

App . 21-63
Control MEX Function Signature at the Command-Line

Interface . 21-63
Options for Controlling Constant Inputs in MEX Function

Signatures . 21-64
Call MEX Function with a Constant Input 21-65
See Also . 21-66

Define Input Properties Programmatically in the MATLAB
File . 21-67

How to Use assert with MATLAB Coder 21-67
Rules for Using assert Function . 21-73
Specifying General Properties of Primary Inputs 21-74
Specifying Properties of Primary Fixed-Point Inputs 21-75
Specifying Properties of Cell Arrays 21-75
Specifying Class and Size of Scalar Structure 21-77
Specifying Class and Size of Structure Array 21-78

Speed Up Compilation by Generating Only Code 21-79

Disable Creation of the Code Generation Report 21-80

Paths and File Infrastructure Setup 21-81
Compile Path Search Order . 21-81
Specify Folders to Search for Custom Code 21-81
Naming Conventions . 21-82

Generate Code for Multiple Entry-Point Functions 21-87
Advantages of Generating Code for Multiple Entry-Point

Functions . 21-87
Generate Code for More Than One Entry-Point Function Using

the MATLAB Coder App . 21-87
Generating Code for More Than One Entry-Point Function at

the Command Line . 21-90
How to Call an Entry-Point Function in a MEX Function . 21-91
How to Call an Entry-Point Function in a C/C++ Library

Function from C/C++ Code . 21-92

Generate Code for Global Data . 21-93
Workflow . 21-93
Declare Global Variables . 21-93

xxvii

Define Global Data . 21-94
Synchronizing Global Data with MATLAB 21-95
Define Constant Global Data . 21-99
Limitations of Using Global Data 21-102

Specify Global Cell Arrays at the Command Line 21-103

Generate Code for Enumerations 21-105

Generate Code for Variable-Size Data 21-106
Disable Support for Variable-Size Data 21-106
Control Dynamic Memory Allocation 21-107
Generating Code for MATLAB Functions with Variable-Size

Data . 21-109
Generate Code for a MATLAB Function That Expands a Vector

in a Loop . 21-110
Using Dynamic Memory Allocation for an "Atoms"

Simulation . 21-116

How MATLAB Coder Partitions Generated Code 21-124
Partitioning Generated Files . 21-124
How to Select the File Partitioning Method 21-124
Partitioning Generated Files with One C/C++ File Per

MATLAB File . 21-125
Generated Files and Locations . 21-130
File Partitioning and Inlining . 21-132

Requirements for Signed Integer Representation 21-137

Customize the Post-Code-Generation Build Process 21-138
Customize Build Using coder.updateBuildInfo 21-138
Customize Build Using Post-Code-Generation Command . 21-138
Build Information Object . 21-139
Build Information Methods . 21-139
Write Post-Code-Generation Command 21-173
Use Post-Code-Generation Command to Customize Build 21-174
Write and Use Post-Code-Generation Command at the

Command Line . 21-175

Run-time Stack Overflow . 21-177

Pass Structure Arguments by Reference or by Value in
Generated Code . 21-178

xxviii Contents

Generate Code for an LED Control Function That Uses
Enumerated Types . 21-186

Verify Generated C/C++ Code
22

Generate Traceable Code . 22-2
Include MATLAB Source Code as Comments by Using the

MATLAB Coder App . 22-2
Include MATLAB Source Code as Comments by Using the

Command-Line Interface . 22-3
Format of Traceability Tags . 22-3
Location of Comments in Generated Code 22-3
Traceability Limitations . 22-7

Code Generation Reports . 22-9
Code Generation Report Overview 22-9
Generating and Opening Reports 22-11
Names and Locations of Reports . 22-11
MATLAB Code in a Report . 22-11
Call Stack Information in a Report 22-13
Generated C/C++ Code in a Report 22-15
Build Summary Information in a Report 22-16
Errors and Warnings in a Report 22-16
MATLAB Code Variables in a Report 22-17
Target Build Information in a Report 22-22
Keyboard Shortcuts for a Report . 22-23
Searching in a Report . 22-25
Report Limitations . 22-25

Enable Code Generation Reports . 22-27
Enable Code Generation Reports with the MATLAB Coder

App . 22-27
Enable Code Generation Reports at the Command Line . . 22-27

Run-Time Error Detection and Reporting in Standalone C/C+
+ Code . 22-28

Generate Standalone Code That Detects and Reports Run-
Time Errors . 22-30

xxix

Testing Code Generated from MATLAB Code 22-32

Unit Test Generated Code with MATLAB Coder 22-33

Unit Test External C Code with MATLAB Coder 22-41

Code Replacement for MATLAB Code
23

What Is Code Replacement? . 23-2
Code Replacement Libraries . 23-3
Code Replacement Terminology . 23-5
Code Replacement Limitations . 23-7

Choose a Code Replacement Library 23-8
About Choosing a Code Replacement Library 23-8
Explore Available Code Replacement Libraries 23-8
Explore Code Replacement Library Contents 23-8

Replace Code Generated from MATLAB Code 23-10

Custom Toolchain Registration
24

Custom Toolchain Registration . 24-2
What Is a Custom Toolchain? . 24-2
What Is a Factory Toolchain? . 24-2
What is a Toolchain Definition? . 24-3
Key Terms . 24-4
Typical Workflow . 24-4

About coder.make.ToolchainInfo . 24-6

Create and Edit Toolchain Definition File 24-8

Toolchain Definition File with Commentary 24-10
Steps Involved in Writing a Toolchain Definition File 24-10

xxx Contents

Write a Function That Creates a ToolchainInfo Object . . . 24-10
Setup . 24-11
Macros . 24-11
C Compiler . 24-12
C++ Compiler . 24-12
Linker . 24-13
Archiver . 24-13
Builder . 24-14
Build Configurations . 24-14

Create and Validate ToolchainInfo Object 24-16

Register the Custom Toolchain . 24-17

Use the Custom Toolchain . 24-19

Troubleshooting Custom Toolchain Validation 24-20
Build Tool Command Path Incorrect 24-20
Build Tool Not in System Path . 24-20
Tool Path Does Not Exist . 24-21
Unsupported Platform . 24-21
Toolchain is Not installed . 24-22
Project or Configuration is Using the Template Makefile . . 24-22
Skipped Validation of Build Tool “Download” or “Execute” . 24-23

Prevent Circular Data Dependencies with One-Pass or
Single-Pass Linkers . 24-24

Deploying Generated Code
25

Using C/C++ Code That MATLAB Coder Generates 25-2

C Compiler Considerations for Signed Integer Overflows . 25-3

Call a Generated C Static Library Function from C Code . . 25-4

Call a C/C++ Static Library Function from MATLAB Code . 25-6

xxxi

Call Generated C/C++ Functions . 25-8
Conventions for Calling Functions in Generated Code 25-8
How to Call C/C++ Functions from MATLAB Code 25-8
Calling Initialize and Terminate Functions 25-9
Calling C/C++ Functions with Multiple Outputs 25-10
Calling C/C++ Functions that Return Arrays 25-10

Use a C Dynamic Library in a Microsoft Visual Studio
Project . 25-11

Specify External File Locations . 25-14
External File Locations for External Code Integration 25-14
Specify External Files in a Class Derived from

coder.ExternalDependency . 25-14
Specify External Files in MATLAB Code Using

coder.updateBuildInfo . 25-14
Specify External Files Using the MATLAB Coder App 25-15
Specify External Files at the Command Line 25-15
Specify External Files with Configuration Objects 25-16

Code Generation of Matrices and Arrays 25-18

Incorporate Generated Code Using an Example Main
Function . 25-20

Workflow for Using an Example Main Function 25-20
Control Example Main Generation Using the MATLAB Coder

App . 25-21
Control Example Main Generation Using the Command-Line

Interface . 25-21

Use an Example C Main in an Application 25-23
Prerequisites . 25-23
Create a Folder and Copy Relevant Files 25-24
Run the Sobel Filter on the Image 25-26
Generate and Test a MEX Function 25-28
Generate an Example Main Function for sobel.m 25-28
Copy the Example Main Files . 25-31
Modify the Generated Example Main Function 25-31
Generate the Sobel Filter Application 25-44
Run the Sobel Filter Application . 25-44
Display the Resulting Image . 25-44

xxxii Contents

Package Code for Other Development Environments 25-46
When to Package Code . 25-46
Package Generated Code Using the MATLAB Coder App . 25-46
Package Generated Code at the Command Line 25-48
Specify packNGo Options . 25-49

Structure of Generated Example C/C++ Main Function . . 25-51
Contents of the File main.c or main.cpp 25-51
Contents of the File main.h . 25-54

Troubleshoot Failures in Deployed Code 25-55

Accelerating MATLAB Algorithms
26

Workflow for Accelerating MATLAB Algorithms 26-2
See Also . 26-3

Best Practices for Using MEX Functions to Accelerate
MATLAB Algorithms . 26-4

Accelerate Code That Dominates Execution Time 26-4
Include Loops Inside MEX Function 26-4
Avoid Generating MEX Functions from Unsupported

Functions . 26-5
Avoid Generating MEX Functions if Built-In MATLAB

Functions Dominate Run Time . 26-6
Minimize MEX Function Calls . 26-6

Edge Detection on Images . 26-7

Accelerate MATLAB Algorithms . 26-13

Modifying MATLAB Code for Acceleration 26-14
How to Modify Your MATLAB Code for Acceleration 26-14

Control Run-Time Checks . 26-15
Types of Run-Time Checks . 26-15
When to Disable Run-Time Checks 26-15
How to Disable Run-Time Checks 26-16

xxxiii

Algorithm Acceleration Using Parallel for-Loops (parfor) 26-18
Parallel for-Loops (parfor) in Generated Code 26-18
How parfor-Loops Improve Execution Speed 26-19
When to Use parfor-Loops . 26-19
When Not to Use parfor-Loops . 26-19
parfor-Loop Syntax . 26-20
parfor Restrictions . 26-20

Control Compilation of parfor-Loops 26-24
When to Disable parfor . 26-24

Reduction Assignments in parfor-Loops 26-25
What are Reduction Assignments? 26-25
Multiple Reductions in a parfor-Loop 26-25

Classification of Variables in parfor-Loops 26-26
Overview . 26-26
Sliced Variables . 26-27
Broadcast Variables . 26-28
Reduction Variables . 26-28
Temporary Variables . 26-33

Accelerate MATLAB Algorithms That Use Parallel for-Loops
(parfor) . 26-35

Specify Maximum Number of Threads in parfor-Loops . . 26-36

Troubleshooting parfor-Loops . 26-37
Global or Persistent Declarations in parfor-Loop 26-37
Compiler Does Not Support OpenMP 26-37

Accelerating Simulation of Bouncing Balls 26-38

Use Generated Code to Accelerate an Application Deployed
with MATLAB Compiler . 26-43

xxxiv Contents

Calling C/C++ Functions from Generated Code
27

External Function Calls from Generated Code 27-2
Calling External Functions from Generated Code 27-2
Why Call External Functions from Generated Code? 27-2
How To Call External Functions . 27-2
Pass Arguments by Reference to External Functions 27-3
Manipulate C Data . 27-4

Call External Functions with coder.ceval 27-6
Workflow for Calling External Functions 27-6
Best Practices for Calling External Code from Generated

Code . 27-7

Return Multiple Values from C Functions 27-8

How MATLAB Coder Infers C/C++ Data Types 27-9
Mapping MATLAB Types to C/C++ Types 27-9
Mapping 64-Bit Integer Types to C/C++ 27-10
Mapping Fixed-Point Types to C/C++ 27-11
Mapping Arrays to C/C++ . 27-11
Mapping Complex Values to C/C++ 27-12
Mapping Structures to C/C++ Structures 27-13
Mapping MATLAB Character Vectors to C/C++ Character

Arrays . 27-13
Mapping Multiword Types to C/C++ 27-14

External Code Integration
28

External Code Integration for Code Generation 28-2

Encapsulating the Interface to External Code 28-3

Best Practices for Using coder.ExternalDependency 28-4
Terminate Code Generation for Unsupported External

Dependency . 28-4
Parameterize Methods for MATLAB and Generated Code . . 28-4

xxxv

Parameterize updateBuildInfo for Multiple Platforms 28-5

Encapsulate Interface to an External C Library 28-6

Update Build Information from MATLAB code 28-9

Call External Functions Encapsulated by
coder.ExternalDependency . 28-10

Generate Efficient and Reusable Code
29

Optimization Strategies . 29-3

Modularize MATLAB Code . 29-6

Eliminate Redundant Copies of Function Inputs 29-7

Inline Code . 29-10
Prevent Function Inlining . 29-10
Use Inlining in Control Flow Statements 29-10

Control Inlining . 29-12
Control Size of Functions Inlined 29-12
Control Size of Functions After Inlining 29-13
Control Stack Size Limit on Inlined Functions 29-13

Fold Function Calls into Constants 29-15

Control Stack Space Usage . 29-17

Stack Allocation and Performance 29-18
Allocate Heap Space from Command Line 29-18
Allocate Heap Space Using the MATLAB Coder App 29-18

Dynamic Memory Allocation and Performance 29-19
When Dynamic Memory Allocation Occurs 29-19

Minimize Dynamic Memory Allocation 29-20

xxxvi Contents

Provide Maximum Size for Variable-Size Arrays 29-21

Disable Dynamic Memory Allocation During Code
Generation . 29-27

Set Dynamic Memory Allocation Threshold 29-28
Set Dynamic Memory Allocation Threshold Using the MATLAB

Coder App . 29-28
Set Dynamic Memory Allocation Threshold at the Command

Line . 29-29

Excluding Unused Paths from Generated Code 29-30

Prevent Code Generation for Unused Execution Paths . . 29-31
Prevent Code Generation When Local Variable Controls

Flow . 29-31
Prevent Code Generation When Input Variable Controls

Flow . 29-32

Generate Code with Parallel for-Loops (parfor) 29-33

Minimize Redundant Operations in Loops 29-35

Unroll for-Loops . 29-37
Limit Copying the for-loop Body in Generated Code 29-37

Disable Support for Integer Overflow or Non-Finites 29-40
Disable Support for Integer Overflow 29-40
Disable Support for Non-Finite Numbers 29-41

Integrate External/Custom Code . 29-42

MATLAB Coder Optimizations in Generated Code 29-48
Constant Folding . 29-48
Loop Fusion . 29-49
Successive Matrix Operations Combined 29-49
Unreachable Code Elimination . 29-50
memcpy Calls . 29-50
memset Calls . 29-51

memcpy Optimization . 29-52

xxxvii

memset Optimization . 29-54
memset Optimization for an Integer Constant 29-54
memset Optimization for Float or Double Zero 29-55

Generate Reusable Code . 29-56

Reuse Large Arrays and Structures 29-57

LAPACK Calls in Generated Code . 29-59

Speed Up Linear Algebra in Generated Standalone Code by
Using LAPACK Calls . 29-60

Specify LAPACK Library . 29-60
Write LAPACK Callback Class . 29-60
Generate LAPACK Calls by Specifying a LAPACK Callback

Class . 29-61
Locate LAPACK Library in Execution Environment 29-62

Speed Up MEX Generation by Using JIT Compilation . . . 29-64
Specify Use of JIT Compilation in the MATLAB Coder App 29-64
Specify Use of JIT Compilation at the Command Line 29-64
JIT Compilation Incompatibilities 29-65

Generating Reentrant C Code from MATLAB Code
30

Generate Reentrant C Code from MATLAB Code 30-2
About This Tutorial . 30-2
Copying Files Locally . 30-3
About the Example . 30-4
Providing a C main Function . 30-5
Configuring Build Parameters . 30-6
Generating the C Code . 30-7
Viewing the Generated C Code . 30-7
Running the Code . 30-8
Key Points to Remember . 30-8
Learn More . 30-9

Reentrant Code . 30-10

xxxviii Contents

Specify Generation of Reentrant Code 30-12
Specify Generation of Reentrant Code Using the MATLAB

Coder App . 30-12
Specify Generation of Reentrant Code Using the Command-

Line Interface . 30-12

API for Generated Reusable Code . 30-14

Call Reentrant Code in a Single-Threaded Environment . 30-15

Call Reentrant Code in a Multithreaded Environment . . . 30-16
Multithreaded Examples . 30-16

Call Reentrant Code with No Persistent or Global Data (UNIX
Only) . 30-17

Provide a Main Function . 30-17
Generate Reentrant C Code . 30-19
Examine the Generated Code . 30-20
Run the Code . 30-21

Call Reentrant Code — Multithreaded with Persistent Data
(Windows Only) . 30-22

MATLAB Code for This Example 30-22
Provide a Main Function . 30-23
Generate Reentrant C Code . 30-25
Examine the Generated Code . 30-25
Run the Code . 30-26

Call Reentrant Code — Multithreaded with Persistent Data
(UNIX Only) . 30-27

MATLAB Code for This Example 30-27
Provide a Main Function . 30-28
Generate Reentrant C Code . 30-30
Examine the Generated Code . 30-31
Run the Code . 30-32

xxxix

Troubleshooting Code Generation Problems
31

JIT MEX Incompatibility Warning . 31-2
Issue . 31-2
Cause . 31-2
Solution . 31-2

JIT Compilation Does Not Support OpenMP 31-3
Issue . 31-3
Cause . 31-3
Solution . 31-3

Output Variable Must Be Assigned Before Run-Time
Recursive Call . 31-4

Issue . 31-4
Cause . 31-4
Solution . 31-4

Compile-Time Recursion Limit Reached 31-7
Issue . 31-7
Cause . 31-7
Solution . 31-7

Unable to Determine That Every Element of Cell Array Is
Assigned . 31-10

Issue . 31-10
Cause . 31-10
Solution . 31-11

xl Contents

1

About MATLAB Coder

• “MATLAB Coder Product Description” on page 1-2
• “Product Overview” on page 1-3
• “Code Generation Workflow” on page 1-5

1 About MATLAB Coder

MATLAB Coder Product Description
Generate C and C++ code from MATLAB code

MATLAB® Coder™ generates readable and portable C and C++ code from MATLAB
code. It supports most of the MATLAB language and a wide range of toolboxes. You
can integrate the generated code into your projects as source code, static libraries, or
dynamic libraries. You can also use the generated code within the MATLAB environment
to accelerate computationally intensive portions of your MATLAB code. MATLAB Coder
lets you incorporate legacy C code into your MATLAB algorithm and into the generated
code.

By using MATLAB Coder with Embedded Coder®, you can further optimize code
efficiency and customize the generated code. You can then verify the numerical behavior
of the generated code using software-in-the-loop (SIL) and processor-in-the-loop (PIL)
execution.

Key Features

• ANSI®/ISO® compliant C and C++ code generation
• Code generation support for toolboxes including Communications System Toolbox™,

Computer Vision System Toolbox™, DSP System Toolbox™, Image Processing
Toolbox™, and Signal Processing Toolbox™

• MEX function generation for code verification and acceleration
• Legacy C code integration into MATLAB algorithms and generated code
• Multicore-capable code generation using OpenMP
• Static or dynamic memory-allocation control
• App and equivalent command-line functions for managing code generation projects

1-2

 Product Overview

Product Overview

In this section...

“When to Use MATLAB Coder” on page 1-3
“Code Generation for Embedded Software Applications” on page 1-3
“Code Generation for Fixed-Point Algorithms” on page 1-3

When to Use MATLAB Coder

Use MATLAB Coder to:

• Generate readable, efficient, standalone C/C++ code from MATLAB code.
• Generate MEX functions from MATLAB code to:

• Accelerate your MATLAB algorithms.
• Verify generated C code within MATLAB.

• Integrate custom C/C++ code into MATLAB.

Code Generation for Embedded Software Applications

The Embedded Coder product extends the MATLAB Coder product with features that
are important for embedded software development. Using the Embedded Coder add-
on product, you can generate code that has the clarity and efficiency of professional
handwritten code. For example, you can:

• Generate code that is compact and fast, which is essential for real-time simulators,
on-target rapid prototyping boards, microprocessors used in mass production, and
embedded systems.

• Customize the appearance of the generated code.
• Optimize the generated code for a specific target environment.
• Enable tracing options that help you to verify the generated code.
• Generate reusable, reentrant code.

Code Generation for Fixed-Point Algorithms

Using the Fixed-Point Designer™ product, you can generate:

1-3

1 About MATLAB Coder

• MEX functions to accelerate fixed-point algorithms.
• Fixed-point code that provides a bit-wise match to MEX function results.

1-4

 Code Generation Workflow

Code Generation Workflow

See Also

• “Set Up a MATLAB Coder Project” on page 18-2
• “Workflow for Preparing MATLAB Code for Code Generation” on page 19-2
• “Workflow for Testing MEX Functions in MATLAB” on page 20-3
• “Code Generation Workflow” on page 21-3
• “Workflow for Accelerating MATLAB Algorithms” on page 26-2

1-5

2

Design Considerations for C/C++
Code Generation

• “When to Generate Code from MATLAB Algorithms” on page 2-2
• “Which Code Generation Feature to Use” on page 2-4
• “Prerequisites for C/C++ Code Generation from MATLAB” on page 2-5
• “MATLAB Code Design Considerations for Code Generation” on page 2-6
• “Differences in Behavior After Compiling MATLAB Code” on page 2-8
• “MATLAB Language Features Supported for C/C++ Code Generation” on page

2-13

2 Design Considerations for C/C++ Code Generation

When to Generate Code from MATLAB Algorithms

Generating code from MATLAB algorithms for desktop and embedded systems allows
you to perform your software design, implementation, and testing completely within the
MATLAB workspace. You can:

• Verify that your algorithms are suitable for code generation
• Generate efficient, readable, and compact C/C++ code automatically, which eliminates

the need to manually translate your MATLAB algorithms and minimizes the risk of
introducing errors in the code.

• Modify your design in MATLAB code to take into account the specific requirements of
desktop and embedded applications, such as data type management, memory use, and
speed.

• Test the generated code and easily verify that your modified algorithms are
functionally equivalent to your original MATLAB algorithms.

• Generate MEX functions to:

• Accelerate MATLAB algorithms in certain applications.
• Speed up fixed-point MATLAB code.

• Generate hardware description language (HDL) from MATLAB code.

When Not to Generate Code from MATLAB Algorithms

Do not generate code from MATLAB algorithms for the following applications. Use the
recommended MathWorks® product instead.

To: Use:

Deploy an application that uses handle
graphics

MATLAB Compiler™

Use Java® MATLAB Compiler SDK™

Use toolbox functions that do not support
code generation

Toolbox functions that you rewrite for
desktop and embedded applications

Deploy MATLAB based GUI applications
on a supported MATLAB host

MATLAB Compiler

Deploy web-based or Windows®

applications
MATLAB Compiler SDK

2-2

 When to Generate Code from MATLAB Algorithms

To: Use:

Interface C code with MATLAB MATLAB mex function

2-3

2 Design Considerations for C/C++ Code Generation

Which Code Generation Feature to Use

To... Use... Required Product To Explore Further...

Generate MEX
functions for verifying
generated code

codegen function MATLAB Coder Try this in “MEX
Function Generation at
the Command Line”.

MATLAB Coder app MATLAB Coder Try this in “C Code
Generation Using the
MATLAB Coder App”.

Produce readable,
efficient, and compact
code from MATLAB
algorithms for
deployment to desktop
and embedded
systems.

codegen function MATLAB Coder Try this in “C Code
Generation at the
Command Line”.

MATLAB Coder app MATLAB CoderGenerate MEX
functions to accelerate
MATLAB algorithms

codegen function MATLAB Coder
See “Accelerate
MATLAB Algorithms”
on page 26-13.

Integrate MATLAB
code into Simulink®

MATLAB Function
block

Simulink Try this in “Track Object
Using MATLAB Code”.

Speed up fixed-point
MATLAB code

fiaccel function Fixed-Point Designer Learn more in “Code
Acceleration and
Code Generation from
MATLAB”.

Integrate custom C
code into MATLAB
and generate efficient,
readable code

codegen function MATLAB Coder Learn more in “Specify
External File Locations”
on page 25-14.

Integrate custom
C code into code
generated from
MATLAB

coder.ceval function MATLAB Coder Learn more in
coder.ceval.

Generate HDL from
MATLAB code

MATLAB Function
block

Simulink and
HDL Coder™

Learn more at
www.mathworks.com/

products/

slhdlcoder.

2-4

http://www.mathworks.com/products/slhdlcoder/
http://www.mathworks.com/products/slhdlcoder/
http://www.mathworks.com/products/slhdlcoder/

 Prerequisites for C/C++ Code Generation from MATLAB

Prerequisites for C/C++ Code Generation from MATLAB

To generate C/C++ or MEX code from MATLAB algorithms, you must install the
following software:

• MATLAB Coder product
• C/C++ compiler

2-5

2 Design Considerations for C/C++ Code Generation

MATLAB Code Design Considerations for Code Generation

When writing MATLAB code that you want to convert into efficient, standalone C/C++
code, you must consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before use,
MATLAB Coder requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You can define
inputs, outputs, and local variables in MATLAB functions to represent data that
varies in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory allocation.

With dynamic memory allocation, you potentially use less memory at the expense
of time to manage the memory. With static memory, you get better speed, but with
higher memory usage. Most MATLAB code takes advantage of the dynamic sizing
features in MATLAB, therefore dynamic memory allocation typically enables you
to generate code from existing MATLAB code without modifying it much. Dynamic
memory allocation also allows some programs to compile even when upper bounds
cannot be found.

Static allocation reduces the memory footprint of the generated code, and therefore is
suitable for applications where there is a limited amount of available memory, such as
embedded applications.

• Speed

Because embedded applications must run in real time, the code must be fast enough
to meet the required clock rate.

To improve the speed of the generated code:

• Choose a suitable C/C++ compiler. Do not use the default compiler that
MathWorks supplies with MATLAB for Windows 64-bit platforms.

• Consider disabling run-time checks.

2-6

 MATLAB Code Design Considerations for Code Generation

By default, for safety, the code generated for your MATLAB code contains memory
integrity checks and responsiveness checks. Generally, these checks result in more
generated code and slower simulation. Disabling run-time checks usually results
in streamlined generated code and faster simulation. Disable these checks only if
you have verified that array bounds and dimension checking is unnecessary.

See Also

• “Data Definition Basics”
• “Variable-Size Data”
• “Bounded Versus Unbounded Variable-Size Data” on page 7-4
• “Control Dynamic Memory Allocation” on page 21-107
• “Control Run-Time Checks” on page 26-15

2-7

2 Design Considerations for C/C++ Code Generation

Differences in Behavior After Compiling MATLAB Code
In this section...

“Why Are There Differences?” on page 2-8
“Character Size” on page 2-8
“Order of Evaluation in Expressions” on page 2-8
“Termination Behavior” on page 2-10
“Size of Variable-Size N-D Arrays” on page 2-10
“Size of Empty Arrays” on page 2-10
“Size of Empty Array That Results from Deleting Elements of an Array” on page
2-10
“Floating-Point Numerical Results” on page 2-11
“NaN and Infinity Patterns” on page 2-12
“Code Generation Target” on page 2-12
“MATLAB Class Initial Values” on page 2-12
“Variable-Size Support for Code Generation” on page 2-12
“Complex Numbers” on page 2-12

Why Are There Differences?

To convert MATLAB code to C/C++ code that works efficiently, the code generation
process introduces optimizations that intentionally cause the generated code to behave
differently — and sometimes produce different results — from the original source code.
This section describes these differences.

Character Size

MATLAB supports 16-bit characters, but the generated code represents characters in 8
bits, the standard size for most embedded languages like C. See “Code Generation for
Character Arrays” on page 6-9.

Order of Evaluation in Expressions

Generated code does not enforce order of evaluation in expressions. For most expressions,
order of evaluation is not significant. However, for expressions with side effects, the

2-8

 Differences in Behavior After Compiling MATLAB Code

generated code may produce the side effects in different order from the original MATLAB
code. Expressions that produce side effects include those that:

• Modify persistent or global variables
• Display data to the screen
• Write data to files
• Modify the properties of handle class objects

In addition, the generated code does not enforce order of evaluation of logical operators
that do not short circuit.

For more predictable results, it is good coding practice to split expressions that depend on
the order of evaluation into multiple statements.

• Rewrite

A = f1() + f2();

as

A = f1();

A = A + f2();

so that the generated code calls f1 before f2.
• Assign the outputs of a multi-output function call to variables that do not depend on

one another. For example, rewrite

[y, y.f, y.g] = foo;

as

[y, a, b] = foo;

y.f = a;

y.g = b;

• When you access the contents of multiple cells of a cell array, assign the results to
variables that do not depend on one another. For example, rewrite

[y, y.f, y.g] = z{:};

as

[y, a, b] = z{:};

y.f = a;

2-9

2 Design Considerations for C/C++ Code Generation

y.g = b;

Termination Behavior

Generated code does not match the termination behavior of MATLAB source code. For
example, if infinite loops do not have side effects, optimizations remove them from
generated code. As a result, the generated code can possibly terminate even though the
corresponding MATLAB code does not.

Size of Variable-Size N-D Arrays

For variable-size N-D arrays, the size function might return a different result in
generated code than in MATLAB source code. The size function sometimes returns
trailing ones (singleton dimensions) in generated code, but always drops trailing ones
in MATLAB. For example, for an N-D array X with dimensions [4 2 1 1], size(X)
might return [4 2 1 1] in generated code, but always returns [4 2] in MATLAB. See
“Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays” on
page 7-28.

Size of Empty Arrays

The size of an empty array in generated code might be different from its size in MATLAB
source code. See “Incompatibility with MATLAB in Determining Size of Empty Arrays”
on page 7-29.

Size of Empty Array That Results from Deleting Elements of an Array

Deleting all elements of an array results in an empty array. The size of this empty array
in generated code might differ from its size in MATLAB source code.

Case Example Code Size of Empty Array
in MATLAB

Size of Empty Array
in Generated Code

Delete all elements
of an m-by-n array
by using the colon
operator (:).

coder.varsize('X',[4,4],[1,1]);

X = zeros(2);

X(:) = [];

0-by-0 1-by-0

Delete all elements
of a row vector by

coder.varsize('X',[1,4],[0,1]);

X = zeros(1,4);

X(:) = [];

0-by-0 1-by-0

2-10

 Differences in Behavior After Compiling MATLAB Code

Case Example Code Size of Empty Array
in MATLAB

Size of Empty Array
in Generated Code

using the colon
operator (:).
Delete all elements
of a column vector
by using the colon
operator (:).

coder.varsize('X',[4,1],[1,0]);

X = zeros(4,1);

X(:) = [];

0-by-0 0-by-1

Delete all elements
of a column vector
by deleting one
element at a time.

coder.varsize('X',[4,1],[1,0]);

X = zeros(4,1);

for i = 1:4

 X(1)= [];

end

1-by-0 0-by-1

Floating-Point Numerical Results

The generated code might not produce the same floating-point numerical results as
MATLAB in the following situations:

When computer hardware uses extended precision registers

Results vary depending on how the C/C++ compiler allocates extended precision floating-
point registers. Computation results might not match MATLAB calculations because of
different compiler optimization settings or different code surrounding the floating-point
calculations.

For certain advanced library functions

The generated code might use different algorithms to implement certain advanced
library functions, such as fft, svd, eig, mldivide, and mrdivide.

For example, the generated code uses a simpler algorithm to implement svd to
accommodate a smaller footprint. Results might also vary according to matrix properties.
For example, MATLAB might detect symmetric or Hermitian matrices at run time and
switch to specialized algorithms that perform computations faster than implementations
in the generated code.

For implementation of BLAS library functions

For implementations of BLAS library functions, generated C/C++ code uses reference
implementations of BLAS functions. These reference implementations might produce
different results from platform-specific BLAS implementations in MATLAB.

2-11

2 Design Considerations for C/C++ Code Generation

NaN and Infinity Patterns

The generated code might not produce exactly the same pattern of NaN and inf values
as MATLAB code when these values are mathematically meaningless. For example, if
MATLAB output contains a NaN, output from the generated code should also contain a
NaN, but not necessarily in the same place.

Code Generation Target

The coder.target function returns different values in MATLAB than in the generated
code. The intent is to help you determine whether your function is executing in MATLAB
or has been compiled for a simulation or code generation target. See coder.target.

MATLAB Class Initial Values

Before code generation, at class loading time, MATLAB computes class initial values.
The code generator uses the value that MATLAB computes. It does not recompute the
initial value. If the initialization uses a function call to compute the initial value, the
code generator does not execute this function. If the function modifies a global state,
for example, a persistent variable, code generator might provide a different initial
value than MATLAB. For more information, see “Defining Class Properties for Code
Generation” on page 11-4.

Variable-Size Support for Code Generation

See “Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on
page 7-26.

Complex Numbers

See “Code Generation for Complex Data” on page 6-4.

2-12

 MATLAB Language Features Supported for C/C++ Code Generation

MATLAB Language Features Supported for C/C++ Code
Generation

MATLAB Features That Code Generation Supports

Code generation from MATLAB code supports the following language features:

• n-dimensional arrays (see “Array Size Restrictions for Code Generation” on page
6-10)

• matrix operations, including deletion of rows and columns
• variable-sized data (see “Variable-Size Data Definition for Code Generation” on page

7-3)
• subscripting (see “Incompatibility with MATLAB in Matrix Indexing Operations for

Code Generation” on page 7-32)
• complex numbers (see “Code Generation for Complex Data” on page 6-4)
• numeric classes (see “Supported Variable Types” on page 5-16)
• double-precision, single-precision, and integer math
• fixed-point arithmetic
• program control statements if, switch, for, while, and break
• arithmetic, relational, and logical operators
• local functions
• persistent variables
• global variables (see “Specify Global Variable Type and Initial Value Using the App”

on page 18-27)
• structures (see “Structure Definition for Code Generation” on page 8-2)
• cell arrays (see “Cell Arrays”)
• characters (see “Code Generation for Character Arrays” on page 6-9)
• function handles (see “Function Handle Limitations for Code Generation” on page

12-2)
• anonymous functions (see “Code Generation for Anonymous Functions” on page

12-4)
• recursive functions (see “Code Generation for Recursive Functions” on page 14-20)
• variable length input and output argument lists

2-13

2 Design Considerations for C/C++ Code Generation

• subset of MATLAB toolbox functions (see “Functions and Objects Supported for C/C++
Code Generation — Alphabetical List” on page 4-2)

• subset of functions and System objects in Aerospace Toolbox, Audio System Toolbox™,
Communications System Toolbox, Computer Vision System Toolbox, DSP System
Toolbox, Fixed-Point Designer, Image Processing Toolbox, Phased Array System
Toolbox™, Robotics System Toolbox™, Signal Processing Toolbox, Statistics and
Machine Learning Toolbox™, System Identification Toolbox™, Wavelet Toolbox™,
WLAN System Toolbox™ (see “Functions and Objects Supported for C/C++ Code
Generation — Category List” on page 4-199)

• MATLAB classes (see “MATLAB Classes Definition for Code Generation” on page
11-2)

• function calls (see “Resolution of Function Calls for Code Generation” on page
14-2)

MATLAB Language Features That Code Generation Does Not Support

Code generation from MATLAB does not support the following frequently used MATLAB
constructs:

• string arrays
• categorical arrays
• date and time arrays
• Java
• Map containers
• nested functions
• sparse matrices
• tables
• time series objects
• try/catch statements

This list is not exhaustive. To see if a construct is supported for code generation, see
“MATLAB Features That Code Generation Supports” on page 2-13.

2-14

3

System Objects Supported for Code
Generation

3 System Objects Supported for Code Generation

Code Generation for System Objects

You can generate C and C++ code for a subset of System objects provided by the following
toolboxes.

Toolbox Name See

Communications System Toolbox “System Objects in MATLAB Code
Generation” in the DSP System Toolbox
documentation.

Computer Vision System Toolbox “System Objects in MATLAB Code
Generation” in the Computer Vision
System Toolbox documentation.

DSP System Toolbox “System Objects in MATLAB Code
Generation” in the DSP System Toolbox
documentation.

Image Acquisition Toolbox™ • imaq.VideoDevice.
• “Code Generation with VideoDevice

System Object” in the Image Acquisition
Toolbox documentation.

Phased Array System Toolbox “Code Generation” in the Phased Array
System Toolbox documentation.

System Identification Toolbox “Generate Code for Online Parameter
Estimation in MATLAB” in the System
Identification Toolbox documentation.

WLAN System Toolbox “System Objects in MATLAB Code
Generation” in the DSP System Toolbox
documentation.

To use these System objects, you need to install the requisite toolbox. For a list of System
objects supported for C and C++ code generation, see “Functions and Objects Supported
for C/C++ Code Generation — Alphabetical List” on page 4-2 and “Functions and
Objects Supported for C/C++ Code Generation — Category List” on page 4-199.

System objects are MATLAB object-oriented implementations of algorithms. They
extend MATLAB by enabling you to model dynamic systems represented by time-varying
algorithms. System objects are well integrated into the MATLAB language, regardless of

3-2

 Code Generation for System Objects

whether you are writing simple functions, working interactively in the command window,
or creating large applications.

In contrast to MATLAB functions, System objects automatically manage state
information, data indexing, and buffering, which is particularly useful for iterative
computations or stream data processing. This enables efficient processing of long
data sets. For general information about MATLAB objects, see “Object-Oriented
Programming”.

3-3

4

Functions, Classes, and System
Objects Supported for Code
Generation

• “Functions and Objects Supported for C/C++ Code Generation — Alphabetical List” on
page 4-2

• “Functions and Objects Supported for C/C++ Code Generation — Category List” on
page 4-199

4 Functions, Classes, and System Objects Supported for Code Generation

Functions and Objects Supported for C/C++ Code Generation —
Alphabetical List

You can generate efficient C/C++ code for a subset of MATLAB built-in functions and
toolbox functions, classes, and System objects that you call from MATLAB code. These
function, classes, and System objects appear in alphabetical order in the following table.

To find supported functions, classes, and System objects by MATLAB category or toolbox,
see “Functions and Objects Supported for C/C++ Code Generation — Category List” on
page 4-199.

Note: For more information on code generation for fixed-point algorithms, refer to “Code
Acceleration and Code Generation from MATLAB”.

Name Product Remarks and Limitations

abs MATLAB —
abs Fixed-Point

Designer
—

accumneg Fixed-Point
Designer

—

accumpos Fixed-Point
Designer

—

acos MATLAB When the input value x is real, but the output
should be complex, generates an error during
simulation and returns NaN in generated code.
To get the complex result, make the input value
complex by passing in complex(x).

acosd MATLAB —
acosh MATLAB • Generates an error during simulation and

returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

4-2

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

acot MATLAB —
acotd MATLAB —
acoth MATLAB —
acsc MATLAB —
acscd MATLAB —
acsch MATLAB —
adaptthresh Image Processing

Toolbox
The ForegroundPolarity and Statistic
arguments must be compile-time constants.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The
NeighborhoodSize argument must be a
compile-time constant.

add Fixed-Point
Designer

Code generation in MATLAB does not support
the syntax F.add(a,b). You must use the
syntax add(F,a,b).

affine2d Image Processing
Toolbox

When generating code, you can only specify
single objects—arrays of objects are not
supported.

MATLAB Function Block support: Yes.
aictest Phased Array

System Toolbox
Does not support variable-size inputs.

airy MATLAB Always returns a complex result.
albersheim Phased Array

System Toolbox
Does not support variable-size inputs.

all MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

4-3

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

all Fixed-Point
Designer

—

ambgfun Phased Array
System Toolbox

• Does not support variable-size inputs.
• Supported only when output arguments are

specified.
and MATLAB —
angdiff Robotics System

Toolbox
Supports MATLAB Function block: Yes

any MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

any Fixed-Point
Designer

—

aperture2gain Phased Array
System Toolbox

Does not support variable-size inputs.

appcoef Wavelet Toolbox Variable-size data support must be enabled.

Supports MATLAB Function block: No
appcoef2 Wavelet Toolbox Variable-size data support must be enabled.

Supports MATLAB Function block: No
asec MATLAB —
asecd MATLAB —
asech MATLAB —
asin MATLAB • Generates an error during simulation and

returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

asind MATLAB —
asinh MATLAB —

4-4

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

assert MATLAB • Generates specified error messages at
compile time only if all input arguments are
constants or depend on constants. Otherwise,
generates specified error messages at run
time.

• If called with more than 1 argument, has no
effect in standalone code even when run-time
error detection is enabled. See “Run-Time
Error Detection and Reporting in Standalone
C/C++ Code” on page 22-28.

• See “Rules for Using assert Function” on
page 21-73.

assignDetections-

ToTracks

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes

atan MATLAB —
atan2 MATLAB —
atan2 Fixed-Point

Designer
—

atan2d MATLAB —
atand MATLAB —
atanh MATLAB • Generates an error during simulation and

returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

audioDeviceReader Audio System
Toolbox

“System Objects in MATLAB Code Generation”

Supports MATLAB Function Block: Yes
audioDeviceWriter Audio System

Toolbox
“System Objects in MATLAB Code Generation”

Supports MATLAB Function Block: Yes

4-5

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

audioDeviceWriter DSP System
Toolbox

• You must use the packNGo function to
package the code generated from this System
object™ and all relevant files in a compressed
zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another
development environment with no MATLAB
installed. For an example, see “Package Code
for Other Development Environments” on
page 25-46.

• “System Objects in MATLAB Code
Generation”

audioOscillator Audio System
Toolbox

“System Objects in MATLAB Code Generation”

Supports MATLAB Function Block: Yes
audioPluginInterface Audio System

Toolbox
Supports MATLAB Function Block: Yes

audioPluginParameter Audio System
Toolbox

Supports MATLAB Function Block: Yes

audioPlugin Audio System
Toolbox

Supports MATLAB Function Block: Yes

audioPluginSource Audio System
Toolbox

Supports MATLAB Function Block: Yes

axang2quat Robotics System
Toolbox

Supports MATLAB Function block: Yes

axang2rotm Robotics System
Toolbox

Supports MATLAB Function block: Yes

axang2tform Robotics System
Toolbox

Supports MATLAB Function block: Yes

az2broadside Phased Array
System Toolbox

Does not support variable-size inputs.

azel2phitheta Phased Array
System Toolbox

Does not support variable-size inputs.

azel2phithetapat Phased Array
System Toolbox

Does not support variable-size inputs.

4-6

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

azel2uv Phased Array
System Toolbox

Does not support variable-size inputs.

azel2uvpat Phased Array
System Toolbox

Does not support variable-size inputs.

azelaxes Phased Array
System Toolbox

Does not support variable-size inputs.

bandwidth MATLAB —
barthannwin Signal Processing

Toolbox
Window length must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

bartlett Signal Processing
Toolbox

Window length must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

bboxOverlapRatio Computer Vision
System Toolbox

SupportsMATLAB Function block: No

bbox2points Computer Vision
System Toolbox

Supports MATLAB Function block: Yes

bchgenpoly Communications
System Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

4-7

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

beat2range Phased Array
System Toolbox

Does not support variable-size inputs.

besselap Signal Processing
Toolbox

Filter order must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

besseli MATLAB • If the order nu is less than 0, it must be an
integer.

• Always returns a complex result.
besselj MATLAB • If the order nu is less than 0, it must be an

integer.
• Always returns a complex result.

beta MATLAB —
betacdf Statistics

and Machine
Learning Toolbox

—

betafit Statistics
and Machine
Learning Toolbox

—

betainc MATLAB Always returns a complex result.
betaincinv MATLAB Always returns a complex result.
betainv Statistics

and Machine
Learning Toolbox

—

betalike Statistics
and Machine
Learning Toolbox

—

4-8

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

betaln MATLAB —
betapdf Statistics

and Machine
Learning Toolbox

—

betarnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
betastat Statistics

and Machine
Learning Toolbox

—

bi2de Communications
System Toolbox

—

billingsleyicm Phased Array
System Toolbox

Does not support variable-size inputs.

bin2dec MATLAB • Does not support cell arrays.
• Does not match MATLAB when the input is

empty.
bin2gray Communications

System Toolbox
—

binocdf Statistics
and Machine
Learning Toolbox

—

binoinv Statistics
and Machine
Learning Toolbox

—

binopdf Statistics
and Machine
Learning Toolbox

—

4-9

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

binornd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
binostat Statistics

and Machine
Learning Toolbox

—

bitand MATLAB —
bitand Fixed-Point

Designer
• Not supported for slope-bias scaled fi

objects.
bitandreduce Fixed-Point

Designer
—

bitcmp MATLAB —
bitcmp Fixed-Point

Designer
—

bitconcat Fixed-Point
Designer

—

bitget MATLAB —
bitget Fixed-Point

Designer
—

bitor MATLAB —
bitor Fixed-Point

Designer
• Not supported for slope-bias scaled fi

objects.
bitorreduce Fixed-Point

Designer
—

bitreplicate Fixed-Point
Designer

—

bitrevorder Signal Processing
Toolbox

—

4-10

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

bitrol Fixed-Point
Designer

—

bitror Fixed-Point
Designer

—

bitset MATLAB —
bitset Fixed-Point

Designer
—

bitshift MATLAB —
bitshift Fixed-Point

Designer
—

bitsliceget Fixed-Point
Designer

—

bitsll Fixed-Point
Designer

• Generated code may not handle out of range
shifting.

bitsra Fixed-Point
Designer

• Generated code may not handle out of range
shifting.

bitsrl Fixed-Point
Designer

• Generated code may not handle out of range
shifting.

bitxor MATLAB —
bitxor Fixed-Point

Designer
• Not supported for slope-bias scaled fi

objects.
bitxorreduce Fixed-Point

Designer
—

blackman Signal Processing
Toolbox

Window length must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

4-11

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

blackmanharris Signal Processing
Toolbox

Window length must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

blanks MATLAB —
blkdiag MATLAB —
bohmanwin Signal Processing

Toolbox
Window length must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

boundarymask Image Processing
Toolbox

The conn argument must be a compile-time
constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function block support: Yes.
break MATLAB —

4-12

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

BRISKPoints Computer Vision
System Toolbox

Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

broadside2az Phased Array
System Toolbox

Does not support variable-size inputs.

bsxfun MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

buttap Signal Processing
Toolbox

Filter order must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

butter Signal Processing
Toolbox

Filter coefficients must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

4-13

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

buttord Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

bwareaopen Image Processing
Toolbox

BW must be a 2-D binary image. N-D arrays are
not supported. conn can only be one of the two-
dimensional connectivities (4 or 8) or a 3-by-3
matrix. The 3-D connectivities (6, 18, and 26) are
not supported. Matrices of size 3-by-3-by-...-by-3
are not supported. conn must be a compile-time
constant.

MATLAB Function Block support: No.
bwboundaries Image Processing

Toolbox
The conn and options arguments must be
compile-time constants and the return value A
can only be a full matrix, not a sparse matrix.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: No.

4-14

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

bwconncomp Image Processing
Toolbox

The input image must be 2-D.

The conn argument must be a compile-time
constant and the only connectivities supported
are 4 or 8. You can specify connectivity as a 3-
by-3 matrix, but it can only be [0 1 0;1 1 1;0
1 0] or ones(3).

The CC struct return value does not include the
PixelIdxList field.

MATLAB Function Block support: No.
bwdist Image Processing

Toolbox
The method argument must be a compile-time
constant. Input images must have fewer than 232

pixels.

Generated code for this function uses a
precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
bweuler Image Processing

Toolbox
If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
bwlabel Image Processing

Toolbox
When generating code, the parameter n must be
a compile-time constant.

MATLAB Function Block support: No.
bwlookup Image Processing

Toolbox
For best results, specify an input image of class
logical.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.

4-15

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

bwmorph Image Processing
Toolbox

The character vector specifying the operation
must be a constant and, for best results, specify
an input image of class logical.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: No.
bwpack Image Processing

Toolbox
Generated code for this function uses a
precompiled platform-specific shared library.

MATLAB Function Block support: Yes.
bwperim Image Processing

Toolbox
Supports only 2-D images. Does not support any
no-output-argument syntaxes. The connectivity
matrix input argument, conn, must be a
compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
bwselect Image Processing

Toolbox
Supports only the 3 and 4 input argument
syntaxes: BW2 = bwselect(BW,c,r) and
BW2 = bwselect(BW,c,r,n). The optional
fourth input argument, n, must be a compile-
time constant. In addition, with code generation,
bwselect only supports only the 1 and 2 output
argument syntaxes: BW2 = bwselect(___) or
[BW2, idx] = bwselect(___).

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.

4-16

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

bwtraceboundary Image Processing
Toolbox

The dir, fstep, and conn arguments must be
compile-time constants.

MATLAB Function Block support: No.
bwunpack Image Processing

Toolbox
Generated code for this function uses a
precompiled platform-specific shared library.

MATLAB Function Block support: Yes. The
input argument M must be a compile-time
constant.

ca2tf DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

cameraMatrix Computer Vision
System Toolbox

Supports MATLAB Function block: No

cameraParameters Computer Vision
System Toolbox

Supports MATLAB Function block: No
Use the toStruct method to pass a
cameraParameters object into generated code.
See the “Code Generation for Depth Estimation
From Stereo Video” example.

cameraPose Computer Vision
System Toolbox

Supports MATLAB Function block: No

cameraPoseToExtrinsics Computer Vision
System Toolbox

Supports MATLAB Function block: No

cart2hom Robotics System
Toolbox

Supports MATLAB Function block: Yes

cart2pol MATLAB —
cart2sph MATLAB —
cart2sphvec Phased Array

System Toolbox
Does not support variable-size inputs.

cast MATLAB —

4-17

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

cat MATLAB • Does not support concatenation of cell arrays.
• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

cbfweights Phased Array
System Toolbox

Does not support variable-size inputs.

cdf Statistics
and Machine
Learning Toolbox

—

ceil MATLAB —
ceil Fixed-Point

Designer
—

cell MATLAB “Cell Array Limitations for Code Generation” on
page 9-10

cfirpm Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

char MATLAB Does not support cell arrays.

4-18

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

cheb1ap Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

cheb1ord Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

cheb2ap Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

4-19

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

cheb2ord Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

chebwin Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

cheby1 Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

4-20

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

cheby2 Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

chi2cdf Statistics
and Machine
Learning Toolbox

—

chi2inv Statistics
and Machine
Learning Toolbox

—

chi2pdf Statistics
and Machine
Learning Toolbox

—

chi2rnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
chi2stat Statistics

and Machine
Learning Toolbox

—

chol MATLAB —
circpol2pol Phased Array

System Toolbox
Does not support variable-size inputs.

circshift MATLAB Does not support cell arrays for the first
argument.

4-21

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

cl2tf DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

class MATLAB —

4-22

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

ClassificationECOC or
CompactClassificationECOC

Statistics
and Machine
Learning Toolbox

When you train one of these models using
fitcecoc or Classification Learner:

• The predictor variables in the input
argument Tbl cannot be sparse. The predictor
data input argument value X must be a full,
numeric matrix.

• The class labels input argument value (Y)
cannot be a categorical array.

• The ClassNames name-value pair argument
cannot be a categorical array.

• You cannot use the
CategoricalPredictors name-value
pair argument or supply a table containing
at least one categorical predictor. That is,
code generation does not support categorical
predictors. To dummy-code variables that you
want treated as categorical, use dummyvar.

• All binary learners must be support vector
machines or logistic-regression, linear
classification models. That is, for the
Learners name-value pair argument, you can
specify

• 'svm'

• An SVM template object or a cell vector of
such objects (see templateSVM).

• A linear classification model template
object or a cell vector of such objects (see
templateLinear).

• For limitations on ClassificationSVM
or ClassificationLinear model
objects, see their entries in this table.

• You cannot specify to fit posterior
probabilities by using the FitPosterior name-
value pair argument.

4-23

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

ClassificationLinear Statistics
and Machine
Learning Toolbox

When you train one of these models using
fitclinear:

• The predictor data input argument value X
must be a full, numeric matrix.

• The class labels input argument value (Y)
cannot be a categorical array.

• The ClassNames name-value pair argument
cannot be a categorical array.

• Logistic regression learners are supported
only. That is, you can specify 'logistic'
only for the Learner name-value pair
argument.

• You can specify one regularization strength
only. That is, you can specify 'auto' or
a nonnegative scalar only for the Lambda
name-value pair argument.

• You cannot specify a score transformation
function by using the ScoreTransform name-
value pair argument or by assigning the
ScoreTransform object property.

4-24

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

ClassificationSVM or
CompactClassificationSVM

Statistics
and Machine
Learning Toolbox

When you train one of these models using
fitcsvm or Classification Learner:

• The class labels input argument value (Y)
cannot be a categorical array.

• The ClassNames name-value pair argument
cannot be a categorical array.

• You cannot use the
CategoricalPredictors name-value
pair argument or supply a table containing
at least one categorical predictor. That is,
code generation does not support categorical
predictors. To dummy-code variables that you
want treated as categorical, use dummyvar.

• MATLAB does not support one-class
learning.

• You cannot specify a score transformation
function by using the ScoreTransform
name-value pair argument or by assigning
the ScoreTransform object property.
Consequently, saveCompactModel cannot
accept compact SVM models equipped
to estimate class posterior probabilities,
that is, models returned by fitPosterior or
fitSVMPosterior.

colon MATLAB • Does not accept complex inputs.
• The input i cannot have a logical value.
• Does not accept vector inputs.
• Inputs must be constants.
• Uses single-precision arithmetic to produce

single-precision results.
comm.ACPR Communications

System Toolbox
“System Objects in MATLAB Code Generation”

4-25

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

comm.AGC Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.AlgebraicDeinterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.APPDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.AWGNChannel Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BarkerCode Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BasebandFileReader Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BasebandFileWriter Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BCHDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BCHEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Binary-
SymmetricChannel

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BlockDeinterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BlockInterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CarrierSynchronizer Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CCDF Communications
System Toolbox

“System Objects in MATLAB Code Generation”

4-26

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

comm.CoarseFrequency-
Compensator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.ConstellationDiagram Communications
System Toolbox

• Supports MEX code generation through an
auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

comm.Convolutional-
Deinterleaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.ConvolutionalEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Convolutional-
Interleaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CPFSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CPFSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CPMCarrier-
PhaseSynchronizer

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CPMDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CPMModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CRCDetector Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CRCGenerator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DBPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DBPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

4-27

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

comm.Descrambler Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DifferentialDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DifferentialEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DiscreteTimeVCO Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DQPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DQPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.ErrorRate Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.EVM Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.EyeDiagram Communications
System Toolbox

• Supports MEX code generation through an
auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

comm.FMBroadcast-
Demodulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.FMBroadcast-
Modulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.FMDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

4-28

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

comm.FMModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.FSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.FSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GeneralQAM-
Demodulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GeneralQAM-
Modulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GeneralQAMTCM-
Demodulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GeneralQAMTCM-
Modulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GMSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GMSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GMSKTiming-
Synchronizer

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GoldSequence Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HadamardCode Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HDLCRCDetector Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HDLCRCGenerator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HDLRSDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HDLRSEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

4-29

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

comm.HelicalDeinterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HelicalInterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.IntegrateAnd-
DumpFilter

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.IQImbalance-
Compensator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.KasamiSequence Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.LDPCDecoder Communications
System Toolbox

• Using default properties,
comm.LDPCDecoder does not support code
generation. To generate code, specify the
ParityCheckMatrix property as a non-
sparse row-column index matrix.

• “System Objects in MATLAB Code
Generation”

comm.LDPCEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.LTEMIMOChannel Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MatrixDeinterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MatrixHelical-
ScanDeinterleaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MatrixHelical-
ScanInterLeaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MatrixInterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Memoryless-
Nonlinearity

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MER Communications
System Toolbox

“System Objects in MATLAB Code Generation”

4-30

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

comm.MIMOChannel Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MLSEEqualizer Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MSKTiming-
Synchronizer

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Multiplexed-
Deinterleaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MultiplexedInterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OFDMDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OFDMModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OSTBCCombiner Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OSTBCEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OQPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OQPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PAMDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PAMModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PhaseFrequencyOffset Communications
System Toolbox

“System Objects in MATLAB Code Generation”

4-31

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

comm.PhaseNoise Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PNSequence Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PreambleDetector Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PSKCoarseFrequency-
Estimator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PSKTCMDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PSKTCMModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.QAMCoarseFrequency-
Estimator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.QPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.QPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RaisedCosine-
ReceiveFilter

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RaisedCosine-
TransmitFilter

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RayleighChannel Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RectangularQAM-
Demodulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RectangularModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

4-32

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

comm.RectangularQAMTCM-
Demodulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RectangularQAMTCM-
Modulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RicianChannel Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RSDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RSEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Scrambler Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.SphereDecoder Communications
System Toolbox

Communications System Toolbox

comm.SymbolSynchronizer Communications
System Toolbox

Communications System Toolbox

comm.ThermalNoise Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.TurboDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.TurboEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.ViterbiDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.WalshCode Communications
System Toolbox

“System Objects in MATLAB Code Generation”

compan MATLAB —
complex MATLAB —
complex Fixed-Point

Designer
—

4-33

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

compressor Audio System
Toolbox

“System Objects in MATLAB Code Generation”

Supports MATLAB Function Block: Yes
computer MATLAB • Information about the computer on which the

code generator is running.
• Use only when the code generation target is

S-function (Simulation) or MEX-function.
cond MATLAB —
conj MATLAB —
conj Fixed-Point

Designer
—

conndef Image Processing
Toolbox

Input arguments must be compile-time
constants.

MATLAB Function Block support: Yes.
continue MATLAB —
conv MATLAB “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

4-34

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

conv Fixed-Point
Designer

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

• In generated code, the output for variable-
sized signals is computed using the
SumMode property of the governing
fimath.

• In MATLAB, the output for variable-
sized signals is computed using the
SumMode property of the governing
fimath when both inputs are nonscalar.
However, if either input is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

conv2 MATLAB —
convenc Communications

System Toolbox
—

convergent Fixed-Point
Designer

—

convn MATLAB —
cordicabs Fixed-Point

Designer
• Variable-size signals are not supported.

cordicangle Fixed-Point
Designer

• Variable-size signals are not supported.

cordicatan2 Fixed-Point
Designer

• Variable-size signals are not supported.

cordiccart2pol Fixed-Point
Designer

• Variable-size signals are not supported.

4-35

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

cordiccexp Fixed-Point
Designer

• Variable-size signals are not supported.

cordiccos Fixed-Point
Designer

• Variable-size signals are not supported.

cordicpol2cart Fixed-Point
Designer

• Variable-size signals are not supported.

cordicrotate Fixed-Point
Designer

• Variable-size signals are not supported.

cordicsin Fixed-Point
Designer

• Variable-size signals are not supported.

cordicsincos Fixed-Point
Designer

• Variable-size signals are not supported.

cordicsqrt Fixed-Point
Designer

• Variable-size signals are not supported.

cornerPoints Computer Vision
System Toolbox

Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

corrcoef MATLAB • Row-vector input is only supported when the
first two inputs are vectors and nonscalar.

cos MATLAB —
cos Fixed-Point

Designer
—

cosd MATLAB —
cosh MATLAB —
cot MATLAB —

4-36

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

cotd MATLAB • In some cases, returns -Inf when MATLAB
returns Inf.

• In some cases, returns Inf when MATLAB
returns -Inf.

coth MATLAB —
cov MATLAB • If the input is variable-size and is [] at run

time, returns [] not NaN.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

cplxpair MATLAB —
cross MATLAB • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

crossoverFilter Audio System
Toolbox

“System Objects in MATLAB Code Generation”

Supports MATLAB Function Block: Yes
csc MATLAB —
cscd MATLAB • In some cases, returns -Inf when MATLAB

returns Inf.
• In some cases, returns Inf when MATLAB

returns -Inf.
csch MATLAB —
ctranspose MATLAB —
ctranspose Fixed-Point

Designer
—

cummin MATLAB —
cummax MATLAB —
cumprod MATLAB Does not support logical inputs. Cast input to

double first.

4-37

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

cumsum MATLAB Does not support logical inputs. Cast input to
double first.

cumtrapz MATLAB —
db2pow Signal Processing

Toolbox
—

dct Signal Processing
Toolbox

• Code generation for this function requires the
DSP System Toolbox software.

• Length of transform dimension must
be a power of two. If specified, the pad
or truncation value must be constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 21-53.

ddencmp Wavelet Toolbox Variable-size data support must be enabled.

Supports MATLAB Function block: No
de2bi Communications

System Toolbox
—

deal MATLAB —
deblank MATLAB • Supports only inputs from the char class.

Does not support cell arrays.
• Input values must be in the range 0-127.

4-38

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

dec2bin MATLAB • If input d is double, d must be less than
2^52.

• If input d is single, d must be less than
2^23.

• Unless you specify input n to be constant and
n is large enough that the output has a fixed
number of columns regardless of the input
values, this function requires variable-sizing
support. Without variable-sizing support,
n must be at least 52 for double, 23 for
single, 16 for char, 32 for int32, 16 for
int16, and so on.

dec2hex MATLAB • If input d is double, d must be less than
2^52.

• If input d is single, d must be less than
2^23.

• Unless you specify input n to be constant,
and n is large enough that the output has a
fixed number of columns regardless of the
input values, this function requires variable-
sizing support. Without variable-sizing
support, n must be at least 13 for double,
6 for single, 4 for char, 8 for int32, 4 for
int16, and so on.

dechirp Phased Array
System Toolbox

Does not support variable-size inputs.

deconv MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

deg2rad MATLAB —
del2 MATLAB —
delayseq Phased Array

System Toolbox
Does not support variable-size inputs.

4-39

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

demosaic Image Processing
Toolbox

The sensorAlignment argument must be a
compile-time constant.

MATLAB Function Block support: Yes.
depressionang Phased Array

System Toolbox
Does not support variable-size inputs.

designMultirateFIR DSP System
Toolbox

The inputs to the function must be constants

designParamEQ Audio System
Toolbox

Supports MATLAB Function Block: Yes

designShelvingEQ Audio System
Toolbox

Supports MATLAB Function Block: Yes

designVarSlopeFilter Audio System
Toolbox

Supports MATLAB Function Block: Yes

det MATLAB —
detcoef Wavelet Toolbox —

Supports MATLAB Function block: No
detcoef2 Wavelet Toolbox —

Supports MATLAB Function block: No
detectBRISKFeatures Computer Vision

System Toolbox
Supports MATLAB Function block: No
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries.
“Portable C Code Generation for Functions That
Use OpenCV Library”

4-40

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

detectCheckerboard-

Points

Computer Vision
System Toolbox

Supports MATLAB Function block: No
Code generation will not support specifying
images as file names or cell arrays of file names.
It supports only checkerboard detection in
a single image or stereo pair of images. For
example, these syntaxes are supported:

• detectCheckerboardPoints(I1)

• detectCheckerobarPoints(I1,I2)

I1 and I2 are single grayscale or RGB images.
detectFASTFeatures Computer Vision

System Toolbox
Supports MATLAB Function block: No
Supports MATLAB Function block: No
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries.
“Portable C Code Generation for Functions That
Use OpenCV Library”Generated code for this
function uses a precompiled platform-specific
shared library.

detectHarrisFeatures Computer Vision
System Toolbox

Compile-time constant input: FilterSize
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectMinEigenFeatures Computer Vision
System Toolbox

Compile-time constant input: FilterSize
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectMSERFeatures Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries
“Portable C Code Generation for Functions That
Use OpenCV Library”
For code generation, the function outputs
regions.PixelList as an array. The region
sizes are defined in regions.Lengths.

4-41

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

detectSURFFeatures Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries.
“Portable C Code Generation for Functions That
Use OpenCV Library”

detrend MATLAB • If supplied and not empty, the input
argument bp must satisfy the following
requirements:

• Be real.
• Be sorted in ascending order.
• Restrict elements to integers in the

interval [1, n-2]. n is the number of
elements in a column of input argument X
, or the number of elements in X when X is
a row vector.

• Contain all unique values.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

4-42

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

diag MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

• For variable-size inputs that are variable-
length vectors (1-by-: or :-by-1), diag:

• Treats the input as a vector input.
• Returns a matrix with the given vector

along the specified diagonal.

• For variable-size inputs that are not variable-
length vectors, diag:

• Treats the input as a matrix.
• Does not support inputs that are vectors

at run time.
• Returns a variable-length vector.

If the input is variable-size (:m-by-:n) and
has shape 0-by-0 at run time, the output is
0-by-1 not 0-by-0. However, if the input is a
constant size 0-by-0, the output is [].

• For variable-size inputs that are not variable-
length vectors (1-by-: or :-by-1), diag treats
the input as a matrix from which to extract
a diagonal vector. This behavior occurs even
if the input array is a vector at run time. To
force diag to build a matrix from variable-
size inputs that are not 1-by-: or :-by-1, use:

• diag(x(:)) instead of diag(x)
• diag(x(:),k) instead of diag(x,k)

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

4-43

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

diag Fixed-Point
Designer

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

diff MATLAB • If supplied, the arguments representing
the number of times to apply diff and
the dimension along which to calculate the
difference must be constants.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

disparity Computer Vision
System Toolbox

Compile-time constant input restriction:
'Method'.
Supports MATLAB Function block: No
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries.
“Portable C Code Generation for Functions That
Use OpenCV Library”

divide Fixed-Point
Designer

• Any non-fi input must be constant. Its value
must be known at compile time so that it can
be cast to a fi object.

• Complex and imaginary divisors are not
supported.

• The syntax T.divide(a,b) is not
supported.

dop2speed Phased Array
System Toolbox

Does not support variable-size inputs.

dopsteeringvec Phased Array
System Toolbox

Does not support variable-size inputs.

doppler Communications
System Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

dot MATLAB —
double MATLAB —

4-44

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

double Fixed-Point
Designer

—

downsample Signal Processing
Toolbox

—

dpskdemod Communications
System Toolbox

—

dpskmod Communications
System Toolbox

—

dpss Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

dsp.AdaptiveLatticeFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AffineProjectionFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AllpassFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

The System object supports code generation only
when the Structure property is set to Minimum
multiplier or Lattice.

dsp.AllpoleFilter DSP System
Toolbox

• “System Objects in MATLAB Code
Generation”

• Only the Denominator property is tunable
for code generation.

dsp.AnalyticSignal DSP System
Toolbox

“System Objects in MATLAB Code Generation”

4-45

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

dsp.ArrayPlot DSP System
Toolbox

• Supports MEX code generation through an
auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

dsp.ArrayVectorAdder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayVectorDivider DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayVectorMultiplier DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayVectorSubtractor DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AudioFileReader DSP System
Toolbox

• You must use the packNGo function to
package the code generated from this System
object and all relevant files in a compressed
zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another
development environment with no MATLAB
installed. For an example, see “Package Code
for Other Development Environments” on
page 25-46.

• “System Objects in MATLAB Code
Generation”

dsp.AudioFileWriter DSP System
Toolbox

• You must use the packNGo function to
package the code generated from this System
object and all relevant files in a compressed
zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another
development environment with no MATLAB
installed. For an example, see “Package Code
for Other Development Environments” on
page 25-46.

• “System Objects in MATLAB Code
Generation”

4-46

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

dsp.Autocorrelator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.BinaryFileReader DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.BinaryFileWriter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.BiquadFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.BurgAREstimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.BurgSpectrumEstimator DSP System
Toolbox

• When the FFT length is not a power of 2, use
the packNGo function to package the code
generated from this System object and all
relevant files in a compressed zip file. Using
this zip file, you can relocate, unpack, and
rebuild your project in another development
environment with no MATLAB installed.
For an example, see “Package Code for
Other Development Environments” on page
25-46.

• “System Objects in MATLAB Code
Generation”

dsp.CepstralToLPC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Channelizer DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ChannelSynthesizer DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CICCompensation-
Decimator

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CICCompensation-
Interpolator

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

4-47

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

dsp.CICDecimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CICInterpolator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Convolver DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Counter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Crosscorrelator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CrossSpectrumEstimator DSP System
Toolbox

• When the FFT length is not a power of 2, use
the packNGo function to package the code
generated from this System object and all
relevant files in a compressed zip file. Using
this zip file, you can relocate, unpack, and
rebuild your project in another development
environment with no MATLAB installed.
For an example, see “Package Code for
Other Development Environments” on page
25-46.

• “System Objects in MATLAB Code
Generation”

dsp.CumulativeProduct DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CumulativeSum DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DCBlocker DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DCT DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Delay DSP System
Toolbox

“System Objects in MATLAB Code Generation”

4-48

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

dsp.DelayLine DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Differentiator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DigitalDownConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DigitalUpConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DigitalFilter DSP System
Toolbox

• “System Objects in MATLAB Code
Generation”

• The SOSMatrix and Scalevalues
properties are not supported for code
generation.

dsp.FarrowRateConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FastTransversalFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

4-49

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

dsp.FFT DSP System
Toolbox

• Under the following conditions:

• When FFTImplementation is set to
'FFTW'.

• When FFTImplementation is set to
'Auto', FFTLengthSource is set to
'Property', and FFTLength is not a
power of 2.

Use the packNGo function to package the
code generated from this System object
and all relevant files in a compressed zip
file. Using this zip file, you can relocate,
unpack, and rebuild your project in another
development environment with no MATLAB
installed. For an example, see “Package Code
for Other Development Environments” on
page 25-46.

• “System Objects in MATLAB Code
Generation”

dsp.FilterCascade DSP System
Toolbox

• You cannot generate code directly from
dsp.FilterCascade. You can use the
generateFilteringCode method to
generate a MATLAB function. You can
generate C/C++ code from this MATLAB
function.

“System Objects in MATLAB Code Generation”
dsp.FilteredXLMSFilter DSP System

Toolbox
“System Objects in MATLAB Code Generation”

dsp.FIRDecimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FIRFilter DSP System
Toolbox

• “System Objects in MATLAB Code
Generation”

• Only the Numerator property is tunable for
code generation.

4-50

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

dsp.FIRHalfbandDecimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FIRHalfbandInterpolator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FIRInterpolator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FIRRateConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FrequencyDomain-
AdaptiveFilter

DSP System
Toolbox

• When the sum of BlockLength and Length
is not a power of 2, use the packNGo function
to package the code generated from this
System object and all relevant files in a
compressed zip file. Using this zip file, you
can relocate, unpack, and rebuild your project
in another development environment with
no MATLAB installed. For an example,
see “Package Code for Other Development
Environments” on page 25-46.

• “System Objects in MATLAB Code
Generation”

dsp.HighpassFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Histogram DSP System
Toolbox

• This object has no tunable properties for code
generation.

• “System Objects in MATLAB Code
Generation”

dsp.IDCT DSP System
Toolbox

“System Objects in MATLAB Code Generation”

4-51

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

dsp.IFFT DSP System
Toolbox

• Under the following conditions:

• When FFTImplementation is set to
'FFTW'.

• When FFTImplementation is set to
'Auto', FFTLengthSource is set to
'Property', and FFTLength is not a
power of 2.

Use the packNGo function to package the
code generated from this System object
and all relevant files in a compressed zip
file. Using this zip file, you can relocate,
unpack, and rebuild your project in another
development environment with no MATLAB
installed. For an example, see “Package Code
for Other Development Environments” on
page 25-46.

• “System Objects in MATLAB Code
Generation”

dsp.IIRFilter DSP System
Toolbox

• Only the Numerator and Denominator
properties are tunable for code generation.

• “System Objects in MATLAB Code
Generation”

dsp.IIRHalfbandDecimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.IIRHalfbandInterpolator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Interpolator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.KalmanFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LDLFactor DSP System
Toolbox

“System Objects in MATLAB Code Generation”

4-52

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

dsp.LevinsonSolver DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LMSFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LowerTriangularSolver DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LowpassFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToAutocorrelation DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToCepstral DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToLSF DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToLSP DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToRC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LSFToLPC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LSPToLPC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LUFactor DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Maximum DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Mean DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Median DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.MedianFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

4-53

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

dsp.MovingAverage DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.MovingMaximum DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.MovingMinimum DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.MovingRMS DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.MovingStandardDeviation DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.MovingVariance DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Minimum DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.NCO DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Normalizer DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PeakFinder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PeakToPeak DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PeakToRMS DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PhaseExtractor DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PhaseUnwrapper DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.RCToAutocorrelation DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.RCToLPC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

4-54

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

dsp.RMS DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.RLSFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.SampleRateConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ScalarQuantizerDecoder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ScalarQuantizerEncoder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.SignalSource DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.SineWave DSP System
Toolbox

• This object has no tunable properties for code
generation.

• “System Objects in MATLAB Code
Generation”

dsp.SpectrumAnalyzer DSP System
Toolbox

• Supports MEX code generation through an
auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

dsp.SpectrumEstimator DSP System
Toolbox

• When the FFT length is not a power of 2, use
the packNGo function to package the code
generated from this System object and all
relevant files in a compressed zip file. Using
this zip file, you can relocate, unpack, and
rebuild your project in another development
environment with no MATLAB installed.
For an example, see “Package Code for
Other Development Environments” on page
25-46.

• “System Objects in MATLAB Code
Generation”

4-55

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

dsp.StandardDeviation DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.StateLevels DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.SubbandAnalysisFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.SubbandSynthesisFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.TimeScope DSP System
Toolbox

• Supports MEX code generation through an
auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

dsp.TransferFunction-
Estimator

DSP System
Toolbox

• When the FFT length is not a power of 2, use
the packNGo function to package the code
generated from this System object and all
relevant files in a compressed zip file. Using
this zip file, you can relocate, unpack, and
rebuild your project in another development
environment with no MATLAB installed.
For an example, see “Package Code for
Other Development Environments” on page
25-46.

• “System Objects in MATLAB Code
Generation”

4-56

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

dsp.UDPReceiver DSP System
Toolbox

• You must use the packNGo function to
package the code generated from this System
object and all relevant files in a compressed
zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another
development environment with no MATLAB
installed. For an example, see “Package Code
for Other Development Environments” on
page 25-46.

• “System Objects in MATLAB Code
Generation”

dsp.UDPSender DSP System
Toolbox

• You must use the packNGo function to
package the code generated from this System
object and all relevant files in a compressed
zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another
development environment with no MATLAB
installed. For an example, see “Package Code
for Other Development Environments” on
page 25-46.

• “System Objects in MATLAB Code
Generation”

dsp.UpperTriangularSolver DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VariableBandwidth-
FIRFilter

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VariableBandwidth-
IIRFilter

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VariableFractionDelay DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VariableIntegerDelay DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Variance DSP System
Toolbox

“System Objects in MATLAB Code Generation”

4-57

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

dsp.VectorQuantizerDecoder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VectorQuantizerEncoder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Window DSP System
Toolbox

• This object has no tunable properties for code
generation.

• “System Objects in MATLAB Code
Generation”

dsp.ZeroCrossingDetector DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dvbs2ldpc Communications
System Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

dwt Wavelet Toolbox —

Supports MATLAB Function block: No
dwt2 Wavelet Toolbox —

Supports MATLAB Function block: No

4-58

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

dyadup Wavelet Toolbox • If X is empty, generated code returns X and
MATLAB returns [].

• Suppose that all of the following conditions
are true:

• X is a variable-size array.
• X is not a variable-length column vector (:-

by-1).
• X is a column vector at run time.
• 'type' is not supplied.

In generated code, the output for y =
dyadup(X,k), where k is optional, matches
the output for y = dyadup(X,k,'c').
In MATLAB, the output for y =
dyadup(X,k) matches the output for y =
dyadup(X,k,'r').

For code generation, when you do not specify
'type', if you want dyadup to treat X as a
column vector, X must be a variable-length
vector (:-by-1).

Supports MATLAB Function block: No

4-59

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

edge Image Processing
Toolbox

The method, direction, and sigma arguments
must be a compile-time constants. In addition,
nonprogrammatic syntaxes are not supported.
For example, the syntax edge(im), where edge
does not return a value but displays an image
instead, is not supported.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The
input arguments thresh and sigma must be
compile-time constants.

effearthradius Phased Array
System Toolbox

Does not support variable-size inputs.

4-60

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

eig MATLAB • V might represent a different basis of
eigenvectors, and the eigenvalues in D might
not be in the same order as in MATLAB.

• For the generalized eigenvalue problem,
[V,D] = eig(A,B), the 'qz' option is
always used.

• For the standard eigenvalue problem,
[V,D] = eig(A), when A is
Hermitian, schur is used to calculate
V and D. Otherwise, the results
of [V,D] = eig(A) are similar
to those obtained using [V,D] =
eig(A,eye(size(A)),'qz') in
MATLAB, except that the columns of V
are normalized.

• Options 'balance', and 'nobalance' are
not supported for the standard eigenvalue
problem. 'chol' is not supported for the
symmetric generalized eigenvalue problem.

• Outputs are of complex type.
• Does not support the option to calculate left

eigenvectors.
ellip Signal Processing

Toolbox
Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

4-61

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

ellipap Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

ellipke MATLAB —
ellipord Signal Processing

Toolbox
All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

end MATLAB —
end Fixed-Point

Designer
—

epipolarLine Computer Vision
System Toolbox

Supports MATLAB Function block: Yes

eps MATLAB —
eps Fixed-Point

Designer
• Supported for scalar fixed-point signals only.
• Supported for scalar, vector, and matrix, fi

single and fi double signals.
eq MATLAB You cannot use eq to test equality between an

enumeration member and a character array or
cell array of character arrays.

eq Fixed-Point
Designer

Not supported for fixed-point signals with
different biases.

4-62

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

erf MATLAB —
erfc MATLAB —
erfcinv MATLAB —
erfcx MATLAB —
erfinv MATLAB —
error MATLAB Has no effect in standalone code even when run-

time error detection is enabled. See “Run-Time
Error Detection and Reporting in Standalone C/
C++ Code” on page 22-28.

espritdoa Phased Array
System Toolbox

Does not support variable-size inputs.

estimateEssentialMatrix Computer Vision
System Toolbox

Supports MATLAB Function block: No

estimateFundamental-

Matrix

Computer Vision
System Toolbox

Compile-time constant input: Method,
OutputClass, DistanceType, and
ReportRuntimeError.
Supports MATLAB Function block: Yes

estimateGeometric-

Transform

Computer Vision
System Toolbox

Supports MATLAB Function block: No

estimateUncalibrated-

Rectification

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes

estimateWorldCameraPose Computer Vision
System Toolbox

Supports MATLAB Function block: No

eul2quat Robotics System
Toolbox

Supports MATLAB Function block: Yes

eul2rotm Robotics System
Toolbox

Supports MATLAB Function block: Yes

eul2tform Robotics System
Toolbox

Supports MATLAB Function block: Yes

evcdf Statistics
and Machine
Learning Toolbox

—

4-63

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

evinv Statistics
and Machine
Learning Toolbox

—

evpdf Statistics
and Machine
Learning Toolbox

—

evrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
evstat Statistics

and Machine
Learning Toolbox

—

exp MATLAB —
expander Audio System

Toolbox
“System Objects in MATLAB Code Generation”

Supports MATLAB Function Block: Yes
expcdf Statistics

and Machine
Learning Toolbox

—

expint MATLAB —
expinv Statistics

and Machine
Learning Toolbox

—

expm MATLAB —
expm1 MATLAB —
exppdf Statistics

and Machine
Learning Toolbox

—

4-64

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

exprnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
expstat Statistics

and Machine
Learning Toolbox

—

extendedKalmanFilter Control System
Toolbox™

For more information, see “Generate Code for
Online State Estimation in MATLAB”.

Supports MATLAB Function block: No
extendedKalmanFilter System

Identification
Toolbox

For more information, see “Generate Code for
Online State Estimation in MATLAB”.

Supports MATLAB Function block: No
extractFeatures Computer Vision

System Toolbox
Compile-time constant input restrictions:
'Method'

Supports MATLAB Function block: Yes for
Block method only.
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries for
BRISK, FREAK, and SURF Methods.
“Portable C Code Generation for Functions That
Use OpenCV Library”

extractHOGFeatures Computer Vision
System Toolbox

Supports MATLAB Function block: No

extractLBPFeatures Computer Vision
System Toolbox

Generates platform-dependent library: No
Supports MATLAB Function block: Yes

extrinsics Computer Vision
System Toolbox

Supports MATLAB Function block: No

extrinsicsToCameraPose Computer Vision
System Toolbox

Supports MATLAB Function block: Yes

4-65

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

eye MATLAB • classname must be a built-in MATLAB
numeric type. Does not invoke the static
eye method for other classes. For example,
eye(m, n, 'myclass’) does not invoke
myclass.eye(m,n).

• Size arguments must have a fixed size.
factor MATLAB • The maximum double precision input is

2^33.
• The maximum single precision input is 2^25.
• The input n cannot have type int64 or

uint64.
factorial MATLAB —
false MATLAB • Dimensions must be real, nonnegative,

integers.
fcdf Statistics

and Machine
Learning Toolbox

—

fclose MATLAB —
feof MATLAB —
fft MATLAB • “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

fft2 MATLAB —
fftn MATLAB The siz argument must have a fixed size.
fftshift MATLAB —

4-66

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

fi Fixed-Point
Designer

• Use to create a fixed-point constant or
variable.

• The default constructor syntax without input
arguments is not supported.

• The rand
fi('PropertyName',PropertyValue...)

is not supported. To use property name/
property value pairs, you must first
specify the value v of the fi object as in
fi(v,'PropertyName',PropertyValue...).

• If the input value is not known at
compile time, you must provide complete
numerictype information.

• All properties related to data type must be
constant for code generation.

• numerictype object information must be
available for non-fixed-point Simulink inputs.

fieldnames MATLAB Does not support objects. The input must be a
structure.

filter MATLAB • If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

filter Fixed-Point
Designer

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or
Keep LSB.

filter2 MATLAB —

4-67

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

filtfilt Signal Processing
Toolbox

Filter coefficients must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

Code generation does not support second-
order sections as input. You must use transfer
functions.

fimath Fixed-Point
Designer

• Fixed-point signals coming in to a MATLAB
Function block from Simulink are assigned
the fimath object defined in the MATLAB
Function dialog in the Model Explorer.

• Use to create fimath objects in generated
code.

• If the ProductMode property of the
fimath object is set to anything other than
FullPrecision, the ProductWordLength
and ProductFractionLength properties
must be constant.

• If the SumMode property of the fimath
object is set to anything other than
FullPrecision, the SumWordLength and
SumFractionLength properties must be
constant.

4-68

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

find MATLAB • Issues an error if a variable-size input
becomes a row vector at run time.

Note: This limitation does not apply when
the input is scalar or a variable-length row
vector.

• For variable-size inputs, the shape of empty
outputs, 0-by-0, 0-by-1, or 1-by-0, depends on
the upper bounds of the size of the input. The
output might not match MATLAB when the
input array is a scalar or [] at run time. If the
input is a variable-length row vector, the size
of an empty output is 1-by-0, otherwise it is
0-by-1.

• Always returns a variable-length vector.
Even when you provide the output vector k,
the output cannot be fixed-size because the
output can contain fewer than k elements.
For example, find(x,1) returns a variable-
length vector with 1 or 0 elements.

findpeaks Signal Processing
Toolbox

—

finv Statistics
and Machine
Learning Toolbox

—

fir1 Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

4-69

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

fir2 Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

firceqrip DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

fircls Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

fircls1 Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

fireqint DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

4-70

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

firgr DSP System
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

firhalfband DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firlpnorm DSP System
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

firls Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

firminphase DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firnyquist DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firpr2chfb DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

4-71

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

firpm Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

firpmord Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

fitgeotrans Image Processing
Toolbox

The transformtype argument must be
a compile-time constant. The function
supports the following transformation
types: 'nonreflectivesimilarity',
'similarity', 'affine', or 'projective'.

MATLAB Function Block support: Yes.
fix MATLAB —
fix Fixed-Point

Designer
—

fixed.Quantizer Fixed-Point
Designer

—

4-72

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

flattopwin Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

flintmax MATLAB —
flip MATLAB Does not support cell arrays for the first

argument.
flip Fixed-Point

Designer
The dimensions argument must be a built-in
type; it cannot be a fi object.

flipdim MATLAB Does not support cell arrays for the first
argument.

fliplr MATLAB Does not support cell arrays.
fliplr Fixed-Point

Designer
—

flipud MATLAB Does not support cell arrays.
flipud Fixed-Point

Designer
—

floor MATLAB —
floor Fixed-Point

Designer
—

4-73

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

fminbnd MATLAB • Does not support the problem structure
argument.

• Ignores the Display option. During
execution, does not print status information,
including early termination. To test the exit
condition, use the third output argument.

• The output structure does not include the
algorithm or message fields.

• Ignores the OutputFcn and PlotFcns
options.

fminsearch MATLAB • Ignores the Display option. Does not print
status information during execution. Test the
exitflag output for the exit condition.

• The output structure does not include the
algorithm or message fields.

• Ignores the OutputFcn and PlotFcns
options.

fogpl Phased Array
System Toolbox

Does not support variable-size inputs.

4-74

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

fopen MATLAB • Does not support:

• machineformat, encoding, or fileID
inputs

• message output
• fopen('all')

• Opening a file in text mode. (The file
access type cannot be 'rt'.)

• If you disable extrinsic calls, you cannot
return fileIDs created with fopen to
MATLAB or extrinsic functions. You can use
such fileIDs only internally.

• When generating C/C++ executables, static
libraries, or dynamic libraries, you can open
up to 20 files.

• The generated code does not report errors
from invalid file identifiers. Write your own
file open error handling in your MATLAB
code. Test whether fopen returns -1,
which indicates that the file open failed. For
example:

...

fid = fopen(filename, 'r');

if fid == -1

 % fopen failed

else

% fopen successful, okay to call fread

A = fread(fid);

...

• The behavior of the generated code for fread
is compiler-dependent if you:

1 Open a file using fopen with a
permission of a+.

4-75

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

2 Read the file using fread before calling
an I/O function, such as fseek or
frewind, that sets the file position
indicator.

for MATLAB —
for Fixed-Point

Designer
—

fpdf Statistics
and Machine
Learning Toolbox

—

4-76

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

fprintf MATLAB • Does not support:

• b and t subtypes on %u, %o %x, and %X
formats.

• $ flag for reusing input arguments.
• printing arrays.

• There is no automatic casting. Input
arguments must match their format types for
predictable results.

• Escaped characters are limited to the decimal
range of 0–127.

• A call to fprintf with fileID equal to 1 or
2 becomes printf in the generated C/C++
code in the following cases:

• The fprintf call is inside a parfor loop.
• Extrinsic calls are disabled.

• When the MATLAB behavior differs from the
C compiler behavior, fprintf matches the C
compiler behavior in the following cases:

• The format specifier has a corresponding
C format specifier, for example, %e or %E.

• The fprintf call is inside a parfor loop.
• Extrinsic calls are disabled.

• When you call fprintf with the format
specifier %s, do not put a null character in
the middle of the input character vector. Use
fprintf(fid, '%c', char(0)) to write a
null character.

• When you call fprintf with an integer
format specifier, the type of the integer
argument must be a type that the target
hardware can represent as a native C type.
For example, if you call fprintf('%d',

4-77

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

int64(n)), the target hardware must
have a native C type that supports a 64-bit
integer.

4-78

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

fread MATLAB • precision must be a constant.
• The source and output that precision

specifies cannot have values 'long',
'ulong', 'unsigned long', 'bitn', and
'ubitn'.

• You cannot use the machineformat input.
• If the source or output that precision

specifies is a C type, for example, int, the
target and production sizes for that type
must:

• Match.
• Map directly to a MATLAB type.

• The source type that precision specifies
must map directly to a C type on the target
hardware.

• If the fread call reads the entire file, all
of the data must fit in the largest array
available for code generation.

• If sizeA is not constant or contains a
nonfinite element, then dynamic memory
allocation is required.

• Treats a char value for source or output
as a signed 8-bit integer. Use values between
0 and 127 only.

• The generated code does not report file
read errors. Write your own file read error
handling in your MATLAB code. Test that
the number of bytes read matches the
number of bytes that you requested. For
example:

...

N = 100;

[vals, numRead] = fread(fid, N, '*double');

if numRead ~= N

4-79

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations
 % fewer elements read than expected

end

...

freqspace MATLAB —
freqz Signal Processing

Toolbox
• Does not support variable-size inputs.
• When called with no output arguments,

and without a semicolon at the end, freqz
returns the complex frequency response of
the input filter, evaluated at 512 points.

If the semicolon is added, the function
produces a plot of the magnitude and phase
response of the filter.

See “freqz With No Output Arguments”.
frewind MATLAB —
frnd Statistics

and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
fseek MATLAB • When the MATLAB behavior differs from

the C compiler behavior, the generated code
matches the C compiler behavior. Examples
include:

• Seeking past the end of a file.
• Seeking away from the end of a file

opened with append access.
• The offset is passed to the C run-time

environment as a signed long data type.
Therefore, the offset value must fit in the
long data type on the target hardware.

4-80

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

fspecial Image Processing
Toolbox

Inputs must be compile-time constants.
Expressions or variables are allowed if their
values do not change.

MATLAB Function Block support: Yes. The
input arguments hsize, radius, len, and
theta must be compile-time constants.

fspl Phased Array
System Toolbox

Does not support variable-size inputs.

fstat Statistics
and Machine
Learning Toolbox

—

ftell MATLAB When the MATLAB behavior differs from the C
compiler behavior, the generated code usually
matches the C compiler behavior. For example,
if you use fseek to seek past the end of a file,
the behavior of ftell in the generated code
matches the C compiler behavior.

full MATLAB —

4-81

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

fwrite MATLAB • The precision argument must be a constant.
• Does not support precision types 'long',

'ulong', 'unsigned long', 'bitn', and
'ubitn'.

• Does not support the machine format (order
for writing bytes) input argument.

• If the precision is a C type such as int, the
target and production sizes for that type
must:

• Match.
• Map directly to a MATLAB integer type.

• Treats a char type as a signed 8-bit integer.
Use values from 0 through 127 only.

• When appending to a file and using a skip
argument, it must be possible for the C run-
time fseek to seek beyond the end of the
file and initialize unwritten bytes to 0. This
behavior matches the behavior of POSIX®

and Windows.
fzero MATLAB • The first argument must be a function

handle. Does not support structure or
character vector inputs for the first
argument.

• Supports up to three output arguments. Does
not support the fourth output argument (the
output structure).

gain2aperture Phased Array
System Toolbox

Does not support variable-size inputs.

gamcdf Statistics
and Machine
Learning Toolbox

—

4-82

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

gaminv Statistics
and Machine
Learning Toolbox

—

gamma MATLAB —
gammainc MATLAB Output is always complex.
gammaincinv MATLAB Output is always complex.
gammaln MATLAB —
gampdf Statistics

and Machine
Learning Toolbox

—

gamrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
gamstat Statistics

and Machine
Learning Toolbox

—

gaspl Phased Array
System Toolbox

Does not support variable-size inputs.

gausswin Signal Processing
Toolbox

Allgaspl inputs must be constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

gccphat Phased Array
System Toolbox

Does not support variable-size inputs.

gcd MATLAB —

4-83

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

ge MATLAB —
ge Fixed-Point

Designer
• Not supported for fixed-point signals with

different biases.
generateCheckerboard-

Points

Computer Vision
System Toolbox

Supports MATLAB Function block: No

genqamdemod Communications
System Toolbox

—

geocdf Statistics
and Machine
Learning Toolbox

—

geoinv Statistics
and Machine
Learning Toolbox

—

geomean Statistics
and Machine
Learning Toolbox

—

geopdf Statistics
and Machine
Learning Toolbox

—

geornd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
geostat Statistics

and Machine
Learning Toolbox

—

get Fixed-Point
Designer

• The syntax structure = get(o) is not
supported.

getlsb Fixed-Point
Designer

—

4-84

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

getmsb Fixed-Point
Designer

—

getrangefromclass Image Processing
Toolbox

MATLAB Function Block support: Yes.

gevcdf Statistics
and Machine
Learning Toolbox

—

gevinv Statistics
and Machine
Learning Toolbox

—

gevpdf Statistics
and Machine
Learning Toolbox

—

gevrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
gevstat Statistics

and Machine
Learning Toolbox

—

global2localcoord Phased Array
System Toolbox

Does not support variable-size inputs.

gpcdf Statistics
and Machine
Learning Toolbox

—

gpinv Statistics
and Machine
Learning Toolbox

—

gppdf Statistics
and Machine
Learning Toolbox

—

4-85

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

gprnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
gpstat Statistics

and Machine
Learning Toolbox

—

gradient MATLAB —
gray2bin Communications

System Toolbox
—

grayconnected Image Processing
Toolbox

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
grazingang Phased Array

System Toolbox
Does not support variable-size inputs.

gt MATLAB —
gt Fixed-Point

Designer
• Not supported for fixed-point signals with

different biases.
hadamard MATLAB n must be a fixed-size scalar.
hamming Signal Processing

Toolbox
All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

hankel MATLAB —

4-86

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

hann Signal Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

harmmean Statistics
and Machine
Learning Toolbox

—

hdl.RAM MATLAB —
hex2dec MATLAB Does not support cell arrays.
hex2num MATLAB • Does not support cell arrays.

• For n = hex2num(S), size(S,2) <=
length(num2hex(0))

hilb MATLAB —

4-87

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

hist MATLAB • Histogram bar plotting not supported. Call
with at least one output argument.

• If supplied, the second argument x must be a
scalar constant.

• Inputs must be real.

For the syntax [nout, xout] = hist(y,x):

• When y is a fixed-size vector or variable-
length vector:

• nout is always a row vector.
• If x is a vector, xout is a vector with the

same orientation as x.
• If x is a scalar (fixed-size), xout is a row

vector.
• nout and xout are column vectors when the

following conditions are true:

• y is a matrix
• size(y,1) and size(y,2) do not have

fixed length 1
• One of size(y,1) and size(y,2) has

length 1 at run time
• A variable-size x is interpreted as a vector

input even if it is a scalar at run time.
• If at least one of the inputs is empty, vector

orientations in the output can differ from
MATLAB.

4-88

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

histc MATLAB • The output of a variable-size array that
becomes a column vector at run time is a
column-vector, not a row-vector.

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

histeq Image Processing
Toolbox

All the syntaxes that include indexed images are
not supported. This includes all syntaxes that
accept map as input and return newmap.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The
input argument N must be a compile-time
constant.

hom2cart Robotics System
Toolbox

Supports MATLAB Function block: Yes

horizonrange Phased Array
System Toolbox

Does not support variable-size inputs.

horzcat Fixed-Point
Designer

—

hough Image Processing
Toolbox

The optional parameter names 'Theta' and
'RhoResolution' must be compile-time
character vector constants. The optional Theta
vector must have a bounded size.

MATLAB Function Block support: Yes. The
input argument BW must be fixed size, the
RhoResolution parameter must be a compile-
time constant, and the Theta vector must have
a bounded size.

4-89

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

houghlines Image Processing
Toolbox

The optional parameter names 'FillGap' and
'MinLength' must be compile-time character
vector constants. Their associated values need
not be compile-time constants.

MATLAB Function Block support: No.
houghpeaks Image Processing

Toolbox
The optional parameter names 'Threshold'
and 'NHoodSize' must be compile-time
character vector constants. Their associated
values need not be compile-time constants.

MATLAB Function Block support: Yes.
hygecdf Statistics

and Machine
Learning Toolbox

—

hygeinv Statistics
and Machine
Learning Toolbox

—

hygepdf Statistics
and Machine
Learning Toolbox

—

hygernd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
hygestat Statistics

and Machine
Learning Toolbox

—

hypot MATLAB —
icdf Statistics

and Machine
Learning Toolbox

—

4-90

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

idct Signal Processing
Toolbox

• Code generation for this function requires the
DSP System Toolbox software.

• Length of transform dimension must
be a power of two. If specified, the pad
or truncation value must be constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 21-53.

if, elseif, else MATLAB —
idivide MATLAB • For efficient generated code, MATLAB rules

for divide by zero are supported only for the
'round' option.

idwt Wavelet Toolbox Supports MATLAB Function block: No
idwt2 Wavelet Toolbox Variable-size data support must be enabled.

Supports MATLAB Function block: No
ifft MATLAB • Output is complex.

• Does not support the 'symmetric' option.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

ifft2 MATLAB • Does not support the 'symmetric' option.
ifftn MATLAB • Does not support the 'symmetric' option.

• The siz argument must have a fixed size.
ifftshift MATLAB —
ifir DSP System

Toolbox
All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

4-91

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

iircomb DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iirgrpdelay DSP System
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirlpnorm DSP System
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirlpnormc DSP System
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirnotch DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iirpeak DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

im2double MATLAB MATLAB Function Block support: Yes.
im2int16 Image Processing

Toolbox
If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
im2single Image Processing

Toolbox
MATLAB Function Block support: Yes.

4-92

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

im2uint8 Image Processing
Toolbox

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
im2uint16 Image Processing

Toolbox
If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imabsdiff Image Processing

Toolbox
MATLAB Function Block support: Yes.

imadjust Image Processing
Toolbox

Does not support syntaxes that include indexed
images. This includes all syntaxes that accept
map as input and return newmap.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imag MATLAB —
imag Fixed-Point

Designer
—

imaq.VideoDevice Image
Acquisition
Toolbox

“Code Generation with VideoDevice System
Object”

imbinarize Image Processing
Toolbox

Character vector input arguments must be
compile-time constants.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.

4-93

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

imbothat Image Processing
Toolbox

The input image IM must be either 2-D or 3-D
image. The structuring element input argument
SE must be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imboxfilt Image Processing

Toolbox
MATLAB Function Block support: Yes.

imclearborder Image Processing
Toolbox

The optional second input argument, conn, must
be a compile-time constant. Supports only up to
3-D inputs.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imclose Image Processing

Toolbox
The input image IM must be either 2-D or 3-D
image. The structuring element input argument
SE must be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imcomplement Image Processing

Toolbox
Does not support int64 and uint64 data types.

MATLAB Function Block support: Yes.

4-94

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

imcrop Image Processing
Toolbox

The interactive syntaxes, such as I2 = imcrop,
are not supported. Indexed images are not
supported, including the noninteractive syntax
X2 = imcrop(X,map,rect);.

MATLAB Function Block support: Yes.
imdilate Image Processing

Toolbox
The input image IM must be either 2-D or 3-
D image. The SE, PACKOPT, and SHAPE input
arguments must be a compile-time constant.
The structuring element argument SE must be a
single element—arrays of structuring elements
are not supported. To obtain the same result
as that obtained using an array of structuring
elements, call the function sequentially.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imerode Image Processing

Toolbox
The input image IM must be either 2-D or 3-
D image. The SE, PACKOPT, and SHAPE input
arguments must be a compile-time constant.
The structuring element argument SE must be a
single element—arrays of structuring elements
are not supported. To obtain the same result
as that obtained using an array of structuring
elements, call the function sequentially.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.

4-95

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

imextendedmax Image Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imextendedmin Image Processing

Toolbox
The optional third input argument, conn, must
be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.

4-96

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

imfill Image Processing
Toolbox

The optional input connectivity, conn and the
character vector 'holes' must be compile-time
constants.

Supports only up to 3-D inputs.

The interactive mode to select points,
imfill(BW,0,CONN) is not supported in code
generation.

locations can be a P-by-1 vector, in which
case it contains the linear indices of the
starting locations. locations can also be a P-
by-ndims(I) matrix, in which case each row
contains the array indices of one of the starting
locations. Once you select a format at compile-
time, you cannot change it at run time. However,
the number of points in locations can be varied
at run time.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imfilter Image Processing

Toolbox
The input image can be either 2-D or 3-D. The
value of the input argument, options, must be
a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.

4-97

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

imfindcircles Image Processing
Toolbox

All character vector input arguments and values
must be compile-time constants.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: No.
imgaborfilt Image Processing

Toolbox
The wavelength, orientation,
SpatialFrequencyBandwidth, and
SpatialAspectRatio must be compile-time
constants.

The filter bank syntax is not supported.

MATLAB Function Block support: Yes.
imgaussfilt Image Processing

Toolbox
Character vector input arguments must be
compile-time constants.

When FilterDomain is 'spatial’, if you
choose the generic MATLAB Host Computer
target platform, generated code uses a
precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imgradient3 Image Processing

Toolbox
Character vector input arguments must be
compile-time constants.

MATLAB Function Block support: Yes.
imgradientxyz Image Processing

Toolbox
Character vector input arguments must be
compile-time constants.

MATLAB Function Block support: Yes.

4-98

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

imhist Image Processing
Toolbox

The optional second input argument, n, must
be a compile-time constant. In addition,
nonprogrammatic syntaxes are not supported.
For example, the syntaxes where imhist
displays the histogram are not supported.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The
input argument N must be a compile-time
constant.

imhmax Image Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imhmin Image Processing

Toolbox
The optional third input argument, conn, must
be a compile-time constant

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imlincomb Image Processing

Toolbox
The output_class argument must be a
compile-time constant. You can specify up to
four input image arguments.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.

4-99

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

immse Image Processing
Toolbox

MATLAB Function Block support: Yes.

imodwpt Wavelet Toolbox Supports MATLAB Function block: No
imodwt Wavelet Toolbox Supports MATLAB Function block: No
imopen Image Processing

Toolbox
The input image IM must be either 2-D or 3-D
image. The structuring element input argument
SE must be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imoverlay Image Processing

Toolbox
If you specify the 'color' argument as a
character vector, it must be a compile-time
constant.

MATLAB Function Block support: Yes.
impyramid Image Processing

Toolbox
The direction argument must be a compile-
time constant.

MATLAB Function Block support: Yes. The
input argument direction must be a compile-
time constant.

imquantize Image Processing
Toolbox

MATLAB Function Block support: Yes.

imread Image Processing
Toolbox

Supports reading of 8-bit JPEG images only.
The file name input argument must be a valid
absolute path or relative path.

This function generates code that uses a
precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The file
name input argument must be a compile-time
constant.

4-100

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

imreconstruct Image Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imref2d Image Processing

Toolbox
The XWorldLimits, YWorldLimits and
ImageSize properties can be set only during
object construction. When generating code, you
can only specify single objects—arrays of objects
are not supported.

MATLAB Function Block support: Yes.
imref3d Image Processing

Toolbox
The XWorldLimits, YWorldLimits,
ZWorldLimits and ImageSize properties can
be set only during object construction. When
generating code, you can only specify single
objects—arrays of objects are not supported.

MATLAB Function Block support: Yes.
imregionalmax Image Processing

Toolbox
The optional second input argument, conn, must
be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imregionalmin Image Processing

Toolbox
The optional second input argument, conn, must
be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.

4-101

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

imresize Image Processing
Toolbox

Does not support indexed images or custom
interpolation kernels. All parameter-value
pair input arguments must be compile-time
constants.

MATLAB Function Block support: Yes. The
input arguments Scale and method must
be compile-time constants, and the values of
the OutputSize parameter, numrows and
numcols, must be compile-time constants.

imrotate Image Processing
Toolbox

The method and bbox input argument values
must be compile-time constants.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The
input argument angle must be a compile-time
constant.

imtophat Image Processing
Toolbox

The input image IM must be either 2-D or 3-D
image. The structuring element input argument
SE must be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.

4-102

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

imtranslate Image Processing
Toolbox

The supports only 2-D translation vectors. 3-D
translations are not supported

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The
input argument translation must be a
compile-time constant.

imwarp Image Processing
Toolbox

The geometric transformation object
input, tform, must be either affine2d or
projective2d. Additionally, the interpolation
method and optional parameter names must be
character vector constants.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The
input argument tform must be a compile-time
constant.

ind2sub MATLAB • The first argument should be a valid size
vector. Size vectors for arrays with more than
intmax elements are not supported.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

inf MATLAB • Dimensions must be real, nonnegative,
integers.

inpolygon MATLAB Supports single-precision and double-precision
inputs, but uses double-precision arithmetic
even if all inputs are single-precision.

4-103

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

insertMarker Computer Vision
System Toolbox

Compile-time constant input: 'Shape' and
'Color'

Supports MATLAB Function block: Yes
insertObjectAnnotation Computer Vision

System Toolbox
Supports MATLAB Function block: Yes
Limitation: Input image must be bounded, see
“Specify Variable-Size Data Without Dynamic
Memory Allocation”
“System Objects in MATLAB Code Generation”

insertShape Computer Vision
System Toolbox

Compile-time constant input: 'Color' and
'SmoothEdges'

Supports MATLAB Function block: Yes
insertText Computer Vision

System Toolbox
Compile-time constant input: Font, FontSize
Supports non-ASCII characters: No
Supports MATLAB Function block: Yes

int8, int16, int32, int64 MATLAB —
int8, int16, int32, int64 Fixed-Point

Designer
—

integralBoxFilter Image Processing
Toolbox

The 'NormalizationFactor' parameter must
be a compile-time constant.

MATLAB Function Block support: Yes. The
input argument filtersize must be a compile-
time constant.

integralImage Computer Vision
System Toolbox

Supports MATLAB Function block: Yes

integratedLoudness Audio System
Toolbox

Supports MATLAB Function block: Yes

4-104

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

interp1 MATLAB • Does not support the 'cubic' method.
Instead, use 'v5cubic' or 'spline'.

• The input argument x (sample points) must
be strictly increasing or strictly decreasing.
Indices are not reordered.

• If the input argument v (sample values) is a
variable-length vector (1-by-: or :-by-1), the
shape of the output vq matches the shape in
MATLAB.

If the input argument v is variable-size, is
not a variable-length vector, and becomes a
row vector at run time, an error occurs.

• If the input argument xq (query points) is
variable-size, is not a variable-length vector,
and becomes a row or column vector at run
time, an error occurs.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

interp1q MATLAB Might not match MATLAB when some Y values
are Inf or NaN.

4-105

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

interp2 MATLAB • Xq and Yq must be the same size. Use
meshgrid to evaluate on a grid.

• For best results, provide X and Y as vectors.
• For the 'cubic' method, reports an error if

the grid does not have uniform spacing. In
this case, use the 'spline' method.

• For best results when you use the 'spline'
method:

• Use meshgrid to create the inputs Xq
and Yq.

• Use a small number of interpolation
points relative to the dimensions of V.
Interpolating over a large set of scattered
points can be inefficient.

interp3 MATLAB • Xq, Yq, and Zq must be the same size. Use
meshgrid to evaluate on a grid.

• For best results, provide X, Y, and Z as
vectors.

• For the 'cubic' method, reports an error if
the grid does not have uniform spacing. In
this case, use the 'spline' method.

• For best results when you use the 'spline'
method:

• Use meshgrid to create the inputs Xq,
Yq, and Zq.

• Use a small number of interpolation
points relative to the dimensions of V.
Interpolating over a large set of scattered
points can be inefficient.

4-106

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

interpn MATLAB • For best results, provide X1,X2,...,Xn as
vectors.

• Does not support the 'cubic' or 'spline'
methods for 2-D and higher interpolation.

• The interpolation method must be a constant
character vector.

4-107

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

intersect MATLAB • Does not support cell arrays for the first or
second arguments.

• When you do not specify the 'rows' option:

• Inputs A and B must be vectors. If you
specify the 'legacy' option, inputs A and
B must be row vectors.

• The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

• The input [] is not supported. Use a
1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never 0-
by-0.

• When you specify both the 'legacy' option
and the 'rows' option, the outputs ia and
ib are column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' option, the inputs
must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.
• When one input is complex and the other

input is real, do one of the following:

• Set setOrder to 'stable'.
• Sort the real input in complex

ascending order (by absolute
value). Suppose the real input

4-108

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page
6-4.

intfilt Signal Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

intlut Image Processing
Toolbox

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
intmax MATLAB —
intmin MATLAB —
inv MATLAB Singular matrix inputs can produce nonfinite

values that differ from MATLAB results.
invhilb MATLAB —
ipermute MATLAB • Does not support cell arrays for the first

argument.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

ipermute Fixed-Point
Designer

—

4-109

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

iptcheckconn Image Processing
Toolbox

Input arguments must be compile-time
constants.

MATLAB Function Block support: Yes.
iptcheckmap Image Processing

Toolbox
MATLAB Function Block support: Yes.

iqcoef2imbal Communications
System Toolbox

—

iqimbal Communications
System Toolbox

—

iqimbal2coef Communications
System Toolbox

—

iqr Statistics
and Machine
Learning Toolbox

—

isa MATLAB —
isbanded MATLAB —
iscell MATLAB —
iscellstr MATLAB —
ischar MATLAB —
iscolumn MATLAB —
iscolumn Fixed-Point

Designer
—

isdeployed MATLAB
Compiler

• Returns true and false as appropriate for
MEX and SIM targets

• Returns false for other targets
isdiag MATLAB —
isempty MATLAB —
isempty Fixed-Point

Designer
—

isenum MATLAB —

4-110

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

isEpipoleInImage Computer Vision
System Toolbox

Supports MATLAB Function block: Yes

isequal MATLAB —
isequal Fixed-Point

Designer
—

isequaln MATLAB —
isfi Fixed-Point

Designer
—

isfield MATLAB • Does not support cell arrays for the second
argument

isfimath Fixed-Point
Designer

—

isfimathlocal Fixed-Point
Designer

—

isfinite MATLAB —
isfinite Fixed-Point

Designer
—

isfloat MATLAB —
ishermitian MATLAB —
isinf MATLAB —
isinf Fixed-Point

Designer
—

isinteger MATLAB —
isletter MATLAB • Input values from the char class must be in

the range 0-127.
islogical MATLAB —
ismac MATLAB • Returns true or false based on the MATLAB

version used for code generation.
• Use only when the code generation target is

S-function (Simulation) or MEX-function.
ismatrix MATLAB —

4-111

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

ismcc MATLAB
Compiler

• Returns true and false as appropriate for
MEX and SIM targets.

• Returns false for other targets.
ismember MATLAB • Does not support cell arrays for the first or

second arguments.
• Complex inputs must be single or double.
• “Code Generation for Complex Data with

Zero-Valued Imaginary Parts” on page
6-4.

isnan MATLAB —
isnan Fixed-Point

Designer
—

isnumeric MATLAB —
isnumeric Fixed-Point

Designer
—

isnumerictype Fixed-Point
Designer

—

isobject MATLAB —
ispc MATLAB • Returns true or false based on the MATLAB

version you use for code generation.
• Use only when the code generation target is

S-function (Simulation) or MEX-function.
isprime MATLAB • The maximum double precision input is

2^33.
• The maximum single precision input is 2^25.
• The input X cannot have type int64 or

uint64.
isreal MATLAB —
isreal Fixed-Point

Designer
—

isrow MATLAB —

4-112

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

isrow Fixed-Point
Designer

—

isscalar MATLAB —
isscalar Fixed-Point

Designer
—

issigned Fixed-Point
Designer

—

issorted MATLAB • Does not support cell arrays for the first
argument.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35.

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page
6-4.

isspace MATLAB • Input values from the char class must be in
the range 0–127.

issparse MATLAB —
isstrprop MATLAB • Supports only inputs from char and

integer classes.
• Input values must be in the range 0-127.

isstruct MATLAB —
issymmetric MATLAB —
istrellis Communications

System Toolbox
—

istril MATLAB —
istriu MATLAB —
isunix MATLAB • Returns true or false based on the MATLAB

version used for code generation.
• Use only when the code generation target is

S-function (Simulation) or MEX-function.

4-113

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

isvector MATLAB —
isvector Fixed-Point

Designer
—

kaiser Signal Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

kaiserord Signal Processing
Toolbox

—

kron MATLAB —
kmeans Statistics

and Machine
Learning Toolbox

• If the Start method uses random selections,
the initial centroid cluster positions might
not match MATLAB.

• If the number of rows in X is fixed, does not
remove rows of X that contain a NaN.

• The cluster centroid locations in C can
have a different order than in MATLAB. In
this case, the cluster indices in idx have
corresponding differences.

• If you provide Display, its value must be
'off'.

• If you provide Streams, it must be empty
and UseSubstreams must be false.

• When you set the UseParallel option to
true, some computations can execute in
parallel even when Replicates is 1. For
large data sets, when Replicates is 1,
consider setting the UseParallel option to
true.

4-114

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

kurtosis Statistics
and Machine
Learning Toolbox

—

lab2rgb Image Processing
Toolbox

Character vector input arguments must be
compile-time constants.

MATLAB Function Block support: Yes.
label2idx Image Processing

Toolbox
MATLAB Function Block support: No.

label2rgb Image Processing
Toolbox

Referring to the standard syntax:

RGB = label2rgb(L, map, zerocolor, order)

• Submit at least two input arguments: the
label matrix, L, and the colormap matrix,
map.

• map must be an n-by-3, double, colormap
matrix. You cannot use a character vector
containing the name of a MATLAB colormap
function or a function handle of a colormap
function.

• If you set the boundary color zerocolor
to the same color as one of the regions,
label2rgb will not issue a warning.

• If you supply a value for order, it must be
'noshuffle'.

MATLAB Function Block support: Yes.
lcm MATLAB —
lcmvweights Phased Array

System Toolbox
Does not support variable-size inputs.

ldivide MATLAB —
le MATLAB —
le Fixed-Point

Designer
• Not supported for fixed-point signals with

different biases.

4-115

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

length MATLAB —
length Fixed-Point

Designer
—

levinson Signal Processing
Toolbox

• Code generation for this function requires the
DSP System Toolbox software.

• If specified, the order of recursion must be
a constant. Expressions or variables are
allowed if their values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 21-53.

limiter Audio System
Toolbox

“System Objects in MATLAB Code Generation”

Supports MATLAB Function Block: Yes
lineToBorderPoints Computer Vision

System Toolbox
Supports MATLAB Function block: Yes

linsolve MATLAB • The option structure must be a constant.
• Supports only a scalar option structure

input. It does not support arrays of option
structures.

• Only optimizes these cases:

• UT

• LT

• UHESS = true (the TRANSA can be either
true or false)

• SYM = true and POSDEF = true

Other options are equivalent to using
mldivide.

linspace MATLAB —

4-116

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

load MATLAB • Use only when generating MEX or code for
Simulink simulation. To load compile-time
constants, use coder.load.

• Does not support use of the function without
assignment to a structure or array. For
example, use S = load(filename), not
load(filename).

• The output S must be the name of a structure
or array without any subscripting. For
example, S(i) = load('myFile.mat') is
not allowed.

• Arguments to load must be compile-time
constant character vectors.

• Does not support loading objects.
• If the MAT-file contains

unsupported constructs, use
load(filename,variables) to load only
the supported constructs.

• You cannot use save in a function intended
for code generation. The code generator does
not support the save function. Furthermore,
you cannot use coder.extrinsic with
save. Prior to generating code, you can use
save to save the workspace data to a MAT-
file.

You must use coder.varsize to explicitly
declare variable-size data loaded using the
load function.

4-117

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

loadCompactModel Statistics
and Machine
Learning Toolbox

Supports these classification model objects saved
to a file using saveCompactModel.

• Error-correcting output codes models
(ECOC), ClassificationECOC or
CompactClassificationECOC model objects,
respectively.

• Linear classification models,
ClassificationLinear model objects

• Full or compact support vector
machines (SVM), ClassificationSVM or
CompactClassificationSVM, respectively

For limitations on particular classification
models, see the row corresponding to the model
object in this table.

local2globalcoord Phased Array
System Toolbox

Does not support variable-size inputs.

log MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

log2 MATLAB —
log10 MATLAB —
log1p MATLAB —
logical MATLAB —
logical Fixed-Point

Designer
—

logncdf Statistics
and Machine
Learning Toolbox

—

4-118

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

logninv Statistics
and Machine
Learning Toolbox

—

lognpdf Statistics
and Machine
Learning Toolbox

—

lognrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
lognstat Statistics

and Machine
Learning Toolbox

—

logspace MATLAB —
loudnessMeter Audio System

Toolbox
“System Objects in MATLAB Code Generation”

Supports MATLAB Function block: No

Dynamic Memory Allocation must not be turned
off.

lower MATLAB • Supports only char inputs. Does not support
cell arrays.

• Input values must be in the range 0-127.
lowerbound Fixed-Point

Designer
—

lsb Fixed-Point
Designer

• Supported for scalar fixed-point signals only.
• Supported for scalar, vector, and matrix, fi

single and double signals.
lsqnonneg MATLAB • You must enable support for variable-size

arrays.
• The exit message in the output structure

output (the fifth output) is not translated.

4-119

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

lt MATLAB —
lteZadoffChuSeq Communications

System Toolbox
—

lt Fixed-Point
Designer

• Not supported for fixed-point signals with
different biases.

lu MATLAB —
mad Statistics

and Machine
Learning Toolbox

Input dim cannot be empty.

magic MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

matchFeatures Computer Vision
System Toolbox

Generates platform-dependent library: Yes for
MATLAB host only when using the Exhaustive
method.
Generates portable C code for non-host target
only when using the Exhaustive method.
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries
when not using the Exhaustive method.
“Portable C Code Generation for Functions That
Use OpenCV Library”
Compile-time constant input: 'Method‘ and
'Metric'.
Supports MATLAB Function block: No

max MATLAB • If specified, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page
6-4..

max Fixed-Point
Designer

—

4-120

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

maxflat Signal Processing
Toolbox

Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

mdltest Phased Array
System Toolbox

Does not support variable-size inputs.

mean MATLAB • If specified, dim must be a constant.
• The outtype and nanflag options must be

constant character vectors.
• Does not support the 'native' output data

type option for integer types.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

mean Fixed-Point
Designer

N/A

mean2 Image Processing
Toolbox

MATLAB Function Block support: Yes.

medfilt2 Image Processing
Toolbox

The padopt argument must be a compile-time
constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The
neighborhood size input argument must be a
compile-time constant.

4-121

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

median MATLAB • If specified, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page
6-4.

median Fixed-Point
Designer

—

meshgrid MATLAB —
mfilename MATLAB —
min MATLAB • If specified, dim must be a constant.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page
6-4.

min Fixed-Point
Designer

—

minus MATLAB —
minus Fixed-Point

Designer
• Any non-fi input must be constant. Its value

must be known at compile time so that it can
be cast to a fi object.

4-122

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

mkpp MATLAB • The output structure pp differs from the pp
structure in MATLAB. In MATLAB, ppval
cannot use the pp structure from the code
generator. For code generation, ppval cannot
use a pp structure created by MATLAB.
unmkpp can use a MATLAB pp structure for
code generation.

To create a MATLAB pp structure from a pp
structure created by the code generator:

• In code generation, use unmkpp to return
the piecewise polynomial details to
MATLAB.

• In MATLAB, use mkpp to create the pp
structure.

• If you do not provide d, then coefs must be
two-dimensional and have a fixed number of
columns. In this case, the number of columns
is the order.

• To define a piecewise constant polynomial,
coefs must be a column vector or d must
have at least two elements.

• If you provide d and d is 1, d must be a
constant. Otherwise, if the input to ppval is
nonscalar, the shape of the output of ppval
can differ from ppval in MATLAB.

• If you provide d, it must have a fixed length.
One of the following sets of statements must
be true:

1 Suppose that m = length(d) and
npieces = length(breaks) - 1.

size(coefs,j) = d(j)

size(coefs,m+1) = npieces

size(coefs,m+2) = order

4-123

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

j = 1,2,...,m. The dimension m+2 must be
fixed length.

2 Suppose that m = length(d) and
npieces = length(breaks) - 1.

size(coefs,1) = prod(d)*npieces

size(coefs,2) = order

The second dimension must be fixed
length.

• If you do not provide d, the following
statements must be true:

Suppose that m = length(d) and npieces
= length(breaks) - 1.

size(coefs,1) = prod(d)*npieces

size(coefs,2) = order

The second dimension must be fixed length.
mldivide MATLAB —
mnpdf Statistics

and Machine
Learning Toolbox

—

mod MATLAB • Performs the arithmetic using the output
class. Results might not match MATLAB due
to differences in rounding errors.

If one of the inputs has type int64 or
uint64, then both inputs must have the
same type.

mode MATLAB • Does not support third output argument C
(cell array).

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

modwpt Wavelet Toolbox Supports MATLAB Function block: No

4-124

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

modwptdetails Wavelet Toolbox Supports MATLAB Function block: No
modwt Wavelet Toolbox Supports MATLAB Function block: No
modwtmra Wavelet Toolbox Supports MATLAB Function block: No
moment Statistics

and Machine
Learning Toolbox

If order is nonintegral and X is real, use
moment(complex(X), order).

mpower MATLAB If A is a 2-by-2 or larger matrix and B is Inf or -
Inf, mpower(A,B) returns a matrix of NaNs.

mpower Fixed-Point
Designer

• The exponent input, k, must be constant;
that is, its value must be known at compile
time.

• Variable-size inputs are supported only
when the SumMode property of the governing
fimath is set to Specify precision or
Keep LSB.

• For variable-size signals, you can see
different results between MATLAB and the
generated code.

• In generated code, the output for variable-
size signals is computed using the
SumMode property of the governing
fimath.

• In MATLAB, the output for variable-
sized signals is computed using the
SumMode property of the governing
fimath when both inputs are nonscalar.
However, if either input is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

4-125

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

mpy Fixed-Point
Designer

• Code generation in MATLAB does not
support the syntax F.mpy(a,b). You must
use the syntax mpy(F,a,b).

• When you provide complex inputs to the
mpy function inside a MATLAB Function
block, you must declare the input as complex
before running the simulation. To do so, go
to the Ports and data manager and set
the Complexity parameter for all known
complex inputs to On.

mrdivide MATLAB —
mrdivide Fixed-Point

Designer
—

MSERRegions Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
For code generation, you must specify both the
pixellist cell array and the length of each
array, as the second input. The object outputs,
regions.PixelList as an array. The region
sizes are defined in regions.Lengths.
Generated code for this function uses a
precompiled platform-specific shared library.

mtimes MATLAB • Multiplication of pure imaginary numbers
by non-finite numbers might not match
MATLAB. The code generator does not
specialize multiplication by pure imaginary
numbers—it does not eliminate calculations
with the zero real part. For example, (Inf +
1i)*1i = (Inf*0 – 1*1) + (Inf*1 +

1*0)i = NaN + Infi.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

4-126

http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

mtimes Fixed-Point
Designer

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

• In generated code, the output for variable-
sized signals is computed using the
SumMode property of the governing
fimath.

• In MATLAB, the output for variable-
sized signals is computed using the
SumMode property of the governing
fimath when both inputs are nonscalar.
However, if either input is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

multibandParametricEQ Audio System
Toolbox

“System Objects in MATLAB Code Generation”

Supports MATLAB Function Block: Yes
multithresh Image Processing

Toolbox
If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The
input argument N must be compile-time
constant.

musicdoa Phased Array
System Toolbox

Does not support variable-size inputs.

mvdrweights Phased Array
System Toolbox

Does not support variable-size inputs.

4-127

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

NaN or nan MATLAB • Dimensions must be real, nonnegative,
integers.

nancov Statistics
and Machine
Learning Toolbox

If the input is variable-size and is [] at run
time, returns [] not NaN.

nanmax Statistics
and Machine
Learning Toolbox

—

nanmean Statistics
and Machine
Learning Toolbox

—

nanmedian Statistics
and Machine
Learning Toolbox

—

nanmin Statistics
and Machine
Learning Toolbox

—

nanstd Statistics
and Machine
Learning Toolbox

—

nansum Statistics
and Machine
Learning Toolbox

—

nanvar Statistics
and Machine
Learning Toolbox

—

nargin MATLAB —
narginchk MATLAB —

4-128

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

nargout MATLAB • For a function with no output arguments,
returns 1 if called without a terminating
semicolon.

Note: This behavior also affects extrinsic calls
with no terminating semicolon. nargout is 1 for
the called function in MATLAB.

nargoutchk MATLAB —
nbincdf Statistics

and Machine
Learning Toolbox

—

nbininv Statistics
and Machine
Learning Toolbox

—

nbinpdf Statistics
and Machine
Learning Toolbox

—

nbinrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
nbinstat Statistics

and Machine
Learning Toolbox

—

ncfcdf Statistics
and Machine
Learning Toolbox

—

ncfinv Statistics
and Machine
Learning Toolbox

—

4-129

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

ncfpdf Statistics
and Machine
Learning Toolbox

—

ncfrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
ncfstat Statistics

and Machine
Learning Toolbox

—

nchoosek MATLAB • When the first input, x, is a scalar,
nchoosek returns a binomial coefficient. In
this case, x must be a nonnegative integer. It
cannot have type int64 or uint64.

• When the first input, x, is a vector,
nchoosek treats it as a set. In this case, x
can have type int64 or uint64.

• The second input, k, cannot have type int64
or uint64.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

nctcdf Statistics
and Machine
Learning Toolbox

—

nctinv Statistics
and Machine
Learning Toolbox

—

nctpdf Statistics
and Machine
Learning Toolbox

—

4-130

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

nctrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
nctstat Statistics

and Machine
Learning Toolbox

—

ncx2cdf Statistics
and Machine
Learning Toolbox

—

ncx2rnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
ncx2stat Statistics

and Machine
Learning Toolbox

—

ndgrid MATLAB —
ndims MATLAB —
ndims Fixed-Point

Designer
—

ne MATLAB You cannot use ne to test inequality between an
enumeration member and a character array or
cell array of character arrays.

ne Fixed-Point
Designer

• Not supported for fixed-point signals with
different biases.

nearest Fixed-Point
Designer

—

nextpow2 MATLAB —

4-131

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

nnz MATLAB —
noiseGate Audio System

Toolbox
“System Objects in MATLAB Code Generation”

Supports MATLAB Function Block: Yes
noisepow Phased Array

System Toolbox
Does not support variable-size inputs.

nonzeros MATLAB —
norm MATLAB —
normcdf Statistics

and Machine
Learning Toolbox

—

normest MATLAB —
norminv Statistics

and Machine
Learning Toolbox

—

normpdf Statistics
and Machine
Learning Toolbox

—

normrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
normstat Statistics

and Machine
Learning Toolbox

—

not MATLAB —
npwgnthresh Phased Array

System Toolbox
Does not support variable-size inputs.

nthroot MATLAB —

4-132

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

null MATLAB • Might return a different basis than MATLAB
• Does not support rational basis option

(second input)
num2hex MATLAB —
numberofelements Fixed-Point

Designer
numberofelements will be removed in a future
release. Use numel instead.

numel MATLAB —
numel Fixed-Point

Designer
—

numerictype Fixed-Point
Designer

• Fixed-point signals coming into a MATLAB
Function block from Simulink are assigned
a numerictype object that is populated
with the signal's data type and scaling
information.

• Returns the data type when the input is a
nonfixed-point signal.

• Use to create numerictype objects in the
generated code.

• All numerictype object properties related to
the data type must be constant.

nuttallwin Signal Processing
Toolbox

Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

4-133

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

ocr Computer Vision
System Toolbox

Compile-time constant input: TextLayout,
Language, and CharacterSet.
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

ocrText Computer Vision
System Toolbox

Supports MATLAB Function block: No

oct2dec Communications
System Toolbox

—

octaveFilter Audio System
Toolbox

“System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
ode23 MATLAB • All odeset option arguments must be

constant.
• Does not support a constant mass matrix in

the options structure. Provide a mass matrix
as a function .

• You must provide at least the two output
arguments T and Y.

• Input types must be homogeneous—all
double or all single.

• Variable-sizing support must be enabled.
Requires dynamic memory allocation when
tspan has two elements or you use event
functions.

4-134

http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

ode45 MATLAB • All odeset option arguments must be
constant.

• Does not support a constant mass matrix in
the options structure. Provide a mass matrix
as a function .

• You must provide at least the two output
arguments T and Y.

• Input types must be homogeneous—all
double or all single.

• Variable-sizing support must be enabled.
Requires dynamic memory allocation when
tspan has two elements or you use event
functions.

odeget MATLAB The name argument must be constant.
odeset MATLAB All inputs must be constant.
offsetstrel Image Processing

Toolbox
The 'ball’ input argument and all other input
arguments must be compile-time constants.
None of the methods are supported for code
generation. When generating code, you can only
specify single objects—arrays of objects are not
supported.

MATLAB Function Block support: Yes.
ones MATLAB • Dimensions must be real, nonnegative

integers.
• The input optimfun must be a function

supported for code generation.
opticalFlowFarneback Computer Vision

System Toolbox
Supports MATLAB Function block: No
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries.
“Portable C Code Generation for Functions That
Use OpenCV Library”

opticalFlowHS Computer Vision
System Toolbox

Supports MATLAB Function block: No

4-135

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

opticalFlowLK Computer Vision
System Toolbox

Supports MATLAB Function block: No

opticalFlowLKDoG Computer Vision
System Toolbox

Supports MATLAB Function block: No

optimget MATLAB Input parameter names must be constant.
optimset MATLAB • Does not support the syntax that has no

input or output arguments:

optimset

• Functions specified in the options must be
supported for code generation.

• The fields of the options structure oldopts
must be fixed-size fields.

• For code generation, optimization functions
ignore the Display option.

• Does not support the additional options in an
options structure created by the Optimization
Toolbox™ optimset function. If an input
options structure includes the additional
Optimization Toolbox options, the output
structure does not include them.

ordfilt2 Image Processing
Toolbox

The padopt argument must be a compile-time
constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
or MATLAB —
orth MATLAB • Can return a different basis than MATLAB
otsuthresh Image Processing

Toolbox
MATLAB Function Block support: Yes.

4-136

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

padarray Image Processing
Toolbox

Support only up to 3-D inputs.

Input arguments, padval and direction are
expected to be compile-time constants.

MATLAB Function Block support: Yes. The
input argument padsize must be a compile-
time constant.

pambgfun Phased Array
System Toolbox

• Does not support variable-size inputs.
• Supported only when output arguments are

specified.
parfor MATLAB • Treated as a for-loop in a MATLAB

Function block or when used with fiaccel.
• See the parfor reference page in the

MATLAB Coder documentation.
• “Generate Code with Parallel for-Loops

(parfor)” on page 29-33.
parzenwin Signal Processing

Toolbox
Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

pascal MATLAB —

4-137

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

pca Statistics
and Machine
Learning Toolbox

• Ignores the 'Display' value for 'Options'
when 'Algorithm' is 'als'.

• If supplied, 'Weights' and
'VariableWeights' must be real.

• Always returns the fifth output explained
as a column vector.

• Always returns the sixth output mu as a row
vector.

• If mu is empty, pca returns mu as a 1-by-0
array. pca does not convert mu to a 0-by-0
empty array.

• Does not treat an input matrix X that has all
NaN values as a special case. The outputs
have the sizes that they have when some of
the inputs are finite.

pchip MATLAB • Input x must be strictly increasing.
• Does not remove y entries with NaN values.
• If you generate code for the pp =

pchip(x,y) syntax, you cannot input pp to
the ppval function in MATLAB. To create a
MATLAB pp structure from a pp structure
created by the code generator:

• In code generation, use unmkpp to return
the piecewise polynomial details to
MATLAB.

• In MATLAB, use mkpp to create the pp
structure.

pdf Statistics
and Machine
Learning Toolbox

—

peak2peak Signal Processing
Toolbox

—

4-138

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

peak2rms Signal Processing
Toolbox

—

pearsrnd Statistics
and Machine
Learning Toolbox

Matches MATLAB only when generated output
r is scalar.

permute MATLAB • Does not support cell arrays for the first
argument.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

permute Fixed-Point
Designer

The dimensions argument must be a built-in
type; it cannot be a fi object.

phased.ADPCACanceller Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.AngleDoppler-
Response

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.ArrayGain Phased Array
System Toolbox

• Does not support arrays containing
polarized antenna elements, that is, the
phased.ShortDipoleAntennaElement or
phased.CrossedDipoleAntennaElement

antennas.
• “System Objects in MATLAB Code

Generation”
phased.ArrayResponse Phased Array

System Toolbox
“System Objects in MATLAB Code Generation”

phased.Backscatter-
RadarTarget

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.BarrageJammer Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.BeamscanEstimator Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

4-139

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

phased.Beamscan-
Estimator2D

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Beamspace-
ESPRITEstimator

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.CFARDetector Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.CFARDetector2D Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Collector Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.ConformalArray Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.Constant-
GammaClutter

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Cosine-
AntennaElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.Crossed-
DipoleAntennaElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.Custom-
AntennaElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

4-140

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

phased.Custom-
MicrophoneElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.DPCACanceller Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.ElementDelay Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.ESPRITEstimator Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.FMCWWaveform Phased Array
System Toolbox

• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.FreeSpace Phased Array

System Toolbox
• Requires dynamic memory allocation. See

“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

phased.FrostBeamformer Phased Array
System Toolbox

• Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

phased.GSCBeamformer Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.GCCEstimator Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.Isotropic-
AntennaElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

4-141

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

phased.LCMVBeamformer Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.LOSChannel Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.LinearFMWaveform Phased Array
System Toolbox

• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.MatchedFilter Phased Array

System Toolbox
• The CustomSpectrumWindow property is

not supported.
• “System Objects in MATLAB Code

Generation”
phased.MFSKWaveform Phased Array

System Toolbox
• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.MUSICEstimator Phased Array

System Toolbox
“System Objects in MATLAB Code Generation”

phased.MUSICEstimator2D Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.MVDRBeamformer Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.MVDREstimator Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.MVDREstimator2D Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Omnidirectional-
MicrophoneElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

4-142

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

phased.PartitionedArray Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.PhaseCoded-
Waveform

Phased Array
System Toolbox

• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.PhaseShift-
Beamformer

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Platform Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.RadarTarget Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Radiator Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Range-
DopplerResponse

Phased Array
System Toolbox

• The CustomRangeWindow and
CustomDopplerWindow properties are not
supported.

• The plotResponse method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.Rectangular-
Waveform

Phased Array
System Toolbox

• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.ReceiverPreamp Phased Array

System Toolbox
“System Objects in MATLAB Code Generation”

phased.ReplicatedSubarray Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

4-143

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

phased.RootMUSICEstimator Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.RootWSFEstimator Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.ShortDipole-
AntennaElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.STAPSMI-
Beamformer

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.SteeringVector Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.SteppedFMWaveform Phased Array
System Toolbox

• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.StretchProcessor Phased Array

System Toolbox
“System Objects in MATLAB Code Generation”

phased.Subband-
MVDRBeamformer

Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.SubbandPhase-
ShiftBeamformer

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.SumDifference-
MonopulseTracker

Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.SumDifference-
MonopulseTracker2D

Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.TimeDelay-
Beamformer

Phased Array
System Toolbox

• Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• “System Objects in MATLAB Code
Generation”

4-144

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

phased.TimeDelayLCMV-
Beamformer

Phased Array
System Toolbox

• Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• “System Objects in MATLAB Code
Generation”

phased.TimeVaryingGain Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Transmitter Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.TwoRayChannel Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.UCA Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.ULA Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.URA Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.Wideband-
BackscatterRadarTarget

Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.WidebandCollector Phased Array
System Toolbox

• Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• “System Objects in MATLAB Code
Generation”.

4-145

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

phased.WidebandFreeSpace Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.Wideband-
LOSChannel

Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.WidebandRadiator Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.Wideband-
TwoRayChannel

Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phitheta2azel Phased Array
System Toolbox

Does not support variable-size inputs.

phitheta2azelpat Phased Array
System Toolbox

Does not support variable-size inputs.

phitheta2uv Phased Array
System Toolbox

Does not support variable-size inputs.

phitheta2uvpat Phased Array
System Toolbox

Does not support variable-size inputs.

physconst Phased Array
System Toolbox

Does not support variable-size inputs.

pi MATLAB —
pilotcalib Phased Array

System Toolbox
Does not support variable-size inputs.

pinv MATLAB —
planerot MATLAB “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

plus MATLAB —
plus Fixed-Point

Designer
• Any non-fi input must be constant; that is,

its value must be known at compile time so
that it can be cast to a fi object.

poisscdf Statistics
and Machine
Learning Toolbox

—

4-146

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

poissinv Statistics
and Machine
Learning Toolbox

—

poisspdf Statistics
and Machine
Learning Toolbox

—

poissrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
poisstat Statistics

and Machine
Learning Toolbox

—

pol2cart MATLAB —
pol2circpol Phased Array

System Toolbox
Does not support variable-size inputs.

polellip Phased Array
System Toolbox

Does not support variable-size inputs.

polloss Phased Array
System Toolbox

Does not support variable-size inputs.

polratio Phased Array
System Toolbox

Does not support variable-size inputs.

polsignature Phased Array
System Toolbox

• Does not support variable-size inputs.
• Supported only when output arguments are

specified.
poly MATLAB • Does not discard nonfinite input values

• Complex input produces complex output
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

polyarea MATLAB —

4-147

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

poly2trellis Communications
System Toolbox

—

polyder MATLAB The output can contain fewer NaNs than the
MATLAB output. However, if the input contains
a NaN, the output contains at least one NaN.

polyeig MATLAB • The basis of the eigenvectors can be different
in the generated code than in MATLAB.
In general, in the eigenvalues output, the
eigenvalues for real inputs are not sorted so
that complex conjugate pairs are adjacent.

• Differences in eigenvectors and ordering of
eigenvalues can lead to differences in the
condition numbers output.

polyfit MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

polyint MATLAB —
polyval MATLAB —
polyvalm MATLAB —
pow2 Fixed-Point

Designer
—

pow2db Signal Processing
Toolbox

—

4-148

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

power MATLAB • Generates an error during simulation. When
both X and Y are real, but power(X,Y) is
complex, returns NaN in the generated code.
To get the complex result, make the input
value X complex by passing in complex(X).
For example, power(complex(X),Y).

• Generates an error during simulation. When
both X and Y are real, but X .^ Y is complex,
returns NaN in generated code. To get the
complex result, make the input value X
complex by using complex(X). For example,
complex(X).^Y.

power Fixed-Point
Designer

• The exponent input, k, must be constant. Its
value must be known at compile time.

ppval MATLAB The size of output v does not match MATLAB
when both of the following statements are true:

• The input x is a variable-size array that is
not a variable-length vector.

• x becomes a row vector at run time.

The code generator does not remove the
singleton dimensions. However, MATLAB might
remove singleton dimensions.

For example, suppose that x is a :4-by-:5 array
(the first dimension is variable size with an
upper bound of 4 and the second dimension is
variable size with an upper bound of 5). Suppose
that ppval(pp,0) returns a 2-by-3 fixed-size
array. v has size 2-by-3-by-:4-by-:5. At run time,
suppose that, size(x,1) =1 and size (x,2) = 5. In
the generated code, the size(v) is [2,3,1,5]. In
MATLAB, the size is [2,3,5].

4-149

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

prctile Statistics
and Machine
Learning Toolbox

• “Automatic dimension restriction” on page
7-35

• If the output Y is a vector, the orientation
of Y differs from MATLAB when all of the
following are true:

• You do not supply the dim input.
• X is a variable-size array.
• X is not a variable-length vector.
• X is a vector at run time.
• The orientation of the vector X does not

match the orientation of the vector p.

In this case, the output Y matches the
orientation of X not the orientation of p.

4-150

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

predict method of
ClassificationECOC

and Compact-
ClassificationECOC

Statistics
and Machine
Learning Toolbox

• You must call predict within a function
that you declare (that is, you cannot call
predict at the top-level).

• This table contains input-and-output-
argument notes and limitations.

Argument Notes and Limitations

Mdl • You must load the model
using loadCompactModel
within a function that you
declare.

• Must be a compile-time
constant, that is, its value
cannot change while codegen
generates the C code.

X • Must be a single- or double-
precision matrix and
can be variable sized.
However, the number
of columns in X must be
numel(Mdl.PredictorNames).

• Rows and columns must
correspond to observations
and predictors, respectively.

BinaryLossMust be a supported binary loss
function name, for example,
'linear'

NumKLInitializationsYou cannot specify this name-
value pair argument.

Options You cannot specify this name-
value pair argument.

PosteriorMethodYou cannot specify this name-
value pair argument.

4-151

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

Argument Notes and Limitations

Verbose If you plan to generate a MEX
file, then you can specify
Verbose. Otherwise, codegen
does not support Verbose for
other file types.

NegLoss Returned as the same data type
as X, that is, a single- or double-
precision matrix

PosteriorYou cannot return this output
argument.

4-152

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

predict method of
ClassificationLinear

Statistics
and Machine
Learning Toolbox

• You must call predict within a function
that you declare (that is, you cannot call
predict at the top-level).

• This table contains input-and-output-
argument notes and limitations.

Argument Notes and Limitations

Mdl • You must load the model
using loadCompactModel
within a function that you
declare.

• Must be a compile-time
constant, that is, its value
cannot change while codegen
generates the C code.

X • Must be a single- or double-
precision matrix and
can be variable sized.
However, the number
of columns in X must be
numel(Mdl.PredictorNames).

• Rows and columns must
correspond to observations
and predictors, respectively.

Score Returned as the same data type
as X, that is, a single- or double-
precision matrix

4-153

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

predict method of
ClassificationSVM

and Compact-
ClassificationSVM

Statistics
and Machine
Learning Toolbox

• You must call predict within a function
that you declare (that is, you cannot call
predict at the top-level).

• This table contains input-and-output-
argument notes and limitations.

Argument Notes and Limitations

SVMModel • You must load the model
using loadCompactModel
within a function that you
declare.

• Must be a compile-time
constant, that is, its value
cannot change while codegen
generates the code.

X • Must be a single- or double-
precision matrix and
can be variable sized.
However, the number
of columns in X must be
numel(Mdl.PredictorNames).

• Rows and columns must
correspond to observations
and predictors, respectively.

score Returned as the same data type
as X, that is, a single- or double-
precision matrix

primes MATLAB • The maximum double precision input is
2^32.

• The maximum single precision input is 2^24.
• The input n cannot have type int64 or

uint64.

4-154

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

prod MATLAB • If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

projective2d Image Processing
Toolbox

When generating code, you can only specify
single objects—arrays of objects are not
supported.

MATLAB Function Block support: Yes.
psi MATLAB —
psnr Image Processing

Toolbox
MATLAB Function Block support: Yes.

pulsint Phased Array
System Toolbox

Does not support variable-size inputs.

qamdemod Communications
System Toolbox

—

qammod Communications
System Toolbox

—

qmf Wavelet Toolbox Supports MATLAB Function block: No
qr MATLAB —
quad2d MATLAB • Generates a warning if the size of the

internal storage arrays is not large enough.
If a warning occurs, a possible workaround is
to divide the region of integration into pieces
and sum the integrals over each piece.

quadgk MATLAB —
quantile Statistics

and Machine
Learning Toolbox

—

quantize Fixed-Point
Designer

—

quat2axang Robotics System
Toolbox

Supports MATLAB Function block: Yes

4-155

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

quat2eul Robotics System
Toolbox

Supports MATLAB Function block: Yes

quat2rotm Robotics System
Toolbox

Supports MATLAB Function block: Yes

quat2tform Robotics System
Toolbox

Supports MATLAB Function block: Yes

quatconj Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset™ software.

quatdivide Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatinv Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatmod Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatmultiply Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatnorm Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatnormalize Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

rad2deg MATLAB —
radareqpow Phased Array

System Toolbox
Does not support variable-size inputs.

radareqrng Phased Array
System Toolbox

Does not support variable-size inputs.

radareqsnr Phased Array
System Toolbox

Does not support variable-size inputs.

radarvcd Phased Array
System Toolbox

• Does not support variable-size inputs.
• Supported only when output arguments are

specified.
radialspeed Phased Array

System Toolbox
Does not support variable-size inputs.

4-156

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

rainpl Phased Array
System Toolbox

Does not support variable-size inputs.

rand MATLAB • The data type (class) must be a built-in
MATLAB numeric type. Does not invoke the
static rand method for other classes. For
example, rand(sz,'myclass’) does not
invoke myclass.rand(sz).

• Size arguments must have a fixed size.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

randg Statistics
and Machine
Learning Toolbox

—

randi MATLAB • The data type (class) must be a built-in
MATLAB numeric type. Does not invoke the
static randi method for other classes. For
example, randi(imax,sz,'myclass’)
does not invoke myclass.randi(imax,sz).

• Size arguments must have a fixed size.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

randn MATLAB • The data type (class) must be a built-in
MATLAB numeric type. Does not invoke the
static randn method for other classes. For
example, randn(sz,'myclass’) does not
invoke myclass.randn(sz).

• Size arguments must have a fixed size.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

4-157

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

random Statistics
and Machine
Learning Toolbox

—

randperm MATLAB —
randsample Statistics

and Machine
Learning Toolbox

When sampling without replacement, the order
of the output values might not match MATLAB.

range Fixed-Point
Designer

—

range2beat Phased Array
System Toolbox

Does not support variable-size inputs.

range2bw Phased Array
System Toolbox

Does not support variable-size inputs.

range2time Phased Array
System Toolbox

Does not support variable-size inputs.

rangeangle Phased Array
System Toolbox

Does not support variable-size inputs.

rank MATLAB —
raylcdf Statistics

and Machine
Learning Toolbox

—

raylinv Statistics
and Machine
Learning Toolbox

—

raylpdf Statistics
and Machine
Learning Toolbox

—

raylrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.

4-158

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

raylstat Statistics
and Machine
Learning Toolbox

—

rcond MATLAB —
rcosdesign Signal Processing

Toolbox
All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

rdcoupling Phased Array
System Toolbox

Does not support variable-size inputs.

rdivide MATLAB —
rdivide Fixed-Point

Designer
—

real MATLAB —
real Fixed-Point

Designer
—

reallog MATLAB —
realmax MATLAB —
realmax Fixed-Point

Designer
—

realmin MATLAB —
realmin Fixed-Point

Designer
—

realpow MATLAB —
realsqrt MATLAB —
reconstructScene Computer Vision

System Toolbox
Supports MATLAB Function block: No

4-159

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

rectifyStereoImages Computer Vision
System Toolbox

Compile-time constant input restriction:
'interp' and 'OutputView'
Supports MATLAB Function block: No

rectint MATLAB —
recursiveAR System

Identification
Toolbox

• For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code for

Online Parameter Estimation in MATLAB”.

Supports MATLAB Function block: No
recursiveARMA System

Identification
Toolbox

• For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code for

Online Parameter Estimation in MATLAB”.

Supports MATLAB Function block: No
recursiveARMAX System

Identification
Toolbox

• For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code for

Online Parameter Estimation in MATLAB”.

Supports MATLAB Function block: No
recursiveARX System

Identification
Toolbox

• For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code for

Online Parameter Estimation in MATLAB”.

Supports MATLAB Function block: No

4-160

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

recursiveBJ System
Identification
Toolbox

• For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code for

Online Parameter Estimation in MATLAB”.

Supports MATLAB Function block: No
recursiveLS System

Identification
Toolbox

• For Simulink-based workflows, use
Recursive Least Squares Estimator.

• For limitations, see “Generate Code for
Online Parameter Estimation in MATLAB”.

Supports MATLAB Function block: No
recursiveOE System

Identification
Toolbox

• For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code for

Online Parameter Estimation in MATLAB”.

Supports MATLAB Function block: No
rectwin Signal Processing

Toolbox
All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

4-161

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

regionprops Image Processing
Toolbox

Supports only 2-D images. Does not support the
table output type. Does not accept cell arrays
as input—use a comma-separated list instead.
Does not support the properties ConvexArea,
ConvexHull, ConvexImage, Solidity, and
SubarrayIdx.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: No.
reinterpretcast Fixed-Point

Designer
—

relativeCameraPose Computer Vision
System Toolbox

Supports MATLAB Function block: No

rem MATLAB • Performs the arithmetic using the output
class. Results might not match MATLAB due
to differences in rounding errors.

• If one of the inputs has type int64 or
uint64, then both inputs must have the
same type.

removefimath Fixed-Point
Designer

—

repelem MATLAB The input must be a vector or matrix. The input
cannot be a multidimensional array.

repmat MATLAB Size arguments must have a fixed size.
repmat Fixed-Point

Designer
The dimensions argument must be a built-in
type; it cannot be a fi object.

4-162

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

resample Signal Processing
Toolbox

• C and C++ code generation for resample
requires DSP System Toolbox software.

• The upsampling and downsampling factors
must be specified as constants. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 21-53.

rescale Fixed-Point
Designer

—

reshape MATLAB • If the input is a compile-time empty cell
array, then the size arguments must be
constants.

• Size arguments must have a fixed size.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

reshape Fixed-Point
Designer

—

return MATLAB —
reverberator Audio System

Toolbox
“System Objects in MATLAB Code Generation”

Supports MATLAB Function Block: Yes
rgb2gray MATLAB MATLAB Function Block support: Yes.
rgb2lab Image Processing

Toolbox
Character vector input arguments must be
compile-time constants.

MATLAB Function Block support: Yes.

4-163

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

rgb2ycbcr Image Processing
Toolbox

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
rms Signal Processing

Toolbox
—

rng MATLAB • Supports only the 'twister', 'v5normal',
and 'v4' generators.

• Does not support the 'shuffle' input.
• For a MEX target:

• If extrinsic calls are disabled or rng
is called inside a parfor loop, the
output of rng in the MEX function is
not compatible with the rng function in
MATLAB. You cannot pass the output of
s = rng from the MEX function to rng in
MATLAB.

• If extrinsic calls are enabled and rng is
not called from inside a parfor loop, only
rng can access the data in the structure
that rng returns.

robotics.Binary-
OccupancyGrid

Robotics System
Toolbox

Supports MATLAB Function block: No

robotics.OccupancyGrid Robotics System
Toolbox

Supports MATLAB Function block: No

robotics.Odometry-
MotionModel

Robotics System
Toolbox

Supports MATLAB Function block: No

robotics.ParticleFilter Robotics System
Toolbox

Supports MATLAB Function block: No

robotics.PRM Robotics System
Toolbox

Supports MATLAB Function block: No

The map input must be specified on creation of
the PRM object.

4-164

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

robotics.PurePursuit Robotics System
Toolbox

Supports MATLAB Function block: No

robotics.Vector-
FieldHistogram

Robotics System
Toolbox

Supports MATLAB Function block: No

rocpfa Phased Array
System Toolbox

• Does not support variable-size inputs.
• Supported only when output arguments are

specified.
• The NonfluctuatingNoncoherent signal

type is not supported.
rocsnr Phased Array

System Toolbox
• Does not support variable-size inputs.
• Supported only when output arguments are

specified.
• The NonfluctuatingNoncoherent signal

type is not supported.
rootmusicdoa Phased Array

System Toolbox
Does not support variable-size inputs.

roots MATLAB • Output is variable size.
• Output is complex.
• Roots are not always in the same order as

MATLAB.
• Roots of poorly conditioned polynomials do

not always match MATLAB.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

rosser MATLAB —
rot90 MATLAB Does not support cell arrays for the first

argument.
rot90 Fixed-Point

Designer
In the syntax rot90(A,k), the argument k
must be a built-in type; it cannot be a fi object.

rotationMatrixToVector Computer Vision
System Toolbox

Supports MATLAB Function block: Yes

4-165

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

rotationVectorToMatrix Computer Vision
System Toolbox

Supports MATLAB Function block: Yes

rotm2axang Robotics System
Toolbox

Supports MATLAB Function block: Yes

rotm2eul Robotics System
Toolbox

Supports MATLAB Function block: Yes

rotm2quat Robotics System
Toolbox

Supports MATLAB Function block: Yes

rotm2tform Robotics System
Toolbox

Supports MATLAB Function block: Yes

rotx Phased Array
System Toolbox

Does not support variable-size inputs.

roty Phased Array
System Toolbox

Does not support variable-size inputs.

rotz Phased Array
System Toolbox

Does not support variable-size inputs.

round MATLAB Supports only the syntax Y = round(X).
round Fixed-Point

Designer
—

rsf2csf MATLAB —
rsgenpoly Communications

System Toolbox
All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

rsgenpolycoeffs Communications
System Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

schur MATLAB Can return a different Schur decomposition in
generated code than in MATLAB.

sec MATLAB —

4-166

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

secd MATLAB • In some cases, returns -Inf when MATLAB
returns Inf.

• In some cases, returns Inf when MATLAB
returns -Inf.

sech MATLAB —
selectStrongestBbox Computer Vision

System Toolbox
Supports MATLAB Function block: No

sensorcov Phased Array
System Toolbox

Does not support variable-size inputs.

sensorsig Phased Array
System Toolbox

Does not support variable-size inputs.

4-167

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

setdiff MATLAB • Does not support cell arrays for the first or
second arguments.

• When you do not specify the 'rows' option:

• Inputs A and B must be vectors. If you
specify the 'legacy' option, inputs A and
B must be row vectors.

• The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

• Do not use [] to represent the empty set.
Use a 1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never 0-
by-0.

• When you specify both the 'legacy' and
'rows' options, the output ia is a column
vector. If ia is empty, it is 0-by-1, never 0-
by-0, even if the output C is 0-by-0.

• When the setOrder is not 'stable' or
when you specify the 'legacy' option, the
inputs must already be sorted in ascending
order. The first output, C, is sorted in
ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other

input is real, do one of the following:

• Set setOrder to 'stable'.
• Sort the real input in complex

ascending order (by absolute
value). Suppose the real input

4-168

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page
6-4.

setfimath Fixed-Point
Designer

—

4-169

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

setxor MATLAB • Does not support cell arrays for the first or
second arguments.

• When you do not specify the 'rows' option:

• Inputs A and B must be vectors with
the same orientation. If you specify the
'legacy' option, inputs A and B must be
row vectors.

• The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

• The input [] is not supported. Use a
1-by-0 or 0-by-1 input, for example ,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never 0-
by-0.

• When you specify both the 'legacy' option
and the 'rows' option, the outputs ia and
ib are column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is not 'stable' or
when you specify the 'legacy' flag, the
inputs must already be sorted in ascending
order. The first output, C, is sorted in
ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other

input is real, do one of the following:

• Set setOrder to 'stable'.
• Sort the real input in complex

ascending order (by absolute

4-170

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

value). Suppose the real input
is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page
6-4.

sfi Fixed-Point
Designer

• All properties related to data type must be
constant for code generation.

sgolay Signal Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

shiftdim MATLAB • Does not support cell arrays for the first
argument.

• Second argument must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

shiftdim Fixed-Point
Designer

The dimensions argument must be a built-in
type; it cannot be a fi object.

shnidman Phased Array
System Toolbox

Does not support variable-size inputs.

sign MATLAB —
sign Fixed-Point

Designer
—

sin MATLAB —
sin Fixed-Point

Designer
—

4-171

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

sind MATLAB —
single MATLAB —
single Fixed-Point

Designer
—

sinh MATLAB —
size MATLAB —
size Fixed-Point

Designer
—

skewness Statistics
and Machine
Learning Toolbox

—

sort MATLAB • Does not support cell arrays for the first
argument.

• If the input is a complex type, sort orders
the output according to absolute value.
When x is a complex type that has all zero
imaginary parts, use sort(real(x)) to
compute the sort order for real types. See
“Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page
6-4.

sort Fixed-Point
Designer

The dimensions argument must be a built-in
type; it cannot be a fi object.

sortrows MATLAB • Does not support cell arrays for the first
argument.

• If the input is a complex type, sortrows
orders the output according to absolute value.
When x is a complex type that has all zero
imaginary parts, use sortrows(real(x))
to compute the sort order for real types.
See “Code Generation for Complex Data
with Zero-Valued Imaginary Parts” on page
6-4.

4-172

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

sosfilt Signal Processing
Toolbox

—

speed2dop Phased Array
System Toolbox

Does not support variable-size inputs.

sph2cart MATLAB —
sph2cartvec Phased Array

System Toolbox
Does not support variable-size inputs.

spline MATLAB • Input x must be strictly increasing.
• Does not remove Y entries with NaN values.
• Does not report an error for infinite

endslopes in Y.
• If you generate code for the pp =

spline(x,Y) syntax, you cannot input pp
to the ppval function in MATLAB. To create
a MATLAB pp structure from a pp structure
created by the code generator:

• In code generation, use unmkpp to return
the piecewise polynomial details to
MATLAB.

• In MATLAB, use mkpp to create the pp
structure.

spsmooth Phased Array
System Toolbox

Does not support variable-size inputs.

squeeze MATLAB Does not support cell arrays.
squeeze Fixed-Point

Designer
—

sqrt MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

4-173

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

sqrt Fixed-Point
Designer

• Complex and [Slope Bias] inputs error out.
• Negative inputs yield a 0 result.

sqrtm MATLAB —
stateestimatorEKF System

Identification
Toolbox

Supports MATLAB Function block: No

stateestimatorUKF System
Identification
Toolbox

Supports MATLAB Function block: No

std MATLAB • If specified, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

steervec Phased Array
System Toolbox

Does not support variable-size inputs.

stereoAnaglyph Computer Vision
System Toolbox

Supports MATLAB Function block: Yes

stereoParameters Computer Vision
System Toolbox

Supports MATLAB Function block: No
Use the toStruct method to pass a
stereoParameters object into generated code.
See the “Code Generation for Depth Estimation
From Stereo Video” example.

stokes Phased Array
System Toolbox

• Does not support variable-size inputs.
• Supported only when output arguments are

specified.
storedInteger Fixed-Point

Designer
—

storedIntegerToDouble Fixed-Point
Designer

—

str2double MATLAB • Does not support cell arrays.
• Always returns a complex result.

4-174

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

str2func MATLAB Character vector must be constant/known at
compile time.

strcmp MATLAB • Does not support enumeration inputs.
• When one input is a cell array and the other

input is a character array, the character
array must be a compile-time row vector.

• When both inputs are empty character arrays
that have different sizes, returns true.

strcmpi MATLAB • Does not support enumeration inputs.
• Input values from the char class must be in

the range 0-127.
• When one input is a cell array and the other

input is a character array, the character
array must be a compile-time row vector.

• When both inputs are empty character arrays
that have different sizes, returns true.

strel Image Processing
Toolbox

All of the input arguments must be compile-time
constants. None of the methods are supported
for code generation. When generating code, you
can only specify single objects—arrays of objects
are not supported.

MATLAB Function Block support: Yes.
stretchfreq2rng Phased Array

System Toolbox
Does not support variable-size inputs.

stretchlim Image Processing
Toolbox

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
strfind MATLAB • Does not support cell arrays.

• Inputs must be character row vectors.
• Returns an empty output as a 1-by-0

character array.

4-175

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

strjoin MATLAB Returns an empty output as a 1-by-0 character
array.

strjust MATLAB • Does not support a cell array of character
vectors for the first argument.

• Returns an empty output as a 1-by-0
character array.

strncmp MATLAB • Does not support enumeration inputs.
• When one input is a cell array and the other

input is a character array, the character
array must be a compile-time row vector.

strncmpi MATLAB • Does not support enumeration inputs.
• Input values from the char class must be in

the range 0-127.
• When one input is a cell array and the other

input is a character array, the character
array must be a compile-time row vector.

strrep MATLAB • Does not support cell arrays.
• Inputs must be character row vectors.
• Returns an empty output as a 1-by-0

character array.
strtok MATLAB • Does not support a cell array for the first

argument.
• Returns an empty output as a 1-by-0

character array.
strtrim MATLAB • Supports only inputs from the char class.

Does not support cell arrays.
• Input values must be in the range 0-127.
• Returns an empty output as a 1-by-0

character array.

4-176

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

struct MATLAB • You cannot create a structure that contains a
cell array. For example, you cannot generate
code for:

s = struct('a',{{1 2}})

• If the value argument is a cell array, all
elements must have the same type.

struct2cell MATLAB • For a variable-size structure array, the
resulting cell array must be homogeneous. If
s is a variable-size structure array, the fields
must have the same type.

• If struct2cell cannot convert s to a
homogeneous cell array, the output cell array
is heterogeneous. A heterogeneous output cell
array can have a maximum of 1024 elements.

structfun MATLAB • Does not support the ErrorHandler option.
• The number of outputs must be less than or

equal to three.
sub Fixed-Point

Designer
Code generation in MATLAB does not support
the syntax F.sub(a,b). You must use the
syntax sub(F,a,b).

sub2ind MATLAB • The first argument must be a valid size
vector. Size vectors for arrays with more than
intmax elements are not supported.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

subsasgn Fixed-Point
Designer

—

subspace MATLAB —
subsref Fixed-Point

Designer
—

4-177

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

sum MATLAB • If specified, dim must be a constant.
• The outtype and nanflag options must be

constant character vectors.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

sum Fixed-Point
Designer

• Variable-size inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or
Keep LSB.

superpixels Image Processing
Toolbox

Character vector input arguments must
be compile-time constants. The value of
'IsInputLab' (true or false) must be a
compile-time constant.

MATLAB Function Block support: No.
surfacegamma Phased Array

System Toolbox
Does not support variable-size inputs.

surfclutterrcs Phased Array
System Toolbox

Does not support variable-size inputs.

SURFPoints Computer Vision
System Toolbox

Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

svd MATLAB Uses a different SVD implementation than
MATLAB. Because the singular value
decomposition is not unique, left and right
singular vectors might differ from those
computed by MATLAB.

4-178

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

swapbytes MATLAB Inheritance of the class of the input to
swapbytes in a MATLAB Function block is
supported only when the class of the input is
double. For non-double inputs, the input port
data types must be specified, not inherited.

switch, case, otherwise MATLAB • If all case expressions are scalar integer
values, generates a C switch statement.
At run time, if the switch value is not an
integer, generates an error.

• When the case expressions contain
noninteger or nonscalar values, the code
generator produces C if statements in place
of a C switch statement.

systemp Phased Array
System Toolbox

Does not support variable-size inputs.

tan MATLAB —
tand MATLAB • In some cases, returns -Inf when MATLAB

returns Inf.
• In some cases, returns Inf when MATLAB

returns -Inf.
tanh MATLAB —
taylortaperc Phased Array

System Toolbox
Does not support variable-size inputs.

taylorwin

dsp.WidebandLOSChannel

Signal Processing
Toolbox

Inputs must be constant

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

tcdf Statistics
and Machine
Learning Toolbox

—

4-179

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

tf2ca DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

tf2cl DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

tform2axang Robotics System
Toolbox

Supports MATLAB Function block: Yes

tform2eul Robotics System
Toolbox

Supports MATLAB Function block: Yes

tform2quat Robotics System
Toolbox

Supports MATLAB Function block: Yes

tform2rotm Robotics System
Toolbox

Supports MATLAB Function block: Yes

tform2trvec Robotics System
Toolbox

Supports MATLAB Function block: Yes

thselect Wavelet Toolbox Supports MATLAB Function block: No
time2range Phased Array

System Toolbox
Does not support variable-size inputs.

times MATLAB Multiplication of pure imaginary numbers
by non-finite numbers might not match
MATLAB. The code generator does not specialize
multiplication by pure imaginary numbers—
it does not eliminate calculations with the zero
real part. For example, (Inf + 1i)*1i =
(Inf*0 – 1*1) + (Inf*1 + 1*0)i = NaN

+ Infi.

4-180

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

times Fixed-Point
Designer

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• When you provide complex inputs to the
times function inside a MATLAB Function
block, you must declare the input as complex
before running the simulation. To do so, go
to the Ports and data manager and set
the Complexity parameter for all known
complex inputs to On.

tinv Statistics
and Machine
Learning Toolbox

—

toeplitz MATLAB —
tpdf Statistics

and Machine
Learning Toolbox

—

trace MATLAB —
transpose MATLAB —
transpose Fixed-Point

Designer
—

trapz MATLAB • If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
7-35

triang Signal Processing
Toolbox

Inputs must be constant

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

4-181

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

triangulate Computer Vision
System Toolbox

Supports MATLAB Function block: No

tril MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

tril Fixed-Point
Designer

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

triu MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

triu Fixed-Point
Designer

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

trnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
true MATLAB • Dimensions must be real, nonnegative,

integers.
trvec2tform Robotics System

Toolbox
Supports MATLAB Function block: Yes

tstat Statistics
and Machine
Learning Toolbox

—

tukeywin Signal Processing
Toolbox

Inputs must be constant.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

4-182

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

typecast MATLAB • Value of data type argument must be
lowercase.

• When you use typecast with inheritance of
input port data types in MATLAB Function
blocks, you can receive a size error. To avoid
this error, specify the block input port data
types explicitly.

• Integer input or result classes must map
directly to a C type on the target hardware.

• The input must be a variable-length vector or
a fixed-size vector. See

“Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

• The output vector always has the same
orientation as the input vector.

ufi Fixed-Point
Designer

• All properties related to data type must be
constant for code generation.

uint8, uint16, uint32,
uint64

MATLAB —

uint8, uint16, uint32,
uint64

Fixed-Point
Designer

—

uminus MATLAB —
uminus Fixed-Point

Designer
—

undistortImage Computer Vision
System Toolbox

Compile-time constant input restriction:
'interp' and 'OutputView'
Supports MATLAB Function block: No

unidcdf Statistics
and Machine
Learning Toolbox

—

4-183

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

unidinv Statistics
and Machine
Learning Toolbox

—

unidpdf Statistics
and Machine
Learning Toolbox

—

unidrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
unidstat Statistics

and Machine
Learning Toolbox

—

unifcdf Statistics
and Machine
Learning Toolbox

—

unifinv Statistics
and Machine
Learning Toolbox

—

unifpdf Statistics
and Machine
Learning Toolbox

—

unifrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
unifstat Statistics

and Machine
Learning Toolbox

—

4-184

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

unigrid Phased Array
System Toolbox

Does not support variable-size inputs.

4-185

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

union MATLAB • Does not support cell arrays for the first or
second arguments.

• When you do not specify the 'rows' option:

• Inputs A and B must be vectors with
the same orientation. If you specify the
'legacy' option, inputs A and B must be
row vectors.

• The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

• The input[] is not supported. Use a
1-by-0 or 0-by-1 input, for example ,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never 0-
by-0.

• When you specify both the 'legacy' option
and the 'rows' option, the outputs ia and
ib are column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is not 'stable' or
when you specify the 'legacy' option, the
inputs must already be sorted in ascending
order. The first output, C, is sorted in
ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other

input is real, do one of the following:

• Set setOrder to 'stable'.
• Sort the real input in complex

ascending order (by absolute

4-186

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

value). Suppose the real input
is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page
6-4.

unique MATLAB • Does not support cell arrays for the first
argument.

• When you do not specify the'rows' option:

• The input A must be a vector. If you
specify the 'legacy' option, the input A
must be a row vector.

• The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

• The input [] is not supported. Use a
1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never 0-
by-0.

• When you specify both the 'rows' option
and the 'legacy'option, outputs ia and
ic are column vectors. If these outputs are
empty, they are 0-by-1, even if the output C is
0-by-0.

• When the setOrder is not 'stable' or
when you specify the 'legacy' option, the
input A must already be sorted in ascending
order. The first output, C, is sorted in
ascending order.

• Complex inputs must be single or double.

4-187

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

unmkpp MATLAB • pp must be a valid piecewise polynomial
structure created by mkpp, spline, or pchip
in MATLAB or by the code generator.

• Does not support pp structures created by
interp1 in MATLAB.

unscentedKalmanFilter Control System
Toolbox

For more information, see “Generate Code for
Online State Estimation in MATLAB”.

Supports MATLAB Function block: No
unscentedKalmanFilter System

Identification
Toolbox

For more information, see “Generate Code for
Online State Estimation in MATLAB”.

Supports MATLAB Function block: No
unwrap MATLAB • Row vector input is only supported when the

first two inputs are vectors and nonscalar
• Performs arithmetic in the output class.

Hence, results might not match MATLAB
due to different rounding errors

upfirdn Signal Processing
Toolbox

• Code generation for this function requires the
DSP System Toolbox software.

• Filter coefficients, upsampling factor, and
downsampling factor must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 21-53.

• Variable-size inputs are not supported.
uplus MATLAB —
uplus Fixed-Point

Designer
—

4-188

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

upper MATLAB • Supports only inputs from the char class.
Does not support cell arrays.

• Input values must be in the range 0-127.
upperbound Fixed-Point

Designer
—

upsample Signal Processing
Toolbox

Either declare input n as constant, or use the
assert function in the calling function to set
upper bounds for n. For example,

assert(n<10)

uv2azel Phased Array
System Toolbox

Does not support variable-size inputs.

uv2azelpat Phased Array
System Toolbox

Does not support variable-size inputs.

uv2phitheta Phased Array
System Toolbox

Does not support variable-size inputs.

uv2phithetapat Phased Array
System Toolbox

Does not support variable-size inputs.

val2ind Phased Array
System Toolbox

Does not support variable-size inputs.

vander MATLAB —
var MATLAB • If specified, dim must be a constant.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
7-35

vertcat Fixed-Point
Designer

—

vision.AlphaBlender Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Autocorrelator Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.BlobAnalysis Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

4-189

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

vision.CascadeObjectDetector Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries
“Portable C Code Generation for Functions That
Use OpenCV Library”
“System Objects in MATLAB Code Generation”

vision.ChromaResampler Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Convolver Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Crosscorrelator Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.DemosaicInterpolator Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.DCT Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Deinterlacer Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.DeployableVideoPlayer Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.FFT Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ForegroundDetector Computer Vision
System Toolbox

Supports MATLAB Function block: No
For MATLAB host target: Generates platform-
dependent library
For nonMATLAB host target: Generates
portable C code
“System Objects in MATLAB Code Generation”

vision.GammaCorrector Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.GeometricShearer Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

4-190

http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

vision.Histogram-
BasedTracker

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.HoughLines Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.IDCT Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.IFFT Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImageDataType-
Converter

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.KalmanFilter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.LocalMaximaFinder Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MarkerInserter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Maximum Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Median Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MedianFilter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Mean Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Minimum Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.PeopleDetector Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries.
“Portable C Code Generation for Functions That
Use OpenCV Library”
“System Objects in MATLAB Code Generation”

4-191

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

vision.PointTracker Computer Vision
System Toolbox

Supports MATLAB Function block: No
Supports MATLAB Function block: No
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries.
“Portable C Code Generation for Functions That
Use OpenCV Library”
“System Objects in MATLAB Code
Generation”“System Objects in MATLAB Code
Generation”

vision.Pyramid Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ShapeInserter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.StandardDeviation Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.TemplateMatcher Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Variance Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.VideoFileReader Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

Does not generate code for reading compressed
images on the Mac.

vision.VideoFileWriter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vitdec Communications
System Toolbox

—

4-192

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

watershed Image Processing
Toolbox

Supports only 2-D images. Supports only 4- or 8-
connectivity. Supports only up to 65,535 regions.
The output type is always uint16.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: No.
wavedec Wavelet Toolbox • Variable-size data support must be enabled.

• The input 'wname' must be constant.

Supports MATLAB Function block: No
wavedec2 Wavelet Toolbox • Variable-size data support must be enabled.

• The input 'wname' must be constant.

Supports MATLAB Function block: No
waverec Wavelet Toolbox Variable-size data support must be enabled.

Supports MATLAB Function block: No
waverec2 Wavelet Toolbox Variable-size data support must be enabled.

Supports MATLAB Function block: No
wavetableSynthesizer Audio System

Toolbox
“System Objects in MATLAB Code Generation”

Supports MATLAB Function Block: Yes
wblcdf Statistics

and Machine
Learning Toolbox

—

wblinv Statistics
and Machine
Learning Toolbox

—

wblpdf Statistics
and Machine
Learning Toolbox

—

4-193

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

wblrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
wblstat Statistics

and Machine
Learning Toolbox

—

wden Wavelet Toolbox Variable-size data support must be enabled.

Supports MATLAB Function block: No
wdencmp Wavelet Toolbox Variable-size data support must be enabled.

Supports MATLAB Function block: No
weightingFilter Audio System

Toolbox
“System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
wextend Wavelet Toolbox The generated code can return a column vector

when MATLAB returns a row vector if all of the
following conditions are true:

• TYPE specifies a 1–D extension.
• Input X is a variable-size vector.
• Input X is not a variable-length row vector (1-

by-:).

Code generation does not produce a warning or
error message about the shape mismatch. In the
output vector that the generated code returns,
the values match the values in the output vector
that MATLAB returns.

In this case, to generate code that returns a row
vector, pass X(:).' instead of X.

Supports MATLAB Function block: No

4-194

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

while MATLAB —
wilkinson MATLAB n must be a fixed-size scalar.
wlanCoarseCFOEstimate WLAN System

Toolbox
—

wlanFieldIndices WLAN System
Toolbox

—

wlanFineCFOEstimate WLAN System
Toolbox

—

wlanFormatDetect WLAN System
Toolbox

—

wlanHTConfig WLAN System
Toolbox

—

wlanHTData WLAN System
Toolbox

—

wlanHTDataRecover WLAN System
Toolbox

—

wlanHTLTFChannel-

Estimate

WLAN System
Toolbox

—

wlanHTLTFDemodulate WLAN System
Toolbox

—

wlanHTLTF WLAN System
Toolbox

—

wlanHTSIG WLAN System
Toolbox

—

wlanHTSIGRecover WLAN System
Toolbox

—

wlanHTSTF WLAN System
Toolbox

—

wlanLLTF WLAN System
Toolbox

—

wlanLLTFChannelEstimate WLAN System
Toolbox

—

4-195

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

wlanLLTFDemodulate WLAN System
Toolbox

—

wlanLSIG WLAN System
Toolbox

—

wlanLSIGRecover WLAN System
Toolbox

—

wlanLSTF WLAN System
Toolbox

—

wlanNonHTConfig WLAN System
Toolbox

—

wlanNonHTData WLAN System
Toolbox

—

wlanNonHTDataRecover WLAN System
Toolbox

—

wlanPacketDetect WLAN System
Toolbox

—

wlanRecoveryConfig WLAN System
Toolbox

—

wlanS1GConfig WLAN System
Toolbox

—

wlanTGacChannel WLAN System
Toolbox

“System Objects in MATLAB Code Generation”

wlanTGnChannel WLAN System
Toolbox

“System Objects in MATLAB Code Generation”

wlanVHTConfig WLAN System
Toolbox

—

wlanVHTData WLAN System
Toolbox

—

wlanVHTDataRecover WLAN System
Toolbox

Cannot be used in MATLAB Function block

wlanVHTLTF WLAN System
Toolbox

—

4-196

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

Name Product Remarks and Limitations

wlanVHTLTFChannel-

Estimate

WLAN System
Toolbox

—

wlanVHTLTFDemodulate WLAN System
Toolbox

—

wlanVHTSIGA WLAN System
Toolbox

—

wlanVHTSIGARecover WLAN System
Toolbox

—

wlanVHTSIGBRecover WLAN System
Toolbox

—

wlanVHTSIGB WLAN System
Toolbox

—

wlanVHTSTF WLAN System
Toolbox

—

wlanWaveformGenerator WLAN System
Toolbox

—

wnoisest Wavelet Toolbox Supports MATLAB Function block: No
wthcoef Wavelet Toolbox Supports MATLAB Function block: No
wthcoef2 Wavelet Toolbox Supports MATLAB Function block: No
wthresh Wavelet Toolbox Supports MATLAB Function block: No
xcorr Signal Processing

Toolbox
Leading ones in size(x) must be constant for
every input x. If x is variable-size and is a row
vector, it must be 1-by-:. It cannot be :-by-:
with size(x,1) = 1 at run time.

xor MATLAB —
ycbcr2rgb Image Processing

Toolbox
If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.

4-197

4 Functions, Classes, and System Objects Supported for Code Generation

Name Product Remarks and Limitations

yulewalk Signal Processing
Toolbox

If specified, the order of recursion must be a
constant. Expressions or variables are allowed if
their values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command Line”
on page 21-53.

zeros MATLAB • Dimensions must be real, nonnegative,
integers.

zp2tf MATLAB —
zscore Statistics

and Machine
Learning Toolbox

—

4-198

 Functions and Objects Supported for C/C++ Code Generation — Category List

Functions and Objects Supported for C/C++ Code Generation —
Category List

You can generate efficient C/C++ code for a subset of MATLAB built-in functions and
toolbox functions, classes, and System objects that you call from MATLAB code. These
functions, classes, and System objects are listed by MATLAB category or toolbox category
in the following tables.

For an alphabetical list of supported functions, classes, and System objects, see
“Functions and Objects Supported for C/C++ Code Generation — Alphabetical List” on
page 4-2.

Note: For more information on code generation for fixed-point algorithms, refer to “Code
Acceleration and Code Generation from MATLAB”.

In this section...

“Aerospace Toolbox” on page 4-201
“Arithmetic Operations in MATLAB” on page 4-201
“Audio System Toolbox” on page 4-203
“Bit-Wise Operations MATLAB” on page 4-204
“Casting in MATLAB” on page 4-205
“Character Functions in MATLAB” on page 4-205
“Communications System Toolbox” on page 4-208
“Complex Numbers in MATLAB” on page 4-215
“Computer Vision System Toolbox” on page 4-216
“Control Flow in MATLAB” on page 4-225
“Control System Toolbox” on page 4-225
“Data and File Management in MATLAB” on page 4-226
“Data Types in MATLAB” on page 4-230
“Desktop Environment in MATLAB” on page 4-231
“Discrete Math in MATLAB” on page 4-232
“DSP System Toolbox” on page 4-232

4-199

4 Functions, Classes, and System Objects Supported for Code Generation

In this section...

“Error Handling in MATLAB” on page 4-245
“Exponents in MATLAB” on page 4-246
“Filtering and Convolution in MATLAB” on page 4-246
“Fixed-Point Designer” on page 4-247
“HDL Coder” on page 4-257
“Histograms in MATLAB” on page 4-257
“Image Acquisition Toolbox” on page 4-258
“Image Processing in MATLAB” on page 4-258
“Image Processing Toolbox” on page 4-258
“Input and Output Arguments in MATLAB” on page 4-274
“Interpolation and Computational Geometry in MATLAB” on page 4-275
“Linear Algebra in MATLAB” on page 4-279
“Logical and Bit-Wise Operations in MATLAB” on page 4-280
“MATLAB Compiler” on page 4-281
“Matrices and Arrays in MATLAB” on page 4-281
“Neural Network Toolbox” on page 4-290
“Numerical Integration and Differentiation in MATLAB” on page 4-290
“Optimization Functions in MATLAB” on page 4-291
“Phased Array System Toolbox” on page 4-292
“Polynomials in MATLAB” on page 4-303
“Programming Utilities in MATLAB” on page 4-304
“Relational Operators in MATLAB” on page 4-304
“Robotics System Toolbox” on page 4-305
“Rounding and Remainder Functions in MATLAB” on page 4-306
“Set Operations in MATLAB” on page 4-307
“Signal Processing in MATLAB” on page 4-311
“Signal Processing Toolbox” on page 4-312
“Special Values in MATLAB” on page 4-317
“Specialized Math in MATLAB” on page 4-318

4-200

 Functions and Objects Supported for C/C++ Code Generation — Category List

In this section...

“Statistics in MATLAB” on page 4-318
“Statistics and Machine Learning Toolbox” on page 4-319
“System Identification Toolbox” on page 4-333
“Trigonometry in MATLAB” on page 4-335
“Wavelet Toolbox” on page 4-337
“WLAN System Toolbox” on page 4-340

Aerospace Toolbox

C and C++ code generation for the following Aerospace Toolbox quaternion functions
requires the Aerospace Blockset software.

Function Remarks and Limitations

quatconj —
quatdivide —
quatinv —
quatmod —
quatmultiply —
quatnorm —
quatnormalize —

Arithmetic Operations in MATLAB

See “Array vs. Matrix Operations” for detailed descriptions of the following operator
equivalent functions.

Function Remarks and Limitations

ctranspose —
idivide • For efficient generated code, MATLAB rules for divide by zero are

supported only for the 'round' option.
isa —
ldivide —

4-201

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

minus —
mldivide —
mpower If A is a 2-by-2 or larger matrix and B is Inf or -Inf, mpower(A,B)

returns a matrix of NaNs.
mrdivide —
mtimes • Multiplication of pure imaginary numbers by non-finite numbers

might not match MATLAB. The code generator does not specialize
multiplication by pure imaginary numbers—it does not eliminate
calculations with the zero real part. For example, (Inf + 1i)*1i =
(Inf*0 – 1*1) + (Inf*1 + 1*0)i = NaN + Infi.

• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
on page 7-35

plus —
power • Generates an error during simulation. When both X and Y are real,

but power(X,Y) is complex, returns NaN in the generated code. To
get the complex result, make the input value X complex by passing in
complex(X). For example, power(complex(X),Y).

• Generates an error during simulation. When both X and Y are real, but
X .^ Y is complex, returns NaN in generated code. To get the complex
result, make the input value X complex by using complex(X). For
example, complex(X).^Y.

rdivide —
times Multiplication of pure imaginary numbers by non-finite numbers might not

match MATLAB. The code generator does not specialize multiplication by
pure imaginary numbers—it does not eliminate calculations with the zero
real part. For example, (Inf + 1i)*1i = (Inf*0 – 1*1) + (Inf*1 +
1*0)i = NaN + Infi.

transpose —
uminus —
uplus —

4-202

 Functions and Objects Supported for C/C++ Code Generation — Category List

Audio System Toolbox

C and C++ code generation for the following functions and System objects requires the
Audio System Toolbox software.

Name Remarks and Limitations

Audio I/O and Waveform Generation
audioDeviceReader “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
audioDeviceWriter “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
wavetableSynthesizer “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
audioOscillator “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
Audio Processing Algorithm Design
designVarSlopeFilter Supports MATLAB Function block: Yes
designParamEQ Supports MATLAB Function block: Yes
designShelvingEQ Supports MATLAB Function block: Yes
integratedLoudness Supports MATLAB Function block: Yes
crossoverFilter “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
compressor “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
expander “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
noiseGate “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes

4-203

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

limiter “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
multibandParametricEQ “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
octaveFilter “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
weightingFilter “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
loudnessMeter “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: No

Dynamic Memory Allocation must not be turned
off.

reverberator “System Objects in MATLAB Code Generation”

Supports MATLAB Function block: Yes
Audio Plugins
audioPluginInterface Supports MATLAB Function block: Yes
audioPluginParameter Supports MATLAB Function block: Yes
audioPlugin Supports MATLAB Function block: Yes
audioPluginSource Supports MATLAB Function block: Yes

Bit-Wise Operations MATLAB

Function Remarks and Limitations

flintmax —
swapbytes Inheritance of the class of the input to swapbytes in a MATLAB Function

block is supported only when the class of the input is double. For non-
double inputs, the input port data types must be specified, not inherited.

4-204

 Functions and Objects Supported for C/C++ Code Generation — Category List

Casting in MATLAB

Function Remarks and Limitations

cast —
char Does not support cell arrays.
class —
double —
int8, int16, int32,
int64

—

logical —
single —
typecast • Value of data type argument must be lowercase.

• When you use typecast with inheritance of input port data types in
MATLAB Function blocks, you can receive a size error. To avoid this
error, specify the block input port data types explicitly.

• Integer input or result classes must map directly to a C type on the
target hardware.

• The input must be a variable-length vector or a fixed-size vector. See

“Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
on page 7-35

• The output vector always has the same orientation as the input vector.
uint8, uint16,
uint32, uint64

—

Character Functions in MATLAB

Function Remarks and Limitations

bin2dec • Does not support cell arrays.
• Does not match MATLAB when the input is empty.

blanks —
char Does not support cell arrays.
deblank • Supports only inputs from the char class. Does not support cell arrays.

4-205

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

• Input values must be in the range 0-127.
dec2bin • If input d is double, d must be less than 2^52.

• If input d is single, d must be less than 2^23.
• Unless you specify input n to be constant and n is large enough that the

output has a fixed number of columns regardless of the input values,
this function requires variable-sizing support. Without variable-sizing
support, n must be at least 52 for double, 23 for single, 16 for char,
32 for int32, 16 for int16, and so on.

dec2hex • If input d is double, d must be less than 2^52.
• If input d is single, d must be less than 2^23.
• Unless you specify input n to be constant, and n is large enough that the

output has a fixed number of columns regardless of the input values,
this function requires variable-sizing support. Without variable-sizing
support, n must be at least 13 for double, 6 for single, 4 for char, 8
for int32, 4 for int16, and so on.

hex2dec Does not support cell arrays.
hex2num • Does not support cell arrays.

• For n = hex2num(S), size(S,2) <= length(num2hex(0))
iscellstr —
ischar —
isletter • Input values from the char class must be in the range 0-127.
isspace • Input values from the char class must be in the range 0–127.
isstrprop • Supports only inputs from char and integer classes.

• Input values must be in the range 0-127.
lower • Supports only char inputs. Does not support cell arrays.

• Input values must be in the range 0-127.
num2hex —
str2double • Does not support cell arrays.

• Always returns a complex result.

4-206

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

strcmp • Does not support enumeration inputs.
• When one input is a cell array and the other input is a character array,

the character array must be a compile-time row vector.
• When both inputs are empty character arrays that have different sizes,

returns true.
strcmpi • Does not support enumeration inputs.

• Input values from the char class must be in the range 0-127.
• When one input is a cell array and the other input is a character array,

the character array must be a compile-time row vector.
• When both inputs are empty character arrays that have different sizes,

returns true.
strfind • Does not support cell arrays.

• Inputs must be character row vectors.
• Returns an empty output as a 1-by-0 character array.

strjoin Returns an empty output as a 1-by-0 character array.
strjust • Does not support a cell array of character vectors for the first argument.

• Returns an empty output as a 1-by-0 character array.
strncmp • Does not support enumeration inputs.

• When one input is a cell array and the other input is a character array,
the character array must be a compile-time row vector.

strncmpi • Does not support enumeration inputs.
• Input values from the char class must be in the range 0-127.
• When one input is a cell array and the other input is a character array,

the character array must be a compile-time row vector.
strrep • Does not support cell arrays.

• Inputs must be character row vectors.
• Returns an empty output as a 1-by-0 character array.

strtok • Does not support a cell array for the first argument.
• Returns an empty output as a 1-by-0 character array.

4-207

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

strtrim • Supports only inputs from the char class. Does not support cell arrays.
• Input values must be in the range 0-127.
• Returns an empty output as a 1-by-0 character array.

upper • Supports only inputs from the char class. Does not support cell arrays.
• Input values must be in the range 0-127.

Communications System Toolbox

C and C++ code generation for the following functions and System objects requires the
Communications System Toolbox software.

Name Remarks and Limitations

Input and Output
comm.BasebandFileReader “System Objects in MATLAB Code Generation”
comm.BasebandFileWriter “System Objects in MATLAB Code Generation”
comm.BarkerCode “System Objects in MATLAB Code Generation”
comm.GoldSequence “System Objects in MATLAB Code Generation”
comm.HadamardCode “System Objects in MATLAB Code Generation”
comm.KasamiSequence “System Objects in MATLAB Code Generation”
comm.WalshCode “System Objects in MATLAB Code Generation”
comm.PNSequence “System Objects in MATLAB Code Generation”
lteZadoffChuSeq —
Signal and Delay Management
bi2de —
de2bi —
Display and Visual Analysis
comm.ConstellationDiagram • Supports MEX code generation through an

auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

4-208

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

comm.EyeDiagram • Supports MEX code generation through an
auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

dsp.ArrayPlot • Supports MEX code generation through an
auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

dsp.SpectrumAnalyzer • Supports MEX code generation through an
auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

dsp.TimeScope • Supports MEX code generation through an
auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

Source Coding
comm.DifferentialDecoder “System Objects in MATLAB Code Generation”
comm.DifferentialEncoder “System Objects in MATLAB Code Generation”
Cyclic Redundancy Check Coding
comm.CRCDetector “System Objects in MATLAB Code Generation”
comm.CRCGenerator “System Objects in MATLAB Code Generation”
comm.HDLCRCDetector “System Objects in MATLAB Code Generation”
comm.HDLCRCGenerator “System Objects in MATLAB Code Generation”
BCH Codes
bchgenpoly All inputs must be constants. Expressions or

variables are allowed if their values do not
change.

4-209

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

comm.BCHDecoder “System Objects in MATLAB Code Generation”
comm.BCHEncoder “System Objects in MATLAB Code Generation”
Reed-Solomon Codes
comm.RSDecoder “System Objects in MATLAB Code Generation”
comm.RSEncoder “System Objects in MATLAB Code Generation”
comm.HDLRSDecoder “System Objects in MATLAB Code Generation”
comm.HDLRSEncoder “System Objects in MATLAB Code Generation”
rsgenpoly All inputs must be constants. Expressions or

variables are allowed if their values do not
change.

rsgenpolycoeffs All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

LDPC Codes
comm.LDPCDecoder Using default properties, comm.LDPCDecoder

does not support code generation. To generate
code, specify the ParityCheckMatrix property
as a non-sparse row-column index matrix.

comm.LDPCEncoder “System Objects in MATLAB Code Generation”
dvbs2ldpc All inputs must be constants. Expressions or

variables are allowed if their values do not
change.

Convolutional Coding
comm.APPDecoder “System Objects in MATLAB Code Generation”
comm.ConvolutionalEncoder “System Objects in MATLAB Code Generation”
comm.TurboDecoder “System Objects in MATLAB Code Generation”
comm.TurboEncoder “System Objects in MATLAB Code Generation”
comm.ViterbiDecoder “System Objects in MATLAB Code Generation”
convenc —
istrellis —

4-210

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

oct2dec —
poly2trellis —
vitdec —
Signal Operations
bin2gray —
comm.Descrambler “System Objects in MATLAB Code Generation”
comm.Scrambler “System Objects in MATLAB Code Generation”
gray2bin —
Interleaving
comm.AlgebraicDeinterleaver “System Objects in MATLAB Code Generation”
comm.AlgebraicInterleaver “System Objects in MATLAB Code Generation”
comm.BlockDeinterleaver “System Objects in MATLAB Code Generation”
comm.BlockInterleaver “System Objects in MATLAB Code Generation”
comm.ConvolutionalDeinterleaver “System Objects in MATLAB Code Generation”
comm.ConvolutionalInterleaver “System Objects in MATLAB Code Generation”
comm.HelicalDeinterleaver “System Objects in MATLAB Code Generation”
comm.HelicalInterleaver “System Objects in MATLAB Code Generation”
comm.MatrixDeinterleaver “System Objects in MATLAB Code Generation”
comm.MatrixInterleaver “System Objects in MATLAB Code Generation”
comm.MatrixHelicalScanDeinterleaver “System Objects in MATLAB Code Generation”
comm.MatrixHelicalScanInterleaver “System Objects in MATLAB Code Generation”
comm.MultiplexedDeinterleaver “System Objects in MATLAB Code Generation”
comm.MultiplexedInterleaver “System Objects in MATLAB Code Generation”
Frequency Modulation
comm.FSKDemodulator “System Objects in MATLAB Code Generation”
comm.FSKModulator “System Objects in MATLAB Code Generation”
Phase Modulation
comm.BPSKDemodulator “System Objects in MATLAB Code Generation”

4-211

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

comm.BPSKModulator “System Objects in MATLAB Code Generation”
comm.DBPSKDemodulator “System Objects in MATLAB Code Generation”
comm.DBPSKModulator “System Objects in MATLAB Code Generation”
comm.DPSKDemodulator “System Objects in MATLAB Code Generation”
comm.DPSKModulator “System Objects in MATLAB Code Generation”
comm.DQPSKDemodulator “System Objects in MATLAB Code Generation”
comm.DQPSKModulator “System Objects in MATLAB Code Generation”
comm.OQPSKDemodulator “System Objects in MATLAB Code Generation”
comm.OQPSKModulator “System Objects in MATLAB Code Generation”
comm.PSKDemodulator “System Objects in MATLAB Code Generation”
comm.PSKModulator “System Objects in MATLAB Code Generation”
comm.QPSKDemodulator “System Objects in MATLAB Code Generation”
comm.QPSKModulator “System Objects in MATLAB Code Generation”
dpskdemod —
dpskmod —
Amplitude Modulation
comm.GeneralQAMDemodulator “System Objects in MATLAB Code Generation”
comm.GeneralQAMModulator “System Objects in MATLAB Code Generation”
comm.PAMDemodulator “System Objects in MATLAB Code Generation”
comm.PAMModulator “System Objects in MATLAB Code Generation”
comm.RectangularQAMDemodulator “System Objects in MATLAB Code Generation”
comm.RectangularQAMModulator “System Objects in MATLAB Code Generation”
genqamdemod —
qammod —
qamdemod —
Continuous Phase Modulation
comm.CPFSKDemodulator “System Objects in MATLAB Code Generation”
comm.CPFSKModulator “System Objects in MATLAB Code Generation”

4-212

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

comm.CPMDemodulator “System Objects in MATLAB Code Generation”
comm.CPMModulator “System Objects in MATLAB Code Generation”
comm.GMSKDemodulator “System Objects in MATLAB Code Generation”
comm.GMSKModulator “System Objects in MATLAB Code Generation”
comm.MSKDemodulator “System Objects in MATLAB Code Generation”
comm.MSKModulator “System Objects in MATLAB Code Generation”
Trellis Coded Modulation
comm.GeneralQAMTCMDemodulator “System Objects in MATLAB Code Generation”
comm.GeneralQAMTCMModulator “System Objects in MATLAB Code Generation”
comm.PSKTCMDemodulator “System Objects in MATLAB Code Generation”
comm.PSKTCMModulator “System Objects in MATLAB Code Generation”
comm.RectangularQAMTCMDemodulator “System Objects in MATLAB Code Generation”
comm.RectangularQAMTCMModulator “System Objects in MATLAB Code Generation”
Orthogonal Frequency-Division Modulation
comm.OFDMDemodulator “System Objects in MATLAB Code Generation”
comm.OFDMModulator “System Objects in MATLAB Code Generation”
Analog Baseband Modulation
comm.FMBroadcastDemodulator “System Objects in MATLAB Code Generation”
comm.FMBroadcastModulator “System Objects in MATLAB Code Generation”
comm.FMDemodulator “System Objects in MATLAB Code Generation”
comm.FMModulator “System Objects in MATLAB Code Generation”
Filtering
comm.IntegrateAndDumpFilter “System Objects in MATLAB Code Generation”
comm.RaisedCosineReceiveFilter “System Objects in MATLAB Code Generation”
comm.RaisedCosineTransmitFilter “System Objects in MATLAB Code Generation”
Carrier Phase Synchronization
comm.CarrierSynchronizer “System Objects in MATLAB Code Generation”
comm.CPMCarrierPhaseSynchronizer “System Objects in MATLAB Code Generation”

4-213

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

comm.CoarseFrequencyCompensator “System Objects in MATLAB Code Generation”
Timing Phase Synchronization
comm.SymbolSynchronizer “System Objects in MATLAB Code Generation”
comm.PreambleDetector “System Objects in MATLAB Code Generation”
comm.GMSKTimingSynchronizer “System Objects in MATLAB Code Generation”
comm.MSKTimingSynchronizer “System Objects in MATLAB Code Generation”
Synchronization Utilities
comm.DiscreteTimeVCO “System Objects in MATLAB Code Generation”
Equalization
comm.MLSEEqualizer “System Objects in MATLAB Code Generation”
MIMO
comm.LTEMIMOChannel “System Objects in MATLAB Code Generation”
comm.MIMOChannel “System Objects in MATLAB Code Generation”
comm.OSTBCCombiner “System Objects in MATLAB Code Generation”
comm.OSTBCEncoder “System Objects in MATLAB Code Generation”
comm.SphereDecoder “System Objects in MATLAB Code Generation”
Channel Modeling and RF Impairments
comm.AGC “System Objects in MATLAB Code Generation”
comm.AWGNChannel “System Objects in MATLAB Code Generation”
comm.BinarySymmetricChannel “System Objects in MATLAB Code Generation”
comm.IQImbalanceCompensator “System Objects in MATLAB Code Generation”
comm.LTEMIMOChannel “System Objects in MATLAB Code Generation”
comm.MemorylessNonlinearity “System Objects in MATLAB Code Generation”
comm.MIMOChannel “System Objects in MATLAB Code Generation”
comm.PhaseFrequencyOffset “System Objects in MATLAB Code Generation”
comm.PhaseNoise “System Objects in MATLAB Code Generation”
comm.RayleighChannel “System Objects in MATLAB Code Generation”
comm.RicianChannel “System Objects in MATLAB Code Generation”

4-214

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

comm.ThermalNoise “System Objects in MATLAB Code Generation”
comm.PSKCoarseFrequencyEstimator “System Objects in MATLAB Code Generation”
comm.QAMCoarseFrequencyEstimator “System Objects in MATLAB Code Generation”
doppler All inputs must be constants. Expressions or

variables are allowed if their values do not
change.

iqcoef2imbal —
iqimbal —
iqimbal2coef —
Measurements and Analysis
comm.ACPR “System Objects in MATLAB Code Generation”
comm.CCDF “System Objects in MATLAB Code Generation”
comm.ErrorRate “System Objects in MATLAB Code Generation”
comm.EVM “System Objects in MATLAB Code Generation”
comm.MER “System Objects in MATLAB Code Generation”

Complex Numbers in MATLAB

Function Remarks and Limitations

complex —
conj —
cplxpair —
imag —
isnumeric —
isreal —
isscalar —
real —
unwrap • Row vector input is only supported when the first two inputs are vectors

and nonscalar

4-215

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

• Performs arithmetic in the output class. Hence, results might not match
MATLAB due to different rounding errors

Computer Vision System Toolbox

C and C++ code generation for the following functions and System objects requires the
Computer Vision System Toolbox software.

Name Remarks and Limitations

Feature Detection, Extraction, and Matching
BRISKPoints Supports MATLAB Function block: No

To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

cornerPoints Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

detectBRISKFeatures Supports MATLAB Function block: No
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries.
“Portable C Code Generation for Functions That
Use OpenCV Library”

detectFASTFeatures Supports MATLAB Function block: No
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries.
“Portable C Code Generation for Functions That
Use OpenCV Library”

4-216

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

detectHarrisFeatures Compile-time constant input: 'FilterSize'
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectMinEigenFeatures Compile-time constant input: 'FilterSize'
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectMSERFeatures Supports MATLAB Function block: No
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries
“Portable C Code Generation for Functions That
Use OpenCV Library”
For code generation, the function outputs
regions.PixelList as an array. The region
sizes are defined in regions.Lengths.

detectSURFFeatures Supports MATLAB Function block: No
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries.
“Portable C Code Generation for Functions That
Use OpenCV Library”

extractFeatures Compile-time constant input restrictions:
'Method'

Supports MATLAB Function block: Yes for
Block method only.
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries for
BRISK, FREAK, and SURF Methods.
“Portable C Code Generation for Functions That
Use OpenCV Library”

extractHOGFeatures Supports MATLAB Function block: No
extractLBPFeatures Generates platform-dependent library: No

Supports MATLAB Function block: Yes

4-217

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

matchFeatures Generates platform-dependent library: Yes for
MATLAB host only when using the Exhaustive
method.
Generates portable C code for non-host target
only when using the Exhaustive method.
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries
when not using the Exhaustive method.
“Portable C Code Generation for Functions That
Use OpenCV Library”
Compile-time constant input: 'Method‘ and
'Metric'.
Supports MATLAB Function block: No

MSERRegions Supports MATLAB Function block: Yes
For code generation, you must specify both the
pixellist cell array and the length of each
array, as the second input. The object outputs,
regions.PixelList as an array. The region
sizes are defined in regions.Lengths.
Generated code for this function uses a
precompiled platform-specific shared library.

SURFPoints Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

Image Registration and Geometric Transformations
estimateGeometricTransform Supports MATLAB Function block: No
vision.GeometricShearer Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
Object Detection and Recognition

4-218

http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

ocr Compile-time constant input: 'TextLayout',
'Language', and 'CharacterSet'.
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

ocrText Supports MATLAB Function block: No
vision.PeopleDetector Supports MATLAB Function block: No

Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries.
“Portable C Code Generation for Functions That
Use OpenCV Library”
“System Objects in MATLAB Code Generation”

vision.CascadeObjectDetector Supports MATLAB Function block: No
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries
“Portable C Code Generation for Functions That
Use OpenCV Library”
“System Objects in MATLAB Code Generation”

Tracking and Motion Estimation
assignDetectionsToTracks Supports MATLAB Function block: Yes
opticalFlowFarneback Supports MATLAB Function block: No

Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries.
“Portable C Code Generation for Functions That
Use OpenCV Library”

opticalFlowHS Supports MATLAB Function block: No
opticalFlowLKDoG Supports MATLAB Function block: No
opticalFlowLK Supports MATLAB Function block: No
vision.ForegroundDetector Supports MATLAB Function block: No

For MATLAB host target: Generates platform-
dependent library
For nonMATLAB host target: Generates
portable C code
“System Objects in MATLAB Code Generation”

4-219

http://www.mathworks.com/support/sysreq/current_release/

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

vision.HistogramBasedTracker Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.KalmanFilter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.PointTracker Supports MATLAB Function block: No
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries.
“Portable C Code Generation for Functions That
Use OpenCV Library”
“System Objects in MATLAB Code Generation”

vision.TemplateMatcher Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Camera Calibration and Stereo Vision
bboxOverlapRatio Supports MATLAB Function block: No
bbox2points Supports MATLAB® Function block: Yes
disparity Compile-time constant input restriction:

'Method'.
Supports MATLAB Function block: No
Generates portable C code using a C++ compiler
that links to OpenCV (Version 2.4.9) libraries.
“Portable C Code Generation for Functions That
Use OpenCV Library”

cameraPoseToExtrinsics Supports MATLAB Function block: Yes
cameraMatrix Supports MATLAB Function block: No
cameraPose Supports MATLAB Function block: No
cameraParameters Supports MATLAB Function block: No

Use the toStruct method to pass a
cameraParameters object into generated code.
See the “Code Generation for Depth Estimation
From Stereo Video” example.

4-220

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

detectCheckerboardPoints Supports MATLAB Function block: No
Code generation will not support specifying
images as file names or cell arrays of file names.
It supports only checkerboard detection in
a single image or stereo pair of images. For
example, these syntaxes are supported:

• detectCheckerboardPoints(I1)

• detectCheckerobarPoints(I1,I2)

I1 and I2 are single grayscale or RGB images.
epipolarline Supports MATLAB Function block: Yes
estimateEssentialMatrix Supports MATLAB Function block: No
estimateFundamentalMatrix Compile-time constant input restriction:

'Method', 'OutputClass', 'DistanceType',
and 'ReportRuntimeError'.
Supports MATLAB Function block: Yes

estimateUncalibratedRectification Supports MATLAB Function block: Yes
estimateWorldCameraPose Supports MATLAB Function block: No
extrinsics Supports MATLAB Function block: No
extrinsicsToCameraPose Supports MATLAB Function block: Yes
generateCheckerboardPoints Supports MATLAB Function block: No
isEpipoleInImage Supports MATLAB Function block: Yes
lineToBorderPoints Supports MATLAB Function block: Yes
reconstructScene Supports MATLAB Function block: No
rectifyStereoImages Compile-time constant input restriction:

'interp' and 'OutputView'
Supports MATLAB Function block: No

relativeCameraPose Supports MATLAB Function block: No
rotationMatrixToVector Supports MATLAB Function block: Yes
rotationVectorToMatrix Supports MATLAB Function block: Yes
selectStrongestBbox Supports MATLAB Function block: No

4-221

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

stereoAnaglyph Supports MATLAB Function block: Yes
stereoParameters Supports MATLAB Function block: No

Use the toStruct method to pass a
stereoParameters object into generated code.
See the “Code Generation for Depth Estimation
From Stereo Video” example.

triangulate Supports MATLAB Function block: No
undistortImage Compile-time constant input restriction:

'interp' and 'OutputView'
Supports MATLAB Function block: No

Statistics
vision.Autocorrelator Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.BlobAnalysis Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Crosscorrelator Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.LocalMaximaFinder Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Maximum Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Mean Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Median Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Minimum Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.StandardDeviation Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Variance Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
Filters, Transforms, and Enhancements

4-222

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

integralImage Supports MATLAB Function block: Yes
vision.Convolver Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.DCT Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Deinterlacer Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.FFT Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.HoughLines Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.IDCT Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.IFFT Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.MedianFilter Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Pyramid Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
Video Loading, Saving, and Streaming
vision.DeployableVideoPlayer Supports MATLAB Function block: Yes

Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.VideoFileReader Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

Does not generate code for reading compressed
images on the Mac.

4-223

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

vision.VideoFileWriter Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

Color Space Formatting and Conversions
vision.ChromaResampler Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.DemosaicInterpolator Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.GammaCorrector Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
Graphics
insertMarker Compile-time constant input: 'Shape' and

'Color'

Supports MATLAB Function block: Yes
insertShape Compile-time constant input: 'Color' and

'SmoothEdges'

Supports MATLAB Function block: Yes
insertObjectAnnotation Supports MATLAB Function block: Yes

Limitation: Input image must be bounded, see
“Specify Variable-Size Data Without Dynamic
Memory Allocation”
“System Objects in MATLAB Code Generation”

insertText Compile-time constant input: Font, FontSize
Supports non-ASCII characters: No
Supports MATLAB Function block: Yes

vision.AlphaBlender Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MarkerInserter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ShapeInserter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

4-224

http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C/C++ Code Generation — Category List

Control Flow in MATLAB

Function Remarks and Limitations

break —
continue —
end —
for —
if, elseif, else —
parfor • Treated as a for-loop in a MATLAB Function block or when used with

fiaccel.
• See the parfor reference page in the MATLAB Coder documentation.
• “Generate Code with Parallel for-Loops (parfor)” on page 29-33.

return —
switch, case,

otherwise

• If all case expressions are scalar integer values, generates a C switch
statement. At run time, if the switch value is not an integer, generates
an error.

• When the case expressions contain noninteger or nonscalar values,
the code generator produces C if statements in place of a C switch
statement.

while —

Control System Toolbox

C and C++ code generation for the following functions requires the Control System
Toolbox software.

Name Remarks and Limitations

extendedKalmanFilter For more information, see “Generate Code for
Online State Estimation in MATLAB”.

Supports MATLAB Function block: No
unscentedKalmanFilter For more information, see “Generate Code for

Online State Estimation in MATLAB”.

Supports MATLAB Function block: No

4-225

4 Functions, Classes, and System Objects Supported for Code Generation

Data and File Management in MATLAB

Function Remarks and Limitations

computer • Information about the computer on which the code generator is running.
• Use only when the code generation target is S-function (Simulation) or

MEX-function.
fclose —
feof —
fopen • Does not support:

• machineformat, encoding, or fileID inputs
• message output
• fopen('all')

• Opening a file in text mode. (The file access type cannot be 'rt'.)
• If you disable extrinsic calls, you cannot return fileIDs created with

fopen to MATLAB or extrinsic functions. You can use such fileIDs
only internally.

• When generating C/C++ executables, static libraries, or dynamic
libraries, you can open up to 20 files.

• The generated code does not report errors from invalid file identifiers.
Write your own file open error handling in your MATLAB code. Test
whether fopen returns -1, which indicates that the file open failed. For
example:

...

fid = fopen(filename, 'r');

if fid == -1

 % fopen failed

else

% fopen successful, okay to call fread

A = fread(fid);

...

• The behavior of the generated code for fread is compiler-dependent if
you:

1 Open a file using fopen with a permission of a+.

4-226

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

2 Read the file using fread before calling an I/O function, such as
fseek or frewind, that sets the file position indicator.

fprintf • Does not support:

• b and t subtypes on %u, %o %x, and %X formats.
• $ flag for reusing input arguments.
• printing arrays.

• There is no automatic casting. Input arguments must match their
format types for predictable results.

• Escaped characters are limited to the decimal range of 0–127.
• A call to fprintf with fileID equal to 1 or 2 becomes printf in the

generated C/C++ code in the following cases:

• The fprintf call is inside a parfor loop.
• Extrinsic calls are disabled.

• When the MATLAB behavior differs from the C compiler behavior,
fprintf matches the C compiler behavior in the following cases:

• The format specifier has a corresponding C format specifier, for
example, %e or %E.

• The fprintf call is inside a parfor loop.
• Extrinsic calls are disabled.

• When you call fprintf with the format specifier %s, do not put
a null character in the middle of the input character vector. Use
fprintf(fid, '%c', char(0)) to write a null character.

• When you call fprintf with an integer format specifier, the type of
the integer argument must be a type that the target hardware can
represent as a native C type. For example, if you call fprintf('%d',
int64(n)), the target hardware must have a native C type that
supports a 64-bit integer.

4-227

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

fread • precision must be a constant.
• The source and output that precision specifies cannot have values

long, ulong, unsigned long, bitN, or ubitN.
• You cannot use the machineformat input.
• If the source or output that precision specifies is a C type, for

example, int, the target and production sizes for that type must:

• Match.
• Map directly to a MATLAB type.

• The source type that precision specifies must map directly to a C
type on the target hardware.

• If the fread call reads the entire file, all of the data must fit in the
largest array available for code generation.

• If sizeA is not constant or contains a nonfinite element, then dynamic
memory allocation is required.

• Treats a char value for source or output as a signed 8-bit integer. Use
values between 0 and 127 only.

• The generated code does not report file read errors. Write your own
file read error handling in your MATLAB code. Test that the number
of bytes read matches the number of bytes that you requested. For
example:

...

N = 100;

[vals, numRead] = fread(fid, N, '*double');

if numRead ~= N

 % fewer elements read than expected

end

...

frewind —

4-228

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

fseek • When the MATLAB behavior differs from the C compiler behavior, the
generated code matches the C compiler behavior. Examples include:

• Seeking past the end of a file.
• Seeking away from the end of a file opened with append access.

• The offset is passed to the C run-time environment as a signed long data
type. Therefore, the offset value must fit in the long data type on the
target hardware.

ftell When the MATLAB behavior differs from the C compiler behavior, the
generated code usually matches the C compiler behavior. For example, if
you use fseek to seek past the end of a file, the behavior of ftell in the
generated code matches the C compiler behavior.

fwrite • The precision argument must be a constant.
• Does not support precision types 'long', 'ulong', 'unsigned long',

'bitn', and 'ubitn'.
• Does not support the machine format (order for writing bytes) input

argument.
• If the precision is a C type such as int, the target and production sizes

for that type must:

• Match.
• Map directly to a MATLAB integer type.

• Treats a char type as a signed 8-bit integer. Use values from 0 through
127 only.

• When appending to a file and using a skip argument, it must be possible
for the C run-time fseek to seek beyond the end of the file and initialize
unwritten bytes to 0. This behavior matches the behavior of POSIX and
Windows.

4-229

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

load • Use only when generating MEX or code for Simulink simulation. To load
compile-time constants, use coder.load.

• Does not support use of the function without assignment to a
structure or array. For example, use S = load(filename), not
load(filename).

• The output S must be the name of a structure or array without any
subscripting. For example, S(i) = load('myFile.mat') is not
allowed.

• Arguments to load must be compile-time constant character vectors.
• Does not support loading objects.
• If the MAT-file contains unsupported constructs, use

load(filename,variables) to load only the supported constructs.
• You cannot use save in a function intended for code generation. The

code generator does not support the save function. Furthermore, you
cannot use coder.extrinsic with save. Prior to generating code, you
can use save to save the workspace data to a MAT-file.

You must use coder.varsize to explicitly declare variable-size data
loaded using the load function.

Data Types in MATLAB

Function Remarks and Limitations

cell “Cell Array Limitations for Code Generation” on page 9-10
deal —
fieldnames Does not support objects. The input must be a structure.
iscell —
isenum —
isfield Does not support cell arrays for the second argument.
isobject —
isstruct —
narginchk —

4-230

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

nargoutchk —
str2func • Character vector must be constant/known at compile time
struct • You cannot create a structure that contains a cell array. For example,

you cannot generate code for:

s = struct('a',{{1 2}})

• If the value argument is a cell array, all elements must have the same
type.

struct2cell • For a variable-size structure array, the resulting cell array must be
homogeneous. If s is a variable-size structure array, the fields must
have the same type.

• If struct2cell cannot convert s to a homogeneous cell array, the
output cell array is heterogeneous. A heterogeneous output cell array
can have a maximum of 1024 elements.

structfun • Does not support the ErrorHandler option.
• The number of outputs must be less than or equal to three.

Desktop Environment in MATLAB

Function Remarks and Limitations

ismac • Returns true or false based on the MATLAB version used for code
generation.

• Use only when the code generation target is S-function (Simulation)
or MEX-function.

ispc • Returns true or false based on the MATLAB version you use for code
generation.

• Use only when the code generation target is S-function (Simulation)
or MEX-function.

isunix • Returns true or false based on the MATLAB version used for code
generation.

• Use only when the code generation target is S-function (Simulation)
or MEX-function.

4-231

4 Functions, Classes, and System Objects Supported for Code Generation

Discrete Math in MATLAB

Function Remarks and Limitations

factor • The maximum double precision input is 2^33.
• The maximum single precision input is 2^25.
• The input n cannot have type int64 or uint64.

gcd —
isprime • The maximum double precision input is 2^33.

• The maximum single precision input is 2^25.
• The input X cannot have type int64 or uint64.

lcm —
nchoosek • When the first input, x, is a scalar, nchoosek returns a binomial

coefficient. In this case, x must be a nonnegative integer. It cannot have
type int64 or uint64.

• When the first input, x, is a vector, nchoosek treats it as a set. In this
case, x can have type int64 or uint64.

• The second input, k, cannot have type int64 or uint64.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 7-35
primes • The maximum double precision input is 2^32.

• The maximum single precision input is 2^24.
• The input n cannot have type int64 or uint64.

DSP System Toolbox

C code generation for the following functions and System objects requires the DSP
System Toolbox license. Many DSP System Toolbox functions require constant inputs
for code generation. See “Define Constant Input Parameters Using the App” on page
18-24 and “Specify Constant Inputs at the Command Line” on page 21-53.

Name Remarks and Limitations

Estimation
dsp.BurgAREstimator “System Objects in MATLAB Code Generation”

4-232

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

dsp.BurgSpectrumEstimator • When the FFT length is not a power of 2, use
the packNGo function to package the code
generated from this System object and all
relevant files in a compressed zip file. Using
this zip file, you can relocate, unpack, and
rebuild your project in another development
environment with no MATLAB installed.
For an example, see “Package Code for
Other Development Environments” on page
25-46.

• “System Objects in MATLAB Code
Generation”

dsp.CepstralToLPC “System Objects in MATLAB Code Generation”
dsp.CrossSpectrumEstimator • When the FFT length is not a power of 2, use

the packNGo function to package the code
generated from this System object and all
relevant files in a compressed zip file. Using
this zip file, you can relocate, unpack, and
rebuild your project in another development
environment with no MATLAB installed.
For an example, see “Package Code for
Other Development Environments” on page
25-46.

• “System Objects in MATLAB Code
Generation”

dsp.LevinsonSolver “System Objects in MATLAB Code Generation”
dsp.LPCToAutocorrelation “System Objects in MATLAB Code Generation”
dsp.LPCToCepstral “System Objects in MATLAB Code Generation”
dsp.LPCToLSF “System Objects in MATLAB Code Generation”
dsp.LPCToLSP “System Objects in MATLAB Code Generation”
dsp.LPCToRC “System Objects in MATLAB Code Generation”
dsp.LSFToLPC “System Objects in MATLAB Code Generation”
dsp.LSPToLPC “System Objects in MATLAB Code Generation”

4-233

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

dsp.RCToAutocorrelation “System Objects in MATLAB Code Generation”
dsp.RCToLPC “System Objects in MATLAB Code Generation”
dsp.SpectrumEstimator • When the FFT length is not a power of 2, use

the packNGo function to package the code
generated from this System object and all
relevant files in a compressed zip file. Using
this zip file, you can relocate, unpack, and
rebuild your project in another development
environment with no MATLAB installed.
For an example, see “Package Code for
Other Development Environments” on page
25-46.

• “System Objects in MATLAB Code
Generation”

dsp.TransferFunctionEstimator • When the FFT length is not a power of 2, use
the packNGo function to package the code
generated from this System object and all
relevant files in a compressed zip file. Using
this zip file, you can relocate, unpack, and
rebuild your project in another development
environment with no MATLAB installed.
For an example, see “Package Code for
Other Development Environments” on page
25-46.

• “System Objects in MATLAB Code
Generation”

Filters
ca2tf All inputs must be constant. Expressions or

variables are allowed if their values do not
change.

cl2tf All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

dsp.AdaptiveLatticeFilter “System Objects in MATLAB Code Generation”

4-234

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

dsp.AffineProjectionFilter “System Objects in MATLAB Code Generation”
dsp.AllpassFilter “System Objects in MATLAB Code Generation”

The System object supports code generation only
when the Structure property is set to Minimum
multiplier or Lattice.

dsp.AllpoleFilter • “System Objects in MATLAB Code
Generation”

• Only the Denominator property is tunable
for code generation.

dsp.BiquadFilter “System Objects in MATLAB Code Generation”
dsp.Channelizer “System Objects in MATLAB Code Generation”
dsp.ChannelSynthesizer “System Objects in MATLAB Code Generation”
dsp.CICCompensationDecimator “System Objects in MATLAB Code Generation”
dsp.CICCompensationInterpolator “System Objects in MATLAB Code Generation”
dsp.CICDecimator “System Objects in MATLAB Code Generation”
dsp.CICInterpolator “System Objects in MATLAB Code Generation”
dsp.Differentiator “System Objects in MATLAB Code Generation”
dsp.FarrowRateConverter “System Objects in MATLAB Code Generation”
dsp.FastTransversalFilter “System Objects in MATLAB Code Generation”
dsp.FilterCascade • You cannot generate code directly from

dsp.FilterCascade. You can use the
generateFilteringCode method to
generate a MATLAB function. You can
generate C/C++ code from this MATLAB
function.

• “System Objects in MATLAB Code
Generation”

dsp.FilteredXLMSFilter “System Objects in MATLAB Code Generation”
dsp.FIRDecimator “System Objects in MATLAB Code Generation”

4-235

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

dsp.FIRFilter • “System Objects in MATLAB Code
Generation”

• Only the Numerator property is tunable for
code generation.

dsp.FIRHalfbandDecimator “System Objects in MATLAB Code Generation”
dsp.FIRHalfbandInterpolator “System Objects in MATLAB Code Generation”
dsp.FIRInterpolator “System Objects in MATLAB Code Generation”
dsp.FIRRateConverter “System Objects in MATLAB Code Generation”
dsp.FrequencyDomainAdaptiveFilter • When the sum of BlockLength and Length

is not a power of 2, use the packNGo function
to package the code generated from this
System object and all relevant files in a
compressed zip file. Using this zip file, you
can relocate, unpack, and rebuild your project
in another development environment with
no MATLAB installed. For an example,
see “Package Code for Other Development
Environments” on page 25-46.

• “System Objects in MATLAB Code
Generation”

dsp.HighpassFilter “System Objects in MATLAB Code Generation”
dsp.IIRFilter • Only the Numerator and Denominator

properties are tunable for code generation.
• “System Objects in MATLAB Code

Generation”
dsp.IIRHalfbandDecimator “System Objects in MATLAB Code Generation”
dsp.IIRHalfbandInterpolator “System Objects in MATLAB Code Generation”
dsp.KalmanFilter “System Objects in MATLAB Code Generation”
dsp.LMSFilter “System Objects in MATLAB Code Generation”
dsp.LowpassFilter “System Objects in MATLAB Code Generation”
dsp.MedianFilter “System Objects in MATLAB Code Generation”
dsp.RLSFilter “System Objects in MATLAB Code Generation”

4-236

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

dsp.SampleRateConverter “System Objects in MATLAB Code Generation”
dsp.SubbandAnalysisFilter “System Objects in MATLAB Code Generation”
dsp.SubbandSynthesisFilter “System Objects in MATLAB Code Generation”
dsp.VariableBandwidthFIRFilter “System Objects in MATLAB Code Generation”
dsp.VariableBandwidthIIRFilter “System Objects in MATLAB Code Generation”
firceqrip All inputs must be constant. Expressions or

variables are allowed if their values do not
change.

fireqint All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firgr • All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

firhalfband All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firlpnorm • All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

firminphase All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firnyquist All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firpr2chfb All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

4-237

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

ifir All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iircomb All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iirgrpdelay • All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirlpnorm • All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirlpnormc • All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirnotch All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iirpeak All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

tf2ca All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

tf2cl All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Filter Design

4-238

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

designMultirateFIR The inputs to the function must be constants
Math Operations
dsp.ArrayVectorAdder “System Objects in MATLAB Code Generation”
dsp.ArrayVectorDivider “System Objects in MATLAB Code Generation”
dsp.ArrayVectorMultiplier “System Objects in MATLAB Code Generation”
dsp.ArrayVectorSubtractor “System Objects in MATLAB Code Generation”
dsp.CumulativeProduct “System Objects in MATLAB Code Generation”
dsp.CumulativeSum “System Objects in MATLAB Code Generation”
dsp.LDLFactor “System Objects in MATLAB Code Generation”
dsp.LevinsonSolver “System Objects in MATLAB Code Generation”
dsp.LowerTriangularSolver “System Objects in MATLAB Code Generation”
dsp.LUFactor “System Objects in MATLAB Code Generation”
dsp.Normalizer “System Objects in MATLAB Code Generation”
dsp.UpperTriangularSolver “System Objects in MATLAB Code Generation”
Quantizers
dsp.ScalarQuantizerDecoder “System Objects in MATLAB Code Generation”
dsp.ScalarQuantizerEncoder “System Objects in MATLAB Code Generation”
dsp.VectorQuantizerDecoder “System Objects in MATLAB Code Generation”
dsp.VectorQuantizerEncoder “System Objects in MATLAB Code Generation”
Scopes
dsp.ArrayPlot • Supports MEX code generation through an

auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

4-239

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

dsp.SpectrumAnalyzer • Supports MEX code generation through an
auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

dsp.TimeScope • Supports MEX code generation through an
auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

Signal Management
dsp.Counter “System Objects in MATLAB Code Generation”
dsp.DelayLine “System Objects in MATLAB Code Generation”
Signal Operations
dsp.Convolver “System Objects in MATLAB Code Generation”
dsp.DCBlocker “System Objects in MATLAB Code Generation”
dsp.Delay “System Objects in MATLAB Code Generation”
dsp.DigitalDownConverter “System Objects in MATLAB Code Generation”
dsp.DigitalUpConverter “System Objects in MATLAB Code Generation”
dsp.Interpolator “System Objects in MATLAB Code Generation”
dsp.NCO “System Objects in MATLAB Code Generation”
dsp.PeakFinder “System Objects in MATLAB Code Generation”
dsp.PhaseExtractor “System Objects in MATLAB Code Generation”
dsp.PhaseUnwrapper “System Objects in MATLAB Code Generation”
dsp.VariableFractionalDelay “System Objects in MATLAB Code Generation”
dsp.VariableIntegerDelay “System Objects in MATLAB Code Generation”
dsp.Window • This object has no tunable properties for code

generation.
• “System Objects in MATLAB Code

Generation”

4-240

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

dsp.ZeroCrossingDetector “System Objects in MATLAB Code Generation”
Sinks
audioDeviceWriter • You must use the packNGo function to

package the code generated from this System
object and all relevant files in a compressed
zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another
development environment with no MATLAB
installed. For an example, see “Package Code
for Other Development Environments” on
page 25-46.

• “System Objects in MATLAB Code
Generation”

dsp.AudioFileWriter • You must use the packNGo function to
package the code generated from this System
object and all relevant files in a compressed
zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another
development environment with no MATLAB
installed. For an example, see “Package Code
for Other Development Environments” on
page 25-46.

• “System Objects in MATLAB Code
Generation”

dsp.BinaryFileWriter “System Objects in MATLAB Code Generation”

4-241

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

dsp.UDPSender • You must use the packNGo function to
package the code generated from this System
object and all relevant files in a compressed
zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another
development environment with no MATLAB
installed. For an example, see “Package Code
for Other Development Environments” on
page 25-46.

• “System Objects in MATLAB Code
Generation”

Sources
dsp.AudioFileReader • You must use the packNGo function to

package the code generated from this System
object and all relevant files in a compressed
zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another
development environment with no MATLAB
installed. For an example, see “Package Code
for Other Development Environments” on
page 25-46.

• “System Objects in MATLAB Code
Generation”

dsp.BinaryFileReader “System Objects in MATLAB Code Generation”
dsp.SignalSource “System Objects in MATLAB Code Generation”
dsp.SineWave • This object has no tunable properties for code

generation.
• “System Objects in MATLAB Code

Generation”

4-242

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

dsp.UDPReceiver • You must use the packNGo function to
package the code generated from this System
object and all relevant files in a compressed
zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another
development environment with no MATLAB
installed. For an example, see “Package Code
for Other Development Environments” on
page 25-46.

• “System Objects in MATLAB Code
Generation”

Statistics
dsp.Autocorrelator “System Objects in MATLAB Code Generation”
dsp.Crosscorrelator “System Objects in MATLAB Code Generation”
dsp.Histogram • This object has no tunable properties for code

generation.
• “System Objects in MATLAB Code

Generation”
dsp.Maximum “System Objects in MATLAB Code Generation”
dsp.Mean “System Objects in MATLAB Code Generation”
dsp.Median “System Objects in MATLAB Code Generation”
dsp.MedianFilter “System Objects in MATLAB Code Generation”
dsp.Minimum “System Objects in MATLAB Code Generation”
dsp.MovingAverage “System Objects in MATLAB Code Generation”
dsp.MovingMaximum “System Objects in MATLAB Code Generation”
dsp.MovingMinimum “System Objects in MATLAB Code Generation”
dsp.MovingRMS “System Objects in MATLAB Code Generation”
dsp.MovingStandardDeviation “System Objects in MATLAB Code Generation”
dsp.MovingVariance “System Objects in MATLAB Code Generation”
dsp.PeakToPeak “System Objects in MATLAB Code Generation”
dsp.PeakToRMS “System Objects in MATLAB Code Generation”

4-243

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

dsp.RMS “System Objects in MATLAB Code Generation”
dsp.StandardDeviation “System Objects in MATLAB Code Generation”
dsp.StateLevels “System Objects in MATLAB Code Generation”
dsp.Variance “System Objects in MATLAB Code Generation”
Transforms
dsp.AnalyticSignal “System Objects in MATLAB Code Generation”
dsp.DCT “System Objects in MATLAB Code Generation”
dsp.FFT • Under the following conditions:

• When FFTImplementation is set to
'FFTW'.

• When FFTImplementation is set to
'Auto', FFTLengthSource is set to
'Property', and FFTLength is not a
power of 2.

Use the packNGo function to package the
code generated from this System object
and all relevant files in a compressed zip
file. Using this zip file, you can relocate,
unpack, and rebuild your project in another
development environment with no MATLAB
installed. For an example, see “Package Code
for Other Development Environments” on
page 25-46.

• “System Objects in MATLAB Code
Generation”

dsp.IDCT “System Objects in MATLAB Code Generation”

4-244

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

dsp.IFFT • Under the following conditions:

• When FFTImplementation is set to
'FFTW'.

• When FFTImplementation is set to
'Auto', FFTLengthSource is set to
'Property', and FFTLength is not a
power of 2.

Use the packNGo function to package the
code generated from this System object
and all relevant files in a compressed zip
file. Using this zip file, you can relocate,
unpack, and rebuild your project in another
development environment with no MATLAB
installed. For an example, see “Package Code
for Other Development Environments” on
page 25-46.

• “System Objects in MATLAB Code
Generation”

Error Handling in MATLAB

Function Remarks and Limitations

assert • Generates specified error messages at compile time only if all input
arguments are constants or depend on constants. Otherwise, generates
specified error messages at run time.

• If called with more than 1 argument, has no effect in standalone code
even when run-time error detection is enabled. See “Run-Time Error
Detection and Reporting in Standalone C/C++ Code” on page 22-28.

• See “Rules for Using assert Function” on page 21-73.
error Has no effect in standalone code even when run-time error detection is

enabled. See “Run-Time Error Detection and Reporting in Standalone C/C+
+ Code” on page 22-28.

4-245

4 Functions, Classes, and System Objects Supported for Code Generation

Exponents in MATLAB

Function Remarks and Limitations

exp —
expm —
expm1 —
factorial —
log • Generates an error during simulation and returns NaN in generated

code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(x).

log2 —
log10 —
log1p —
nextpow2 —
nthroot —
reallog —
realpow —
realsqrt —
sqrt • Generates an error during simulation and returns NaN in generated

code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(x).

Filtering and Convolution in MATLAB

Function Remarks and Limitations

conv —
conv2 —
convn —
deconv —

4-246

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

detrend • If supplied and not empty, the input argument bp must satisfy the
following requirements:

• Be real.
• Be sorted in ascending order.
• Restrict elements to integers in the interval [1, n-2]. n is the

number of elements in a column of input argument X , or the number
of elements in X when X is a row vector.

• Contain all unique values.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 7-35
filter —
filter2 —

Fixed-Point Designer

In addition to function-specific limitations listed in the table, the following general
limitations apply to the use of Fixed-Point Designer functions in generated code, with
fiaccel:

• fipref and quantizer objects are not supported.
• Word lengths greater than 128 bits are not supported.
• You cannot change the fimath or numerictype of a given fi variable after that

variable has been created.
• The boolean value of the DataTypeMode and DataType properties are not

supported.
• For all SumMode property settings other than FullPrecision, the CastBeforeSum

property must be set to true.
• You can use parallel for (parfor) loops in code compiled with fiaccel, but those

loops are treated like regular for loops.
• When you compile code containing fi objects with nontrivial slope and bias scaling,

you may see different results in generated code than you achieve by running the same
code in MATLAB.

4-247

4 Functions, Classes, and System Objects Supported for Code Generation

• The general limitations of C/C++ code generated from MATLAB apply. For
more information, see “MATLAB Language Features Supported for C/C++ Code
Generation” on page 2-13.

Function Remarks/Limitations

abs N/A
accumneg N/A
accumpos N/A
add • Code generation in MATLAB does not support the syntax

F.add(a,b). You must use the syntax add(F,a,b).
all N/A
any N/A
atan2 N/A
bitand Not supported for slope-bias scaled fi objects.
bitandreduce N/A
bitcmp N/A
bitconcat N/A
bitget N/A
bitor Not supported for slope-bias scaled fi objects.
bitorreduce N/A
bitreplicate N/A
bitrol N/A
bitror N/A
bitset N/A
bitshift N/A
bitsliceget N/A
bitsll Generated code may not handle out of range shifting.
bitsra Generated code may not handle out of range shifting.
bitsrl Generated code may not handle out of range shifting.
bitxor Not supported for slope-bias scaled fi objects.

4-248

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks/Limitations

bitxorreduce N/A
ceil N/A
complex N/A
conj N/A
conv • Variable-sized inputs are only supported when the SumMode

property of the governing fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see different results between
generated code and MATLAB.

• In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
both inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

convergent N/A
cordicabs Variable-size signals are not supported.
cordicangle Variable-size signals are not supported.
cordicatan2 Variable-size signals are not supported.
cordiccart2pol Variable-size signals are not supported.
cordiccexp Variable-size signals are not supported.
cordiccos Variable-size signals are not supported.
cordicpol2cart Variable-size signals are not supported.
cordicrotate Variable-size signals are not supported.
cordicsin Variable-size signals are not supported.
cordicsincos Variable-size signals are not supported.
cordicsqrt Variable-size signals are not supported.
cos N/A

4-249

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

ctranspose N/A
diag If supplied, the index, k, must be a real and scalar integer value that is

not a fi object.
divide • Any non-fi input must be constant; that is, its value must be

known at compile time so that it can be cast to a fi object.
• Complex and imaginary divisors are not supported.
• Code generation in MATLAB does not support the syntax

T.divide(a,b).
double For the automated workflow, do not use explicit double or single casts

in your MATLAB algorithm to insulate functions that do not support
fixed-point data types. The automated conversion tool does not support
these casts. Instead of using casts, supply a replacement function. For
more information, see “Function Replacements”.

end N/A
eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and fi double
signals.

eq Not supported for fixed-point signals with different biases.
fi • The default constructor syntax without any input arguments is not

supported.
• If the numerictype is not fully specified, the input to fi must be a

constant, a fi, a single, or a built-in integer value. If the input is a
built-in double value, it must be a constant. This limitation allows
fi to autoscale its fraction length based on the known data type of
the input.

• All properties related to data type must be constant for code
generation.

• numerictype object information must be available for nonfixed-
point Simulink inputs.

filter • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

4-250

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks/Limitations

fimath • Fixed-point signals coming in to a MATLAB Function block from
Simulink are assigned a fimath object. You define this object in
the MATLAB Function block dialog in the Model Explorer.

• Use to create fimath objects in the generated code.
• If the ProductMode property of the fimath object is set to

anything other than FullPrecision, the ProductWordLength
and ProductFractionLength properties must be constant.

• If the SumMode property of the fimath object is set to anything
other than FullPrecision, the SumWordLength and
SumFractionLength properties must be constant.

fix N/A
fixed.Quantizer N/A
flip The dimensions argument must be a built-in type; it cannot be a fi

object.
fliplr N/A
flipud N/A
floor N/A
for N/A
ge Not supported for fixed-point signals with different biases.
get The syntax structure = get(o) is not supported.
getlsb N/A
getmsb N/A
gt Not supported for fixed-point signals with different biases.
horzcat N/A
imag N/A
int8, int16, int32,
 int64

N/A

ipermute N/A
iscolumn N/A
isempty N/A

4-251

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

isequal N/A
isfi Avoid using the isfi function in code that you intend to convert

using the automated workflow. The value returned by isfi in the
fixed-point code might differ from the value returned in the original
MATLAB algorithm. The behavior of the fixed-point code might differ
from the behavior of the original algorithm.

isfimath N/A
isfimathlocal N/A
isfinite N/A
isinf N/A
isnan N/A
isnumeric N/A
isnumerictype N/A
isreal N/A
isrow N/A
isscalar N/A
issigned N/A
isvector N/A
le Not supported for fixed-point signals with different biases.
length N/A
logical N/A
lowerbound N/A
lsb • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and double
signals.

lt Not supported for fixed-point signals with different biases.
max N/A
mean N/A
median N/A

4-252

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks/Limitations

min N/A
minus Any non-fi input must be constant; that is, its value must be known

at compile time so that it can be cast to a fi object.
mpower • When the exponent k is a variable and the input is a scalar,

the ProductMode property of the governing fimath must be
SpecifyPrecision.

• When the exponent k is a variable and the input is not scalar,
the SumMode property of the governing fimath must be
SpecifyPrecision.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to SpecifyPrecision or
Keep LSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

• In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
the first input, a, is nonscalar. However, when a is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

mpy • Code generation in MATLAB does not support the syntax
F.mpy(a,b). You must use the syntax mpy(F,a,b).

• When you provide complex inputs to the mpy function inside of a
MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known
complex inputs to On.

mrdivide N/A

4-253

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

mtimes • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to SpecifyPrecision or
KeepLSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

• In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
both inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

ndims N/A
ne Not supported for fixed-point signals with different biases.
nearest N/A
numberofelements numberofelements will be removed in a future release. Use numel

instead.
numel N/A
numerictype • Fixed-point signals coming in to a MATLAB Function block from

Simulink are assigned a numerictype object that is populated
with the signal's data type and scaling information.

• Returns the data type when the input is a nonfixed-point signal.
• Use to create numerictype objects in generated code.
• All numerictype object properties related to the data type must be

constant.
permute The dimensions argument must be a built-in type; it cannot be a fi

object.
plus Any non-fi inputs must be constant; that is, its value must be known

at compile time so that it can be cast to a fi object.
pow2 N/A

4-254

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks/Limitations

power When the exponent k is a variable, the ProductMode property of the
governing fimath must be SpecifyPrecision.

qr N/A
quantize N/A
range N/A
rdivide N/A
real N/A
realmax N/A
realmin N/A
reinterpretcast N/A
removefimath N/A
repmat The dimensions argument must be a built-in type; it cannot be a fi

object.
rescale N/A
reshape N/A
rot90 In the syntax rot90(A,k), the argument k must be a built-in type; it

cannot be a fi object.
round N/A
setfimath N/A
sfi • All properties related to data type must be constant for code

generation.
shiftdim The dimensions argument must be a built-in type; it cannot be a fi

object.
sign N/A
sin N/A
single For the automated workflow, do not use explicit double or single casts

in your MATLAB algorithm to insulate functions that do not support
fixed-point data types. The automated conversion tool does not support
these casts. Instead of using casts, supply a replacement function. For
more information, see “Function Replacements”.

4-255

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

size N/A
sort The dimensions argument must be a built-in type; it cannot be a fi

object.
squeeze N/A
sqrt • Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.
storedInteger N/A
storedIntegerToDouble N/A
sub • Code generation in MATLAB does not support the syntax

F.sub(a,b). You must use the syntax sub(F,a,b).
subsasgn N/A
subsref N/A
sum Variable-sized inputs are only supported when the SumMode property

of the governing fimath is set to Specify precision or Keep LSB.
times • Any non-fi input must be constant; that is, its value must be

known at compile time so that it can be cast to a fi object.
• When you provide complex inputs to the times function inside of

a MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known
complex inputs to On.

transpose N/A
tril If supplied, the index, k, must be a real and scalar integer value that is

not a fi object.
triu If supplied, the index, k, must be a real and scalar integer value that is

not a fi object.
ufi • All properties related to data type must be constant for code

generation.
uint8, uint16, uint32,
 uint64

N/A

uminus N/A

4-256

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks/Limitations

uplus N/A
upperbound N/A
vertcat N/A

HDL Coder

Function Remarks and Limitations

hdl.RAM This System object is available with MATLAB.

Histograms in MATLAB

Function Remarks and Limitations

hist • Histogram bar plotting not supported. Call with at least one output
argument.

• If supplied, the second argument x must be a scalar constant.
• Inputs must be real.

For the syntax [nout, xout] = hist(y,x):

• When y is a fixed-size vector or variable-length vector:

• nout is always a row vector.
• If x is a vector, xout is a vector with the same orientation as x.
• If x is a scalar (fixed-size), xout is a row vector.

• nout and xout are column vectors when the following conditions are
true:

• y is a matrix
• size(y,1) and size(y,2) do not have fixed length 1
• One of size(y,1) and size(y,2) has length 1 at run time

• A variable-sizex is interpreted as a vector input even if it is a scalar at
run time.

• If at least one of the inputs is empty, vector orientations in the output
can differ from MATLAB.

4-257

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

histc • The output of a variable-size array that becomes a column vector at run
time is a column-vector, not a row-vector.

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 7-35

Image Acquisition Toolbox

If you install Image Acquisition Toolbox software, you can generate C and C++ code for
the VideoDevice System object. See imaq.VideoDevice and “Code Generation with
VideoDevice System Object”.

Image Processing in MATLAB

Function Remarks and Limitations

im2double —
rgb2gray —

Image Processing Toolbox

The following table lists the Image Processing Toolbox functions that have been enabled
for code generation. You must have the MATLAB Coder and Image Processing Toolbox
software installed to generate C code from MATLAB for these functions.

Image Processing Toolbox provides three types of code generation support:

• Functions that generate C code.
• Functions that generate C code that depends on a platform-specific shared library

(.dll, .so, or .dylib). Use of a shared library preserves performance optimizations
in these functions, but this limits the target platforms for which you can generate
code. For more information, see “Code Generation for Image Processing”.

• Functions that generate C code or C code that depends on a shared library, depending
on which target platform you specify in MATLAB Coder. If you specify the generic
MATLAB Host Computer target platform, these functions generate C code that
depends on a shared library. If you specify any other target platform, these functions
generate C code.

4-258

 Functions and Objects Supported for C/C++ Code Generation — Category List

In generated code, each supported toolbox function has the same name, arguments, and
functionality as its Image Processing Toolbox counterpart. However, some functions have
limitations. The following table includes information about code generation limitations
that might exist for each function. In the following table, all the functions generate C
code. The table identifies those functions that generate C code that depends on a shared
library, and those functions that can do both, depending on which target platform you
choose.

Function Remarks/Limitations

adaptthresh The ForegroundPolarity and Statistic arguments must be
compile-time constants.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The NeighborhoodSize
argument must be a compile-time constant.

affine2d When generating code, you can only specify single objects—arrays of
objects are not supported.

MATLAB Function Block support: Yes.
boundarymask The conn argument must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
bwareaopen BW must be a 2-D binary image. N-D arrays are not supported. conn

can only be one of the two-dimensional connectivities (4 or 8) or a 3-
by-3 matrix. The 3-D connectivities (6, 18, and 26) are not supported.
Matrices of size 3-by-3-by-...-by-3 are not supported. conn must be a
compile-time constant.

MATLAB Function Block support: No.
bwboundaries The conn and options arguments must be compile-time constants and

the return value A can only be a full matrix, not a sparse matrix.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

4-259

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

MATLAB Function Block support: No.
bwconncomp The input image must be 2-D.

The conn argument must be a compile-time constant and the only
connectivities supported are 4 or 8. You can specify connectivity as a 3-
by-3 matrix, but it can only be [0 1 0;1 1 1;0 1 0] or ones(3).

The CC struct return value does not include the PixelIdxList field.

MATLAB Function Block support: No.
bwdist The method argument must be a compile-time constant. Input images

must have fewer than 232 pixels.

Generated code for this function uses a precompiled, platform-specific
shared library.

MATLAB Function Block support: Yes.
bweuler If you choose the generic MATLAB Host Computer target platform,

generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
bwlabel When generating code, the parameter n must be a compile-time

constant.

MATLAB Function Block support: No.
bwlookup For best results, specify an input image of class logical.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.

4-260

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks/Limitations

bwmorph The character vector specifying the operation must be a constant and,
for best results, specify an input image of class logical.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: No.
bwpack Generated code for this function uses a precompiled platform-specific

shared library.

MATLAB Function Block support: Yes.
bwperim Supports only 2-D images. Does not support any no-output-argument

syntaxes. The connectivity matrix input argument, conn, must be a
compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
bwselect Supports only the 3 and 4 input argument syntaxes: BW2 =

bwselect(BW,c,r) and BW2 = bwselect(BW,c,r,n). The optional
fourth input argument, n, must be a compile-time constant. In addition,
with code generation, bwselect only supports only the 1 and 2 output
argument syntaxes: BW2 = bwselect(___) or [BW2, idx] =
bwselect(___).

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
bwtraceboundary The dir, fstep, and conn arguments must be compile-time constants.

MATLAB Function Block support: No.

4-261

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

bwunpack Generated code for this function uses a precompiled platform-specific
shared library.

MATLAB Function Block support: Yes. The input argument M must be
a compile-time constant.

conndef Input arguments must be compile-time constants.

MATLAB Function Block support: Yes.
demosaic The sensorAlignment argument must be a compile-time constant.

MATLAB Function Block support: Yes.
edge The method, direction, and sigma arguments must be a compile-

time constants. In addition, nonprogrammatic syntaxes are not
supported. For example, the syntax edge(im), where edge does not
return a value but displays an image instead, is not supported.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The input arguments thresh
and sigma must be compile-time constants.

fitgeotrans The transformtype argument must be a compile-time constant.
The function supports the following transformation types:
'nonreflectivesimilarity', 'similarity', 'affine', or
'projective'.

MATLAB Function Block support: Yes.
fspecial Inputs must be compile-time constants. Expressions or variables are

allowed if their values do not change.

MATLAB Function Block support: Yes. The input arguments hsize,
radius, len, and theta must be compile-time constants.

getrangefromclass MATLAB Function Block support: Yes.

4-262

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks/Limitations

grayconnected If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
histeq All the syntaxes that include indexed images are not supported. This

includes all syntaxes that accept map as input and return newmap.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The input argument N must be
a compile-time constant.

hough The optional parameter names 'Theta' and 'RhoResolution' must
be compile-time character vector constants. The optional Theta vector
must have a bounded size.

MATLAB Function Block support: Yes. The input argument BW must
be fixed size, the RhoResolution parameter must be a compile-time
constant, and the Theta vector must have a bounded size.

houghlines The optional parameter names 'FillGap' and 'MinLength' must be
compile-time character vector constants. Their associated values need
not be compile-time constants.

MATLAB Function Block support: No.
houghpeaks The optional parameter names 'Threshold' and 'NHoodSize' must

be compile-time character vector constants. Their associated values
need not be compile-time constants.

MATLAB Function Block support: Yes.
im2int16 If you choose the generic MATLAB Host Computer target platform,

generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
im2uint8 If you choose the generic MATLAB Host Computer target platform,

generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.

4-263

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

im2uint16 If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
im2single MATLAB Function Block support: Yes.
im2double MATLAB Function Block support: Yes.
imabsdiff MATLAB Function Block support: Yes.
imadjust Does not support syntaxes that include indexed images. This includes

all syntaxes that accept map as input and return newmap.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imbinarize Character vector input arguments must be compile-time constants.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imbothat The input image IM must be either 2-D or 3-D image. The structuring

element input argument SE must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imboxfilt MATLAB Function Block support: Yes.
imclearborder The optional second input argument, conn, must be a compile-time

constant. Supports only up to 3-D inputs.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.

4-264

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks/Limitations

imclose The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imcomplement Does not support int64 and uint64 data types.

MATLAB Function Block support: Yes.
imcrop The interactive syntaxes, such as I2 = imcrop, are not supported.

Indexed images are not supported, including the noninteractive syntax
X2 = imcrop(X,map,rect);.

MATLAB Function Block support: Yes.
imdilate The input image IM must be either 2-D or 3-D image. The SE, PACKOPT,

and SHAPE input arguments must be a compile-time constant. The
structuring element argument SE must be a single element—arrays of
structuring elements are not supported. To obtain the same result as
that obtained using an array of structuring elements, call the function
sequentially.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imerode The input image IM must be either 2-D or 3-D image. The SE, PACKOPT,

and SHAPE input arguments must be a compile-time constant. The
structuring element argument SE must be a single element—arrays of
structuring elements are not supported. To obtain the same result as
that obtained using an array of structuring elements, call the function
sequentially.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.

4-265

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

imextendedmax The optional third input argument, conn, must be a compile-time
constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imextendedmin The optional third input argument, conn, must be a compile-time

constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imfill The optional input connectivity, conn and the character vector

'holes' must be compile-time constants.

Supports only up to 3-D inputs.

The interactive mode to select points, imfill(BW,0,CONN) is not
supported in code generation.

locations can be a P-by-1 vector, in which case it contains the
linear indices of the starting locations. locations can also be a P-
by-ndims(I) matrix, in which case each row contains the array indices
of one of the starting locations. Once you select a format at compile-
time, you cannot change it at run time. However, the number of points
in locations can be varied at run time.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.

4-266

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks/Limitations

imfilter The input image can be either 2-D or 3-D. The value of the input
argument, options, must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imfindcircles All character vector input arguments and values must be compile-time

constants.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: No.
imgaborfilt The wavelength, orientation, SpatialFrequencyBandwidth, and

SpatialAspectRatio must be compile-time constants.

The filter bank syntax is not supported.

MATLAB Function Block support: Yes.
imgaussfilt Character vector input arguments must be compile-time constants.

When FilterDomain is 'spatial’, if you choose the generic MATLAB
Host Computer target platform, generated code uses a precompiled,
platform-specific shared library.

MATLAB Function Block support: Yes.
imgradient3 Character vector input arguments must be compile-time constants.

MATLAB Function Block support: Yes.
imgradientxyz Character vector input arguments must be compile-time constants.

MATLAB Function Block support: Yes.

4-267

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

imhist The optional second input argument, n, must be a compile-time
constant. In addition, nonprogrammatic syntaxes are not supported.
For example, the syntaxes where imhist displays the histogram are
not supported.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The input argument N must be
a compile-time constant.

imhmax The optional third input argument, conn, must be a compile-time
constant

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imhmin The optional third input argument, conn, must be a compile-time

constant

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imlincomb The output_class argument must be a compile-time constant. You

can specify up to four input image arguments.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
immse MATLAB Function Block support: Yes.

4-268

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks/Limitations

imopen The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imoverlay If you specify the 'color' argument as a character vector, it must be a

compile-time constant.

MATLAB Function Block support: Yes.
impyramid The direction argument must be a compile-time constant.

MATLAB Function Block support: Yes. The input argument direction
must be a compile-time constant.

imquantize MATLAB Function Block support: Yes.
imread Supports reading of 8-bit JPEG images only. The file name input

argument must be a valid absolute path or relative path.

This function generates code that uses a precompiled, platform-specific
shared library.

MATLAB Function Block support: Yes. The file name input argument
must be a compile-time constant.

imreconstruct The optional third input argument, conn, must be a compile-time
constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imref2d The XWorldLimits, YWorldLimits and ImageSize properties can be

set only during object construction. When generating code, you can only
specify single objects—arrays of objects are not supported.

MATLAB Function Block support: Yes.

4-269

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

imref3d The XWorldLimits, YWorldLimits, ZWorldLimits and ImageSize
properties can be set only during object construction. When generating
code, you can only specify single objects—arrays of objects are not
supported.

MATLAB Function Block support: Yes.
imregionalmax The optional second input argument, conn, must be a compile-time

constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imregionalmin The optional second input argument, conn, must be a compile-time

constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imresize Does not support indexed images or custom interpolation kernels. All

parameter-value pair input arguments must be compile-time constants.

MATLAB Function Block support: Yes. The input arguments Scale
and method must be compile-time constants, and the values of the
OutputSize parameter, numrows and numcols, must be compile-time
constants.

imrotate The method and bbox input argument values must be compile-time
constants.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The input argument angle
must be a compile-time constant.

4-270

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks/Limitations

imtophat The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
imtranslate The supports only 2-D translation vectors. 3-D translations are not

supported

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The input argument
translation must be a compile-time constant.

imwarp The geometric transformation object input, tform, must be either
affine2d or projective2d. Additionally, the interpolation method
and optional parameter names must be character vector constants.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The input argument tform
must be a compile-time constant.

integralBoxFilter The 'NormalizationFactor' parameter must be a compile-time
constant.

MATLAB Function Block support: Yes. The input argument
filtersize must be a compile-time constant.

intlut If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
iptcheckconn Input arguments must be compile-time constants.

MATLAB Function Block support: Yes.
iptcheckmap MATLAB Function Block support: Yes.

4-271

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

lab2rgb Character vector input arguments must be compile-time constants.

MATLAB Function Block support: Yes.
label2idx MATLAB Function Block support: No.
label2rgb Referring to the standard syntax:

RGB = label2rgb(L, map, zerocolor, order)

• Submit at least two input arguments: the label matrix, L, and the
colormap matrix, map.

• map must be an n-by-3, double, colormap matrix. You cannot use
a character vector containing the name of a MATLAB colormap
function or a function handle of a colormap function.

• If you set the boundary color zerocolor to the same color as one of
the regions, label2rgb will not issue a warning.

• If you supply a value for order, it must be 'noshuffle'.

MATLAB Function Block support: Yes.
mean2 MATLAB Function Block support: Yes.
medfilt2 The padopt argument must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The neighborhood size input
argument must be a compile-time constant.

multithresh If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes. The input argument N must be
compile-time constant.

4-272

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks/Limitations

offsetstrel The 'ball’ input argument and all other input arguments must be
compile-time constants. None of the methods are supported for code
generation. When generating code, you can only specify single objects—
arrays of objects are not supported.

MATLAB Function Block support: Yes.
ordfilt2 The padopt argument must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
otsuthresh MATLAB Function Block support: Yes.
padarray Support only up to 3-D inputs.

Input arguments, padval and direction are expected to be compile-
time constants.

MATLAB Function Block support: Yes. The input argument padsize
must be a compile-time constant.

projective2d When generating code, you can only specify single objects—arrays of
objects are not supported.

MATLAB Function Block support: Yes.
psnr MATLAB Function Block support: Yes.
regionprops Supports only 2-D images. Does not support the table output type.

Does not accept cell arrays as input—use a comma-separated list
instead. Does not support the properties ConvexArea, ConvexHull,
ConvexImage, Solidity, and SubarrayIdx.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: No.
rgb2gray MATLAB Function Block support: Yes.

4-273

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

rgb2lab Character vector input arguments must be compile-time constants.

MATLAB Function Block support: Yes.
rgb2ycbcr If you choose the generic MATLAB Host Computer target platform,

generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
strel All of the input arguments must be compile-time constants. None of the

methods are supported for code generation. When generating code, you
can only specify single objects—arrays of objects are not supported.

MATLAB Function Block support: Yes.
stretchlim If you choose the generic MATLAB Host Computer target platform,

generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.
superpixels Character vector input arguments must be compile-time constants. The

value of 'IsInputLab' (true or false) must be a compile-time constant.

MATLAB Function Block support: No.
watershed Supports only 2-D images. Supports only 4- or 8-connectivity. Supports

only up to 65,535 regions. The output type is always uint16.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: No.
ycbcr2rgb If you choose the generic MATLAB Host Computer target platform,

generated code uses a precompiled, platform-specific shared library.

MATLAB Function Block support: Yes.

Input and Output Arguments in MATLAB

Function Remarks and Limitations

nargin —

4-274

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

nargout • For a function with no output arguments,
returns 1 if called without a terminating
semicolon.

Note: This behavior also affects extrinsic calls
with no terminating semicolon. nargout is 1 for
the called function in MATLAB.

Interpolation and Computational Geometry in MATLAB

Function Remarks and Limitations

cart2pol —
cart2sph —
inpolygon Supports single-precision and double-precision inputs, but uses double-

precision arithmetic even if all inputs are single-precision.
interp1 • Does not support the 'cubic' method. Instead, use 'v5cubic' or

'spline'.
• The input argument x (sample points) must be strictly increasing or

strictly decreasing. Indices are not reordered.
• If the input argument v (sample values) is a variable-length vector

(1-by-: or :-by-1), the shape of the output vq matches the shape in
MATLAB.

If the input argument v is variable-size, is not a variable-length vector,
and becomes a row vector at run time, an error occurs.

• If the input argument xq (query points) is variable-size, is not a
variable-length vector, and becomes a row or column vector at run time,
an error occurs.

• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
on page 7-35

interp1q Might not match MATLAB when some Y values are Inf or NaN.
interp2 • Xq and Yq must be the same size. Use meshgrid to evaluate on a grid.

• For best results, provide X and Y as vectors.

4-275

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

• For the 'cubic' method, reports an error if the grid does not have
uniform spacing. In this case, use the 'spline' method.

• For best results when you use the 'spline' method:

• Use meshgrid to create the inputs Xq and Yq.
• Use a small number of interpolation points relative to the dimensions

of V. Interpolating over a large set of scattered points can be
inefficient.

interp3 • Xq, Yq, and Zq must be the same size. Use meshgrid to evaluate on a
grid.

• For best results, provide X, Y, and Z as vectors.
• For the 'cubic' method, reports an error if the grid does not have

uniform spacing. In this case, use the 'spline' method.
• For best results when you use the 'spline' method:

• Use meshgrid to create the inputs Xq, Yq, and Zq.
• Use a small number of interpolation points relative to the dimensions

of V. Interpolating over a large set of scattered points can be
inefficient.

interpn • For best results, provide X1,X2,...,Xn as vectors.
• Does not support the 'cubic' or 'spline' methods for 2-D and higher

interpolation.
• The interpolation method must be a constant character vector.

meshgrid —

4-276

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

mkpp • The output structure pp differs from the pp structure in MATLAB. In
MATLAB, ppval cannot use the pp structure from the code generator.
For code generation, ppval cannot use a pp structure created by
MATLAB. unmkpp can use a MATLAB pp structure for code generation.

To create a MATLAB pp structure from a pp structure created by the
code generator:

• In code generation, use unmkpp to return the piecewise polynomial
details to MATLAB.

• In MATLAB, use mkpp to create the pp structure.
• If you do not provide d, then coefs must be two-dimensional and have

a fixed number of columns. In this case, the number of columns is the
order.

• To define a piecewise constant polynomial, coefs must be a column
vector or d must have at least two elements.

• If you provide d and d is 1, d must be a constant. Otherwise, if the input
to ppval is nonscalar, the shape of the output of ppval can differ from
ppval in MATLAB.

• If you provide d, it must have a fixed length. One of the following sets of
statements must be true:

1 Suppose that m = length(d) and npieces = length(breaks)
- 1.

size(coefs,j) = d(j)

size(coefs,m+1) = npieces

size(coefs,m+2) = order

j = 1,2,...,m. The dimension m+2 must be fixed length.
2 Suppose that m = length(d) and npieces = length(breaks)

- 1.

size(coefs,1) = prod(d)*npieces

size(coefs,2) = order

The second dimension must be fixed length.
• If you do not provide d, the following statements must be true:

4-277

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

Suppose that m = length(d) and npieces = length(breaks) - 1.

size(coefs,1) = prod(d)*npieces

size(coefs,2) = order

The second dimension must be fixed length.

pchip • Input x must be strictly increasing.
• Does not remove y entries with NaN values.
• If you generate code for the pp = pchip(x,y) syntax, you cannot

input pp to the ppval function in MATLAB. To create a MATLAB pp
structure from a pp structure created by the code generator:

• In code generation, use unmkpp to return the piecewise polynomial
details to MATLAB.

• In MATLAB, use mkpp to create the pp structure.
pol2cart —
polyarea —
ppval The size of output v does not match MATLAB when both of the following

statements are true:

• The input x is a variable-size array that is not a variable-length vector.
• x becomes a row vector at run time.

The code generator does not remove the singleton dimensions. However,
MATLAB might remove singleton dimensions.

For example, suppose that x is a :4-by-:5 array (the first dimension is
variable size with an upper bound of 4 and the second dimension is variable
size with an upper bound of 5). Suppose that ppval(pp,0) returns a 2-
by-3 fixed-size array. v has size 2-by-3-by-:4-by-:5. At run time, suppose
that, size(x,1) =1 and size (x,2) = 5. In the generated code, the size(v) is
[2,3,1,5]. In MATLAB, the size is [2,3,5].

rectint —
sph2cart —

4-278

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

spline • Input x must be strictly increasing.
• Does not remove Y entries with NaN values.
• Does not report an error for infinite endslopes in Y.
• If you generate code for the pp = spline(x,Y) syntax, you cannot

input pp to the ppval function in MATLAB. To create a MATLAB pp
structure from a pp structure created by the code generator:

• In code generation, use unmkpp to return the piecewise polynomial
details to MATLAB.

• In MATLAB, use mkpp to create the pp structure.
unmkpp • pp must be a valid piecewise polynomial structure created by mkpp,

spline, or pchip in MATLAB or by the code generator.
• Does not support pp structures created by interp1 in MATLAB.

Linear Algebra in MATLAB

Function Remarks and Limitations

bandwidth —
isbanded —
isdiag —
ishermitian —
istril —
istriu —
issymmetric —
linsolve • The option structure must be a constant.

• Supports only a scalar option structure input. It does not support arrays
of option structures.

• Only optimizes these cases:

• UT

• LT

4-279

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

• UHESS = true (the TRANSA can be either true or false)
• SYM = true and POSDEF = true

Other options are equivalent to using mldivide.

lsqnonneg • You must enable support for variable-size arrays.
• The exit message in the output structure output (the fifth output) is

not translated.
null • Might return a different basis than MATLAB

• Does not support rational basis option (second input)
orth • Can return a different basis than MATLAB
rsf2csf —
schur Can return a different Schur decomposition in generated code than in

MATLAB.
sqrtm —

Logical and Bit-Wise Operations in MATLAB

Function Remarks and Limitations

and —
bitand —
bitcmp —
bitget —
bitor —
bitset —
bitshift —
bitxor —
not —
or —
xor —

4-280

 Functions and Objects Supported for C/C++ Code Generation — Category List

MATLAB Compiler

C and C++ code generation for the following functions requires the MATLAB Compiler
software.

Function Remarks and Limitations

isdeployed • Returns true and false as appropriate for MEX and SIM targets
• Returns false for other targets

ismcc • Returns true and false as appropriate for MEX and SIM targets.
• Returns false for other targets.

Matrices and Arrays in MATLAB

Function Remarks and Limitations

abs —
all “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 7-35
angle —
any “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 7-35
blkdiag —
bsxfun “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 7-35
cat • Does not support concatenation of cell arrays.

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 7-35
circshift Does not support cell arrays for the first argument.
colon • Does not accept complex inputs.

• The input i cannot have a logical value.
• Does not accept vector inputs.
• Inputs must be constants.
• Uses single-precision arithmetic to produce single-precision results.

4-281

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

compan —
cond “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 7-35
cov • If the input is variable-size and is [] at run time, returns [] not

NaN.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 7-35
cross • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” on page 7-35

cumprod Does not support logical inputs. Cast input to double first.
cumsum Does not support logical inputs. Cast input to double first.
det —

4-282

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

diag • If supplied, the argument representing the order of the diagonal
matrix must be a real and scalar integer value.

• For variable-size inputs that are variable-length vectors (1-by-: or :-
by-1), diag:

• Treats the input as a vector input.
• Returns a matrix with the given vector along the specified

diagonal.

• For variable-size inputs that are not variable-length vectors, diag:

• Treats the input as a matrix.
• Does not support inputs that are vectors at run time.
• Returns a variable-length vector.

If the input is variable-size (:m-by-:n) and has shape 0-by-0 at run
time, the output is 0-by-1 not 0-by-0. However, if the input is a
constant size 0-by-0, the output is [].

• For variable-size inputs that are not variable-length vectors (1-by-:
or :-by-1), diag treats the input as a matrix from which to extract
a diagonal vector. This behavior occurs even if the input array is a
vector at run time. To force diag to build a matrix from variable-
size inputs that are not 1-by-: or :-by-1, use:

• diag(x(:)) instead of diag(x)
• diag(x(:),k) instead of diag(x,k)

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” on page 7-35

diff • If supplied, the arguments representing the number of times
to apply diff and the dimension along which to calculate the
difference must be constants.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” on page 7-35

dot —

4-283

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

eig • V might represent a different basis of eigenvectors, and the
eigenvalues in D might not be in the same order as in MATLAB.

• For the generalized eigenvalue problem, [V,D] = eig(A,B),
the 'qz' option is always used.

• For the standard eigenvalue problem, [V,D] = eig(A), when A
is Hermitian, schur is used to calculate V and D. Otherwise, the
results of [V,D] = eig(A) are similar to those obtained using
[V,D] = eig(A,eye(size(A)),'qz') in MATLAB, except
that the columns of V are normalized.

• Options 'balance', and 'nobalance' are not supported for the
standard eigenvalue problem. 'chol' is not supported for the
symmetric generalized eigenvalue problem.

• Outputs are of complex type.
• Does not support the option to calculate left eigenvectors.

eye • classname must be a built-in MATLAB numeric type. Does not
invoke the static eye method for other classes. For example, eye(m,
n, 'myclass’) does not invoke myclass.eye(m,n).

• Size arguments must have a fixed size.
false • Dimensions must be real, nonnegative, integers.
find • Issues an error if a variable-size input becomes a row vector at run

time.

Note: This limitation does not apply when the input is scalar or a
variable-length row vector.

• For variable-size inputs, the shape of empty outputs, 0-by-0, 0-by-1,
or 1-by-0, depends on the upper bounds of the size of the input. The
output might not match MATLAB when the input array is a scalar
or [] at run time. If the input is a variable-length row vector, the size
of an empty output is 1-by-0, otherwise it is 0-by-1.

• Always returns a variable-length vector. Even when you provide
the output vector k, the output cannot be fixed-size because the
output can contain fewer than k elements. For example, find(x,1)
returns a variable-length vector with 1 or 0 elements.

4-284

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

flip Does not support cell arrays for the first argument.
flipdim Does not support cell arrays for the first argument.
fliplr Does not support cell arrays.
flipud Does not support cell arrays.
full —
hadamard n must be a fixed-size scalar.
hankel —
hilb —
ind2sub • The first argument should be a valid size vector. Size vectors for

arrays with more than intmax elements are not supported.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 7-35
inv Singular matrix inputs can produce nonfinite values that differ from

MATLAB results.
invhilb —
ipermute • Does not support cell arrays for the first argument.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” on page 7-35

iscolumn —
isempty —
isequal —
isequaln —
isfinite —
isfloat —
isinf —
isinteger —
islogical —
ismatrix —
isnan —

4-285

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

isrow —
issparse —
isvector —
kron —
length —
linspace —
logspace —
lu —
magic “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 7-35.
max • If specified, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” on page 7-35.

• “Code Generation for Complex Data with Zero-Valued Imaginary
Parts” on page 6-4.

min • If specified, dim must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 7-35.
• “Code Generation for Complex Data with Zero-Valued Imaginary

Parts” on page 6-4.
ndgrid —
ndims —
nnz —
nonzeros —
norm —
normest —
numel —

4-286

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

ones • Dimensions must be real, nonnegative integers.
• The input optimfun must be a function supported for code

generation.
pascal —
permute • Does not support cell arrays for the first argument.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” on page 7-35

pinv —
planerot “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 7-35
prod • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” on page 7-35

qr —
rand • The data type (class) must be a built-in MATLAB numeric

type. Does not invoke the static rand method for other
classes. For example, rand(sz,'myclass’) does not invoke
myclass.rand(sz).

• Size arguments must have a fixed size.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 7-35
randi • The data type (class) must be a built-in MATLAB numeric type.

Does not invoke the static randi method for other classes.
For example, randi(imax,sz,'myclass’) does not invoke
myclass.randi(imax,sz).

• Size arguments must have a fixed size.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 7-35

4-287

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

randn • The data type (class) must be a built-in MATLAB numeric
type. Does not invoke the static randn method for other
classes. For example, randn(sz,'myclass’) does not invoke
myclass.randn(sz).

• Size arguments must have a fixed size.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 7-35
randperm —
rank —
rcond —
repelem The input must be a vector or matrix. The input cannot be a

multidimensional array.
repmat Size arguments must have a fixed size.
reshape • If the input is a compile-time empty cell array, then the size

arguments must be constants.
• Size arguments must have a fixed size.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 7-35
rng • Supports only the 'twister', 'v5normal', and 'v4' generators.

• Does not support the 'shuffle' input.
• For a MEX target:

• If extrinsic calls are disabled or rng is called inside a parfor
loop, the output of rng in the MEX function is not compatible
with the rng function in MATLAB. You cannot pass the output of
s = rng from the MEX function to rng in MATLAB.

• If extrinsic calls are enabled and rng is not called from inside a
parfor loop, only rng can access the data in the structure that
rng returns.

rosser —
rot90 Does not support cell arrays for the first argument.

4-288

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

shiftdim • Does not support cell arrays for the first argument.
• Second argument must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 7-35
sign —
size —
sort • Does not support cell arrays for the first argument.

• If the input is a complex type, sort orders the output according
to absolute value. When x is a complex type that has all zero
imaginary parts, use sort(real(x)) to compute the sort order
for real types. See “Code Generation for Complex Data with Zero-
Valued Imaginary Parts” on page 6-4.

sortrows • Does not support cell arrays for the first argument.
• If the input is a complex type, sortrows orders the output

according to absolute value. When x is a complex type that has all
zero imaginary parts, use sortrows(real(x)) to compute the sort
order for real types. See “Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page 6-4.

squeeze Does not support cell arrays.
sub2ind • The first argument must be a valid size vector. Size vectors for

arrays with more than intmax elements are not supported.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 7-35
subspace —
sum • If specified, dim must be a constant.

• The outtype and nanflag options must be constant character
vectors.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” on page 7-35

toeplitz —
trace —

4-289

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

tril • If supplied, the argument representing the order of the diagonal
matrix must be a real and scalar integer value.

triu • If supplied, the argument representing the order of the diagonal
matrix must be a real and scalar integer value.

true • Dimensions must be real, nonnegative, integers.
vander —
wilkinson n must be a fixed-size scalar.
zeros • Dimensions must be real, nonnegative, integers.

Neural Network Toolbox

You can use genFunction in the Neural Network Toolbox™ to generate a standalone
MATLAB function for a trained neural network. You can generate C/C++ code from this
standalone MATLAB function. To generate Simulink blocks, use the genSim function.
See “Deploy Trained Neural Network Functions”.

Numerical Integration and Differentiation in MATLAB

Function Remarks and Limitations

cumtrapz —
del2 —
diff • If supplied, the arguments representing the number of times to apply

diff and the dimension along which to calculate the difference must be
constants.

gradient —
ode23 • All odeset option arguments must be constant.

• Does not support a constant mass matrix in the options structure.
Provide a mass matrix as a function .

• You must provide at least the two output arguments T and Y.
• Input types must be homogeneous—all double or all single.
• Variable-sizing support must be enabled. Requires dynamic memory

allocation when tspan has two elements or you use event functions.

4-290

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

ode45 • All odeset option arguments must be constant.
• Does not support a constant mass matrix in the options structure.

Provide a mass matrix as a function .
• You must provide at least the two output arguments T and Y.
• Input types must be homogeneous—all double or all single.
• Variable-sizing support must be enabled. Requires dynamic memory

allocation when tspan has two elements or you use event functions.
odeget The name argument must be constant.
odeset All inputs must be constant.
quad2d • Generates a warning if the size of the internal storage arrays is not

large enough. If a warning occurs, a possible workaround is to divide the
region of integration into pieces and sum the integrals over each piece.

quadgk —
trapz • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
on page 7-35

Optimization Functions in MATLAB

Function Remarks and Limitations

fminbnd • Does not support the problem structure argument.
• Ignores the Display option. During execution, does not print status

information, including early termination. To test the exit condition, use
the third output argument.

• The output structure does not include the algorithm or message
fields.

• Ignores the OutputFcn and PlotFcns options.
fminsearch • Ignores the Display option. During execution, does not print status

information, including early termination. Test the third output
argument for the exit condition.

• The output structure does not include the algorithm or message
fields.

4-291

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

• Ignores the OutputFcn and PlotFcns options.
fzero • The first argument must be a function handle. Does not support

structure or character vector inputs for the first argument.
• Supports up to three output arguments. Does not support the fourth

output argument (the output structure).
optimget Input parameter names must be constant.
optimset • Does not support the syntax that has no input or output arguments:

optimset

• Functions specified in the options must be supported for code
generation.

• The fields of the options structure oldopts must be fixed-size fields.
• For code generation, optimization functions ignore the Display option.
• Does not support the additional options in an options structure created

by the Optimization Toolbox optimset function. If an input options
structure includes the additional Optimization Toolbox options, the
output structure does not include them.

Phased Array System Toolbox

C and C++ code generation for the following functions and System objects requires the
Phased Array System Toolbox software.

Name Remarks and Limitations

Antenna and Microphone Elements
aperture2gain Does not support variable-size inputs.
azel2phithetapat Does not support variable-size inputs.
azel2uvpat Does not support variable-size inputs.
circpol2pol Does not support variable-size inputs.
gain2aperture Does not support variable-size inputs.
phased.CosineAntennaElement • pattern, patternAzimuth,

patternElevation, and plotResponse
methods are not supported.

4-292

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

• See “System Objects in MATLAB Code
Generation”.

phased.CrossedDipoleAntennaElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.CustomAntennaElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.CustomMicrophoneElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.IsotropicAntennaElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.OmnidirectionalMicrophoneElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.ShortDipoleAntennaElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phitheta2azelpat Does not support variable-size inputs.

4-293

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

phitheta2uvpat Does not support variable-size inputs.
pol2circpol Does not support variable-size inputs.
polellip Does not support variable-size inputs.
polloss Does not support variable-size inputs.
polratio Does not support variable-size inputs.
polsignature • Does not support variable-size inputs.

• Supported only when output arguments are
specified.

stokes • Does not support variable-size inputs.
• Supported only when output arguments are

specified.
uv2azelpat Does not support variable-size inputs.
uv2phithetapat Does not support variable-size inputs.
Array Geometries and Analysis
az2broadside Does not support variable-size inputs.
broadside2az Does not support variable-size inputs.
pilotcalib Does not support variable-size inputs.
phased.ArrayGain • Does not support arrays containing

polarized antenna elements, that is, the
phased.ShortDipoleAntennaElement or
phased.CrossedDipoleAntennaElement

antennas.
• See “System Objects in MATLAB Code

Generation”.
phased.ArrayResponse See “System Objects in MATLAB Code

Generation”.
phased.ConformalArray • pattern, patternAzimuth,

patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

4-294

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

phased.ElementDelay See “System Objects in MATLAB Code
Generation”.

phased.PartitionedArray • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.ReplicatedSubarray • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.SteeringVector See “System Objects in MATLAB Code
Generation”.

phased.UCA • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.ULA • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.URA • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

taylortaperc Does not support variable-size inputs.
Signal Radiation and Collection
phased.Collector See “System Objects in MATLAB Code

Generation”.

4-295

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

phased.Radiator See “System Objects in MATLAB Code
Generation”.

phased.WidebandCollector • Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

phased.WidebandRadiator See “System Objects in MATLAB Code
Generation”.

sensorsig Does not support variable-size inputs.
Transmitters and Receivers
delayseq Does not support variable-size inputs.
noisepow Does not support variable-size inputs.
phased.ReceiverPreamp See “System Objects in MATLAB Code

Generation”.
phased.Transmitter See “System Objects in MATLAB Code

Generation”.
systemp Does not support variable-size inputs.
Waveform Design and Analysis
ambgfun • Does not support variable-size inputs.

• Supported only when output arguments are
specified.

pambgfun • Does not support variable-size inputs.
• Supported only when output arguments are

specified.
phased.FMCWWaveform • plot method is not supported.

• See “System Objects in MATLAB Code
Generation”.

.

4-296

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

phased.LinearFMWaveform • plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.MFSKWaveform • plot method is not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.PhaseCodedWaveform • plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.RectangularWaveform • plot method is not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.SteppedFMWaveform • plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
range2bw Does not support variable-size inputs.
range2time Does not support variable-size inputs.
time2range Does not support variable-size inputs.
unigrid Does not support variable-size inputs.
Beamforming
cbfweights Does not support variable-size inputs.
lcmvweights Does not support variable-size inputs.
mvdrweights Does not support variable-size inputs.
phased.FrostBeamformer • Requires dynamic memory allocation. See

“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

phased.GSCBeamformer See “System Objects in MATLAB Code
Generation”.

4-297

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

phased.LCMVBeamformer See “System Objects in MATLAB Code
Generation”.

phased.MVDRBeamformer See “System Objects in MATLAB Code
Generation”.

phased.PhaseShiftBeamformer See “System Objects in MATLAB Code
Generation”.

phased.SteeringVector See “System Objects in MATLAB Code
Generation”.

phased.SubbandMVDRBeamformer See “System Objects in MATLAB Code
Generation”.

phased.SubbandPhaseShiftBeamformer See “System Objects in MATLAB Code
Generation”.

phased.TimeDelayBeamformer • Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

phased.TimeDelayLCMVBeamformer • Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

sensorcov Does not support variable-size inputs.
steervec Does not support variable-size inputs.
Direction of Arrival (DOA) Estimation
aictest Does not support variable-size inputs.
espritdoa Does not support variable-size inputs.
gccphat Does not support variable-size inputs.
mdltest Does not support variable-size inputs.
musicdoa Does not support variable-size inputs.

4-298

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

phased.BeamscanEstimator See “System Objects in MATLAB Code
Generation”.

phased.BeamscanEstimator2D See “System Objects in MATLAB Code
Generation”.

phased.BeamspaceESPRITEstimator See “System Objects in MATLAB Code
Generation”.

phased.ESPRITEstimator See “System Objects in MATLAB Code
Generation”.

phased.GCCEstimator See “System Objects in MATLAB Code
Generation”.

phased.MUSICEstimator See “System Objects in MATLAB Code
Generation”.

phased.MUSICEstimator2D See “System Objects in MATLAB Code
Generation”.

phased.MVDREstimator See “System Objects in MATLAB Code
Generation”.

phased.MVDREstimator2D See “System Objects in MATLAB Code
Generation”.

phased.RootMUSICEstimator See “System Objects in MATLAB Code
Generation”.

phased.RootWSFEstimator See “System Objects in MATLAB Code
Generation”.

phased.SumDifferenceMonopulseTracker See “System Objects in MATLAB Code
Generation”.

phased.SumDifferenceMonopulseTracker2D See “System Objects in MATLAB Code
Generation”.

rootmusicdoa Does not support variable-size inputs.
spsmooth Does not support variable-size inputs.
Space-Time Adaptive Processing (STAP)
dopsteeringvec Does not support variable-size inputs.
phased.ADPCACanceller See “System Objects in MATLAB Code

Generation”.

4-299

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

phased.AngleDopplerResponse See “System Objects in MATLAB Code
Generation”.

phased.DPCACanceller See “System Objects in MATLAB Code
Generation”.

phased.STAPSMIBeamformer See “System Objects in MATLAB Code
Generation”.

val2ind Does not support variable-size inputs.
Detection, Range, and Doppler Estimation
albersheim Does not support variable-size inputs.
beat2range Does not support variable-size inputs.
dechirp Does not support variable-size inputs.
npwgnthresh Does not support variable-size inputs.
phased.CFARDetector See “System Objects in MATLAB Code

Generation”.
phased.CFARDetector2D See “System Objects in MATLAB Code

Generation”.
phased.MatchedFilter • The CustomSpectrumWindow property is

not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.RangeDopplerResponse • The CustomRangeWindow and

CustomDopplerWindow properties are not
supported.

• The plotResponse method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.StretchProcessor See “System Objects in MATLAB Code

Generation”.
phased.TimeVaryingGain See “System Objects in MATLAB Code

Generation”.
pulsint Does not support variable-size inputs.

4-300

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

radareqpow Does not support variable-size inputs.
radareqrng Does not support variable-size inputs.
radareqsnr Does not support variable-size inputs.
radarvcd • Does not support variable-size inputs.

• Supported only when output arguments are
specified.

range2beat Does not support variable-size inputs.
rdcoupling Does not support variable-size inputs.
rocpfa • Does not support variable-size inputs.

• Supported only when output arguments are
specified.

• The NonfluctuatingNoncoherent signal
type is not supported.

rocsnr • Does not support variable-size inputs.
• Supported only when output arguments are

specified.
• The NonfluctuatingNoncoherent signal

type is not supported.
shnidman Does not support variable-size inputs.
stretchfreq2rng Does not support variable-size inputs.
Targets, Interference, and Signal Propagation
billingsleyicm Does not support variable-size inputs.
depressionang Does not support variable-size inputs.
effearthradius Does not support variable-size inputs.
fspl Does not support variable-size inputs.
fogpl Does not support variable-size inputs.
gaspl Does not support variable-size inputs.
grazingang Does not support variable-size inputs.
horizonrange Does not support variable-size inputs.

4-301

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

phased.BackscatterRadarTarget See “System Objects in MATLAB Code
Generation”

phased.BarrageJammer See “System Objects in MATLAB Code
Generation”.

phased.ConstantGammaClutter See “System Objects in MATLAB Code
Generation”.

phased.FreeSpace • Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

phased.LOSChannel See “System Objects in MATLAB Code
Generation”

phased.RadarTarget See “System Objects in MATLAB Code
Generation”.

phased.TwoRayChannel See “System Objects in MATLAB Code
Generation”.

phased.WidebandFreeSpace See “System Objects in MATLAB Code
Generation”.

phased.WidebandBackscatterRadarTarget See “System Objects in MATLAB Code
Generation”.

phased.WidebandLOSChannel See “System Objects in MATLAB Code
Generation”

phased.WidebandTwoRayChannel See “System Objects in MATLAB Code
Generation”

physconst Does not support variable-size inputs.
surfacegamma Does not support variable-size inputs.
surfclutterrcs Does not support variable-size inputs.
rainpl Does not support variable-size inputs.
Motion Modeling and Coordinate Systems
azel2phitheta Does not support variable-size inputs.

4-302

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

azel2uv Does not support variable-size inputs.
azelaxes Does not support variable-size inputs.
cart2sphvec Does not support variable-size inputs.
dop2speed Does not support variable-size inputs.
global2localcoord Does not support variable-size inputs.
local2globalcoord Does not support variable-size inputs.
phased.Platform See “System Objects in MATLAB Code

Generation”.
phitheta2azel Does not support variable-size inputs.
phitheta2uv Does not support variable-size inputs.
radialspeed Does not support variable-size inputs.
rangeangle Does not support variable-size inputs.
rotx Does not support variable-size inputs.
roty Does not support variable-size inputs
rotz Does not support variable-size inputs.
speed2dop Does not support variable-size inputs.
sph2cartvec Does not support variable-size inputs.
uv2azel Does not support variable-size inputs.
uv2phitheta Does not support variable-size inputs.

Polynomials in MATLAB

Function Remarks and Limitations

poly • Does not discard nonfinite input values
• Complex input produces complex output
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 7-35
polyder The output can contain fewer NaNs than the MATLAB output. However, if

the input contains a NaN, the output contains at least one NaN.

4-303

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

polyeig • The basis of the eigenvectors can be different in the generated code than
in MATLAB. In general, in the eigenvalues output, the eigenvalues for
real inputs are not sorted so that complex conjugate pairs are adjacent.

• Differences in eigenvectors and ordering of eigenvalues can lead to
differences in the condition numbers output.

polyfit “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” on
page 7-35

polyint —
polyval —
polyvalm —
roots • Output is variable size.

• Output is complex.
• Roots are not always in the same order as MATLAB.
• Roots of poorly conditioned polynomials do not always match MATLAB.

Programming Utilities in MATLAB

Function Remarks and Limitations

mfilename —

Relational Operators in MATLAB

Function Remarks and Limitations

eq You cannot use eq to test equality between an enumeration member and a
character array or cell array of character arrays.

ge —
gt —
le —
lt —
ne You cannot use ne to test inequality between an enumeration member and

a character array or cell array of character arrays.

4-304

 Functions and Objects Supported for C/C++ Code Generation — Category List

Robotics System Toolbox

C/C++ code generation for the following functions requires the Robotics System Toolbox
software.

Name Remarks and Limitations

Algorithm Design
robotics.BinaryOccupancyGrid Supports MATLAB Function block: No
robotics.OccupancyGrid Supports MATLAB Function block: No
robotics.OdometryMotionModel Supports MATLAB Function block: No
robotics.ParticleFilter Supports MATLAB Function block: No
robotics.PRM Supports MATLAB Function block: No

The map input must be specified on creation of
the PRM object.

robotics.PurePursuit Supports MATLAB Function block: No
robotics.VectorFieldHistogram Supports MATLAB Function block: No
Coordinate System Transformations
angdiff Supports MATLAB Function block: Yes
axang2quat Supports MATLAB Function block: Yes
axang2rotm Supports MATLAB Function block: Yes
axang2tform Supports MATLAB Function block: Yes
cart2hom Supports MATLAB Function block: Yes
eul2quat Supports MATLAB Function block: Yes
eul2rotm Supports MATLAB Function block: Yes
eul2tform Supports MATLAB Function block: Yes
hom2cart Supports MATLAB Function block: Yes
quat2axang Supports MATLAB Function block: Yes
quat2eul Supports MATLAB Function block: Yes
quat2rotm Supports MATLAB Function block: Yes
quat2tform Supports MATLAB Function block: Yes

4-305

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

rotm2axang Supports MATLAB Function block: Yes
rotm2eul Supports MATLAB Function block: Yes
rotm2quat Supports MATLAB Function block: Yes
rotm2tform Supports MATLAB Function block: Yes
tform2axang Supports MATLAB Function block: Yes
tform2eul Supports MATLAB Function block: Yes
tform2quat Supports MATLAB Function block: Yes
tform2rotm Supports MATLAB Function block: Yes
tform2trvec Supports MATLAB Function block: Yes
trvec2tform Supports MATLAB Function block: Yes

Rounding and Remainder Functions in MATLAB

Function Remarks and Limitations

ceil —
fix —
floor —
mod • Performs the arithmetic using the output class. Results might not match

MATLAB due to differences in rounding errors.

If one of the inputs has type int64 or uint64, then both inputs must
have the same type.

rem • Performs the arithmetic using the output class. Results might not match
MATLAB due to differences in rounding errors.

• If one of the inputs has type int64 or uint64, then both inputs must
have the same type.

round Supports only the syntax Y = round(X).

4-306

 Functions and Objects Supported for C/C++ Code Generation — Category List

Set Operations in MATLAB

Function Remarks and Limitations

intersect • Does not support cell arrays for the first or second arguments.
• When you do not specify the 'rows' option:

• Inputs A and B must be vectors. If you specify the 'legacy' option,
inputs A and B must be row vectors.

• The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector must
have fixed length 1.

• The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for
example, zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'legacy' option and the 'rows' option, the
outputs ia and ib are column vectors. If these outputs are empty, they
are 0-by-1, never 0-by-0, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy'
option, the inputs must already be sorted in ascending order. The first
output, C, is sorted in ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other input is real, do one of the

following:

• Set setOrder to 'stable'.
• Sort the real input in complex ascending order (by absolute

value). Suppose the real input is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”
on page 6-4.

ismember • Does not support cell arrays for the first or second arguments.
• Complex inputs must be single or double.
• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”

on page 6-4.

4-307

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

issorted • Does not support cell arrays for the first argument.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 7-35.
• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”

on page 6-4.
setdiff • Does not support cell arrays for the first or second arguments.

• When you do not specify the 'rows' option:

• Inputs A and B must be vectors. If you specify the 'legacy' option,
inputs A and B must be row vectors.

• The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector must
have fixed length 1.

• Do not use [] to represent the empty set. Use a 1-by-0 or 0-by-1
input, for example, zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'legacy' and 'rows' options, the output
ia is a column vector. If ia is empty, it is 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is not 'stable' or when you specify the
'legacy' option, the inputs must already be sorted in ascending order.
The first output, C, is sorted in ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other input is real, do one of the

following:

• Set setOrder to 'stable'.
• Sort the real input in complex ascending order (by absolute

value). Suppose the real input is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”
on page 6-4.

4-308

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

setxor • Does not support cell arrays for the first or second arguments.
• When you do not specify the 'rows' option:

• Inputs A and B must be vectors with the same orientation. If you
specify the 'legacy' option, inputs A and B must be row vectors.

• The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector must
have fixed length 1.

• The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for
example , zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'legacy' option and the 'rows' option, the
outputs ia and ib are column vectors. If these outputs are empty, they
are 0-by-1, never 0-by-0, even if the output C is 0-by-0.

• When the setOrder is not 'stable' or when you specify the
'legacy' flag, the inputs must already be sorted in ascending order.
The first output, C, is sorted in ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other input is real, do one of the

following:

• Set setOrder to 'stable'.
• Sort the real input in complex ascending order (by absolute

value). Suppose the real input is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”
on page 6-4.

4-309

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

union • Does not support cell arrays for the first or second arguments.
• When you do not specify the 'rows' option:

• Inputs A and B must be vectors with the same orientation. If you
specify the 'legacy' option, inputs A and B must be row vectors.

• The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector must
have fixed length 1.

• The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for
example , zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'legacy' option and the 'rows' option, the
outputs ia and ib are column vectors. If these outputs are empty, they
are 0-by-1, never 0-by-0, even if the output C is 0-by-0.

• When the setOrder is not 'stable' or when you specify the
'legacy' option, the inputs must already be sorted in ascending order.
The first output, C, is sorted in ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other input is real, do one of the

following:

• Set setOrder to 'stable'.
• Sort the real input in complex ascending order (by absolute

value). Suppose the real input is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”
on page 6-4.

4-310

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

unique • Does not support cell arrays for the first argument.
• When you do not specify the'rows' option:

• The input A must be a vector. If you specify the 'legacy' option, the
input A must be a row vector.

• The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector must
have fixed length 1.

• The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for
example, zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'rows' option and the 'legacy'option,
outputs ia and ic are column vectors. If these outputs are empty, they
are 0-by-1, even if the output C is 0-by-0.

• When the setOrder is not 'stable' or when you specify the
'legacy' option, the input A must already be sorted in ascending
order. The first output, C, is sorted in ascending order.

• Complex inputs must be single or double.

Signal Processing in MATLAB

Function Remarks and Limitations

chol —
conv —
fft • “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 7-35
fft2 —
fftn The siz argument must have a fixed size.
fftshift —
filter • If supplied, dim must be a constant.

• v

4-311

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

freqspace —
ifft • Output is complex.

• Does not support the 'symmetric' option.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 7-35
ifft2 Does not support the 'symmetric' option.
ifftn • Does not support the 'symmetric' option.

• The siz argument must have a fixed size.
ifftshift —
svd Uses a different SVD implementation than MATLAB. Because the singular

value decomposition is not unique, left and right singular vectors might
differ from those computed by MATLAB.

zp2tf —

Signal Processing Toolbox

C and C++ code generation for the following functions requires the Signal Processing
Toolbox software. These functions do not support variable-size inputs, you must define
the size and type of the function inputs. For more information, see “Specifying Inputs in
Code Generation from MATLAB ”.

Note: Many Signal Processing Toolbox functions require constant inputs in generated
code. To specify a constant input for codegen, use coder.Constant.

Function Remarks/Limitations

barthannwin Window length must be a constant. Expressions or variables are allowed
if their values do not change.

bartlett Window length must be a constant. Expressions or variables are allowed
if their values do not change.

besselap Filter order must be a constant. Expressions or variables are allowed if
their values do not change.

4-312

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks/Limitations

bitrevorder —
blackman Window length must be a constant. Expressions or variables are allowed

if their values do not change.
blackmanharris Window length must be a constant. Expressions or variables are allowed

if their values do not change.
bohmanwin Window length must be a constant. Expressions or variables are allowed

if their values do not change.
buttap Filter order must be a constant. Expressions or variables are allowed if

their values do not change.
butter Filter coefficients must be constants. Expressions or variables are allowed

if their values do not change.
buttord All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cfirpm All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cheb1ap All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cheb2ap All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cheb1ord All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cheb2ord All inputs must be constants. Expressions or variables are allowed if their

values do not change.
chebwin All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cheby1 All Inputs must be constants. Expressions or variables are allowed if

their values do not change.
cheby2 All inputs must be constants. Expressions or variables are allowed if their

values do not change.
db2pow —

4-313

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

dct C and C++ code generation for dct requires DSP System Toolbox
software.

Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

downsample —
dpss All inputs must be constants. Expressions or variables are allowed if their

values do not change.
ellip Inputs must be constant. Expressions or variables are allowed if their

values do not change.
ellipap All inputs must be constants. Expressions or variables are allowed if their

values do not change.
ellipord All inputs must be constants. Expressions or variables are allowed if their

values do not change.
filtfilt Filter coefficients must be constants. Expressions or variables are allowed

if their values do not change.

Code generation does not support second-order sections as input. You
must use transfer functions.

findpeaks —
fir1 All inputs must be constants. Expressions or variables are allowed if their

values do not change.
fir2 All inputs must be constants. Expressions or variables are allowed if their

values do not change.
fircls All inputs must be constants. Expressions or variables are allowed if their

values do not change.
fircls1 All inputs must be constants. Expressions or variables are allowed if their

values do not change.
firls All inputs must be constants. Expressions or variables are allowed if their

values do not change.
firpm All inputs must be constants. Expressions or variables are allowed if their

values do not change.

4-314

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks/Limitations

firpmord All inputs must be constants. Expressions or variables are allowed if their
values do not change.

flattopwin All inputs must be constants. Expressions or variables are allowed if their
values do not change.

freqz • Does not support variable-size inputs.
• When called with no output arguments, and without a semicolon at

the end, freqz returns the complex frequency response of the input
filter, evaluated at 512 points.

If the semicolon is added, the function produces a plot of the
magnitude and phase response of the filter.

See “freqz With No Output Arguments”.
gausswin All inputs must be constant. Expressions or variables are allowed if their

values do not change.
hamming All inputs must be constant. Expressions or variables are allowed if their

values do not change.
hann All inputs must be constant. Expressions or variables are allowed if their

values do not change.
idct C and C++ code generation for idct requires DSP System Toolbox

software.

Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

intfilt All inputs must be constant. Expressions or variables are allowed if their
values do not change.

kaiser All inputs must be constant. Expressions or variables are allowed if their
values do not change.

kaiserord —

4-315

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks/Limitations

levinson C and C++ code generation for levinson requires DSP System Toolbox
software.

If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

maxflat All inputs must be constant. Expressions or variables are allowed if their
values do not change.

nuttallwin All inputs must be constant. Expressions or variables are allowed if their
values do not change.

parzenwin All inputs must be constant. Expressions or variables are allowed if their
values do not change.

peak2peak —
peak2rms —
pow2db —
rcosdesign All inputs must be constant. Expressions or variables are allowed if their

values do not change.
rectwin All inputs must be constant. Expressions or variables are allowed if their

values do not change.
resample C and C++ code generation for resample requires DSP System Toolbox

software.

The upsampling and downsampling factors must be specified as
constants. Expressions or variables are allowed if their values do not
change.

rms —
sgolay All inputs must be constant. Expressions or variables are allowed if their

values do not change.
sosfilt —
taylorwin All inputs must be constant. Expressions or variables are allowed if their

values do not change.
triang All inputs must be constant. Expressions or variables are allowed if their

values do not change.

4-316

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks/Limitations

tukeywin All inputs must be constant. Expressions or variables are allowed if their
values do not change.

upfirdn C and C++ code generation for upfirdn requires DSP System Toolbox
software.

Filter coefficients, upsampling factor, and downsampling factor must
be constants. Expressions or variables are allowed if their values do not
change.

Variable-size inputs are not supported.
upsample Either declare input n as constant, or use the assert function in the

calling function to set upper bounds for n. For example,

assert(n<10)

xcorr Leading ones in size(x) must be constant for every input x. If x is
variable-size and is a row vector, it must be 1-by-:. It cannot be :-by-:
with size(x,1) = 1 at run time.

yulewalk If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

Special Values in MATLAB

Function Remarks and Limitations

eps • Supported for scalar fixed-point signals only.
• Supported for scalar, vector, and matrix, fi single and fi double

signals.
inf • Dimensions must be real, nonnegative, integers.
intmax —
intmin —
NaN or nan • Dimensions must be real, nonnegative, integers.
pi —
realmax —
realmin —

4-317

4 Functions, Classes, and System Objects Supported for Code Generation

Specialized Math in MATLAB

Function Remarks and Limitations

airy Always returns a complex result.
besseli • If the order nu is less than 0, it must be an integer.

• Always returns a complex result.
besselj • If the order nu is less than 0, it must be an integer.

• Always returns a complex result.
beta —
betainc Always returns a complex result.
betaincinv Always returns a complex result.
betaln —
ellipke —
erf —
erfc —
erfcinv —
erfcx —
erfinv —
expint —
gamma —
gammainc Output is always complex.
gammaincinv Output is always complex.
gammaln —
psi —

Statistics in MATLAB

Function Remarks and Limitations

corrcoef • Row-vector input is only supported when the first two inputs are vectors
and nonscalar.

cummin —

4-318

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

cummax —
mean • If specified, dim must be a constant.

• The outtype and nanflag options must be constant character vectors.
• Does not support the 'native' output data type option for integer

types.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 7-35
median • If specified, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
on page 7-35“Variable-Sizing Restrictions for Code Generation of
Toolbox Functions” on page 7-35

• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”
on page 6-4.

mode • Does not support third output argument C (cell array).
• If specified, dim must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 7-35
std • If specified, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
on page 7-35

var • If specified, dim must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 7-35

Statistics and Machine Learning Toolbox

C and C++ code generation for the following functions requires the Statistics and
Machine Learning Toolbox software.

Function Remarks and Limitations

Descriptive Statistics and Visualization
geomean —

4-319

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

harmmean —
iqr —
kurtosis —
mad Input dim cannot be empty.
moment If order is nonintegral and X is real, use moment(complex(X), order).
nancov If the input is variable-size and is [] at run time, returns [] not NaN.
nanmax —
nanmean —
nanmedian —
nanmin —
nanstd —
nansum —
nanvar —
prctile • “Automatic dimension restriction” on page 7-35

• If the output Y is a vector, the orientation of Y differs from MATLAB when all
of the following are true:

• You do not supply the dim input.
• X is a variable-size array.
• X is not a variable-length vector.
• X is a vector at run time.
• The orientation of the vector X does not match the orientation of the vector

p.

In this case, the output Y matches the orientation of X not the orientation of p.
quantile —
skewness —
zscore —
Probability Distributions
betacdf —

4-320

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

betafit —
betainv —
betalike —
betapdf —
betarnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

betastat —
binocdf —
binoinv —
binopdf —
binornd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

binostat —
cdf —
chi2cdf —
chi2inv —
chi2pdf —
chi2rnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

chi2stat —
evcdf —
evinv —

4-321

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

evpdf —
evrnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

evstat —
expcdf —
expinv —
exppdf —
exprnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

expstat —
fcdf —
finv —
fpdf —
frnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

fstat —
gamcdf —
gaminv —
gampdf —

4-322

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

gamrnd Can return a different sequence of numbers than MATLAB if either of the
following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

gamstat —
geocdf —
geoinv —
geopdf —
geornd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

geostat —
gevcdf —
gevinv —
gevpdf —
gevrnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

gevstat —
gpcdf —
gpinv —
gppdf —
gprnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

4-323

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

gpstat —
hygecdf —
hygeinv —
hygepdf —
hygernd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

hygestat —
icdf —
logncdf —
logninv —
lognpdf —
lognrnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

lognstat —
nbincdf —
nbininv —
nbinpdf —
nbinrnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

nbinstat —
ncfcdf —
ncfinv —

4-324

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

ncfpdf —
ncfrnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

ncfstat —
nctcdf —
nctinv —
nctpdf —
nctrnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

nctstat —
ncx2cdf —
ncx2rnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

ncx2stat —
normcdf —
norminv —
normpdf —
normrnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

normstat —

4-325

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

pdf —
pearsrnd Matches MATLAB only when generated output r is scalar.
poisscdf —
poissinv —
poisspdf —
poissrnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

poisstat —
randg —
random —
randsample When sampling without replacement, the order of the output values might not

match MATLAB.
raylcdf —
raylinv —
raylpdf —
raylrnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

raylstat —
tcdf —
tinv —
tpdf —

4-326

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

trnd Can return a different sequence of numbers than MATLAB if either of the
following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

tstat —
unidcdf —
unidinv —
unidpdf —
unidrnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

unidstat —
unifcdf —
unifinv —
unifpdf —
unifrnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

unifstat —
wblcdf —
wblinv —
wblpdf —
wblrnd Can return a different sequence of numbers than MATLAB if either of the

following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

4-327

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

wblstat —
Cluster Analysis
kmeans • If the Start method uses random selections, the initial centroid cluster

positions might not match MATLAB.
• If the number of rows in X is fixed, does not remove rows of X that contain a

NaN.
• The cluster centroid locations in C can have a different order than in MATLAB.

In this case, the cluster indices in idx have corresponding differences.
• If you provide Display, its value must be 'off'.
• If you provide Streams, it must be empty and UseSubstreams must be

false.
• When you set the UseParallel option to true, some computations can

execute in parallel even when Replicates is 1. For large data sets, when
Replicates is 1, consider setting the UseParallel option to true.

Classification
loadCompactModelSupports these classification model objects saved to a file using

saveCompactModel.

• Error-correcting output codes models (ECOC), ClassificationECOC or
CompactClassificationECOC model objects, respectively.

• Linear classification models, ClassificationLinear model objects
• Full or compact support vector machines (SVM), ClassificationSVM or

CompactClassificationSVM, respectively

For limitations on particular classification models, see the row corresponding to
the model object in this table.

4-328

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

ClassificationECOC
or
CompactClassificationECOC

When you train one of these models using fitcecoc or Classification Learner:

• The predictor variables in the input argument Tbl cannot be sparse. The
predictor data input argument value X must be a full, numeric matrix.

• The class labels input argument value (Y) cannot be a categorical array.
• The ClassNames name-value pair argument cannot be a categorical array.
• You cannot use the CategoricalPredictors name-value pair argument

or supply a table containing at least one categorical predictor. That is, code
generation does not support categorical predictors. To dummy-code variables
that you want treated as categorical, use dummyvar.

• All binary learners must be support vector machines or logistic-regression,
linear classification models. That is, for the Learners name-value pair
argument, you can specify

• 'svm'

• An SVM template object or a cell vector of such objects (see templateSVM).
• A linear classification model template object or a cell vector of such objects

(see templateLinear).
• For limitations on ClassificationSVM or ClassificationLinear

model objects, see their entries in this table.
• You cannot specify to fit posterior probabilities by using the FitPosterior name-

value pair argument.

4-329

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

ClassificationLinearWhen you train one of these models using fitclinear:

• The predictor data input argument value X must be a full, numeric matrix.
• The class labels input argument value (Y) cannot be a categorical array.
• The ClassNames name-value pair argument cannot be a categorical array.
• Logistic regression learners are supported only. That is, you can specify

'logistic' only for the Learner name-value pair argument.
• You can specify one regularization strength only. That is, you can specify

'auto' or a nonnegative scalar only for the Lambda name-value pair
argument.

• You cannot specify a score transformation function by using the
ScoreTransform name-value pair argument or by assigning the
ScoreTransform object property.

ClassificationSVM
or
CompactClassificationSVM

When you train one of these models using fitcsvm or Classification Learner:

• The class labels input argument value (Y) cannot be a categorical array.
• The ClassNames name-value pair argument cannot be a categorical array.
• You cannot use the CategoricalPredictors name-value pair argument

or supply a table containing at least one categorical predictor. That is, code
generation does not support categorical predictors. To dummy-code variables
that you want treated as categorical, use dummyvar.

• MATLAB does not support one-class learning.
• You cannot specify a score transformation function by using the

ScoreTransform name-value pair argument or by assigning the
ScoreTransform object property. Consequently, saveCompactModel cannot
accept compact SVM models equipped to estimate class posterior probabilities,
that is, models returned by fitPosterior or fitSVMPosterior.

4-330

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

predict
method of
ClassificationECOC

and
CompactClassificationECOC

• You must call predict within a function that you declare (that is, you cannot
call predict at the top-level).

• This table contains input-and-output-argument notes and limitations.

Argument Notes and Limitations

Mdl • You must load the model using loadCompactModel
within a function that you declare.

• Must be a compile-time constant, that is, its value
cannot change while codegen generates the C code.

X • Must be a single- or double-precision matrix and can
be variable sized. However, the number of columns in X
must be numel(Mdl.PredictorNames).

• Rows and columns must correspond to observations and
predictors, respectively.

BinaryLoss Must be a supported binary loss function name, for
example, 'linear'

NumKLInitializationsYou cannot specify this name-value pair argument.
Options You cannot specify this name-value pair argument.
PosteriorMethodYou cannot specify this name-value pair argument.
Verbose If you plan to generate a MEX file, then you can specify

Verbose. Otherwise, codegen does not support Verbose
for other file types.

NegLoss Returned as the same data type as X, that is, a single- or
double-precision matrix

Posterior You cannot return this output argument.

4-331

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

predict
method of
ClassificationLinear

• You must call predict within a function that you declare (that is, you cannot
call predict at the top-level).

• This table contains input-and-output-argument notes and limitations.

Argument Notes and Limitations

Mdl • You must load the model using loadCompactModel
within a function that you declare.

• Must be a compile-time constant, that is, its value
cannot change while codegen generates the C code.

X • Must be a single- or double-precision matrix and can
be variable sized. However, the number of columns in X
must be numel(Mdl.PredictorNames).

• Rows and columns must correspond to observations and
predictors, respectively.

Score Returned as the same data type as X, that is, a single- or
double-precision matrix

predict
method of
ClassificationSVM

and
CompactClassificationSVM

• You must call predict within a function that you declare (that is, you cannot
call predict at the top-level).

• This table contains input-and-output-argument notes and limitations.

Argument Notes and Limitations

SVMModel • You must load the model using loadCompactModel
within a function that you declare.

• Must be a compile-time constant, that is, its value
cannot change while codegen generates the code.

X • Must be a single- or double-precision matrix and can
be variable sized. However, the number of columns in X
must be numel(Mdl.PredictorNames).

• Rows and columns must correspond to observations and
predictors, respectively.

score Returned as the same data type as X, that is, a single- or
double-precision matrix

4-332

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

Dimensionality Reduction
pca • Ignores the 'Display' value for 'Options' when 'Algorithm' is 'als'.

• If supplied, 'Weights' and 'VariableWeights' must be real.
• Always returns the fifth output explained as a column vector.
• Always returns the sixth output mu as a row vector.
• If mu is empty, pca returns mu as a 1-by-0 array. pca does not convert mu to a

0-by-0 empty array.
• Does not treat an input matrix X that has all NaN values as a special case. The

outputs have the sizes that they have when some of the inputs are finite.

System Identification Toolbox

C and C++ code generation for the following functions and System objects requires the
System Identification Toolbox software.

Name Remarks and Limitations

extendedKalmanFilter For more information, see “Generate Code
for Online State Estimation in MATLAB”.

Supports MATLAB Function block: No
recursiveAR • For Simulink-based workflows, use

Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code

for Online Parameter Estimation in
MATLAB”.

Supports MATLAB Function block: No
recursiveARMA • For Simulink-based workflows, use

Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code

for Online Parameter Estimation in
MATLAB”.

4-333

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

Supports MATLAB Function block: No
recursiveARMAX • For Simulink-based workflows, use

Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code

for Online Parameter Estimation in
MATLAB”.

Supports MATLAB Function block: No
recursiveARX • For Simulink-based workflows, use

Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code

for Online Parameter Estimation in
MATLAB”.

Supports MATLAB Function block: No
recursiveBJ • For Simulink-based workflows, use

Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code

for Online Parameter Estimation in
MATLAB”.

Supports MATLAB Function block: No
recursiveLS • For Simulink-based workflows,

use Recursive Least Squares
Estimator.

• For limitations, see “Generate Code
for Online Parameter Estimation in
MATLAB”.

Supports MATLAB Function block: No

4-334

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

recursiveOE • For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code

for Online Parameter Estimation in
MATLAB”.

Supports MATLAB Function block: No
unscentedKalmanFilter For more information, see “Generate Code

for Online State Estimation in MATLAB”.

Supports MATLAB Function block: No

Trigonometry in MATLAB

Function Remarks and Limitations

acos When the input value x is real, but the output should be complex, generates
an error during simulation and returns NaN in generated code. To get the
complex result, make the input value complex by passing in complex(x).

acosd —
acosh • Generates an error during simulation and returns NaN in generated

code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(x).

acot —
acotd —
acoth —
acsc —
acscd —
acsch —
asec —
asecd —
asech —

4-335

4 Functions, Classes, and System Objects Supported for Code Generation

Function Remarks and Limitations

asin • Generates an error during simulation and returns NaN in generated
code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(x).

asind —
asinh —
atan —
atan2 —
atan2d —
atand —
atanh Generates an error during simulation and returns NaN in generated code

when the input value x is real, but the output should be complex. To get the
complex result, make the input value complex by passing in complex(x).

cos —
cosd —
cosh —
cot —
cotd • In some cases, returns -Inf when MATLAB returns Inf.

• In some cases, returns Inf when MATLAB returns -Inf.
coth —
csc —
cscd • In some cases, returns -Inf when MATLAB returns Inf.

• In some cases, returns Inf when MATLAB returns -Inf.
csch —
deg2rad —
hypot —
rad2deg —
sec —

4-336

 Functions and Objects Supported for C/C++ Code Generation — Category List

Function Remarks and Limitations

secd • In some cases, returns -Inf when MATLAB returns Inf.
• In some cases, returns Inf when MATLAB returns -Inf.

sech —
sin —
sind —
sinh —
tan —
tand • In some cases, returns -Inf when MATLAB returns Inf.

• In some cases, returns Inf when MATLAB returns -Inf.
tanh —

Wavelet Toolbox

C and C++ code generation for the following functions requires the Wavelet Toolbox
software.

Name Remarks and Limitations

Signal Analysis
appcoef Variable-size data support must be enabled.

Supports MATLAB Function block: No
detcoef Supports MATLAB Function block: No
dwt Supports MATLAB Function block: No
dyadup • If X is empty, generated code returns X and

MATLAB returns [].
• Suppose that all of the following conditions

are true:

• X is a variable-size array.
• X is not a variable-length column vector (:-

by-1).
• X is a column vector at run time.

4-337

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

• 'type' is not supplied.

In generated code, the output for y =
dyadup(X,k), where k is optional, matches
the output for y = dyadup(X,k,'c').
In MATLAB, the output for y =
dyadup(X,k) matches the output for y =
dyadup(X,k,'r').

For code generation, when you do not specify
'type', if you want dyadup to treat X as a
column vector, X must be a variable-length
vector (:-by-1).

Supports MATLAB Function block: No

idwt Supports MATLAB Function block: No
imodwpt Supports MATLAB Function block: No
imodwt Supports MATLAB Function block: No
modwpt Supports MATLAB Function block: No
modwptdetails Supports MATLAB Function block: No
modwt Supports MATLAB Function block: No
modwtmra Supports MATLAB Function block: No
wavedec • Variable-size data support must be enabled.

• The input 'wname' must be constant.

Supports MATLAB Function block: No
waverec Variable-size data support must be enabled.

Supports MATLAB Function block: No

4-338

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

wextend The generated code can return a column vector
when MATLAB returns a row vector if all of the
following conditions are true:

• TYPE specifies a 1–D extension.
• Input X is a variable-size vector.
• Input X is not a variable-length row vector (1-

by-:).

Code generation does not produce a warning or
error message about the shape mismatch. In the
output vector that the generated code returns,
the values match the values in the output vector
that MATLAB returns.

In this case, to generate code that returns a row
vector, pass X(:).' instead of X.

Supports MATLAB Function block: No
Image Analysis
appcoef2 Variable-size data support must be enabled.

Supports MATLAB Function block: No
detcoef2 Supports MATLAB Function block: No
dwt2 Supports MATLAB Function block: No
idwt2 Variable-size data support must be enabled.

Supports MATLAB Function block: No
wavedec2 • Variable-size data support must be enabled.

• The input 'wname' must be constant.

Supports MATLAB Function block: No
waverec2 Variable-size data support must be enabled.

Supports MATLAB Function block: No

4-339

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

Denoising
ddencmp Variable-size data support must be enabled.

Supports MATLAB Function block: No
thselect Supports MATLAB Function block: No
wden Variable-size data support must be enabled.

Supports MATLAB Function block: No
wdencmp Variable-size data support must be enabled.

Supports MATLAB Function block: No
wnoisest Supports MATLAB Function block: No
wthcoef Supports MATLAB Function block: No
wthcoef2 Supports MATLAB Function block: No
wthresh Supports MATLAB Function block: No
Orthogonal and Biorthogonal Filter Banks
qmf Supports MATLAB Function block: No

WLAN System Toolbox

C and C++ code generation for the following functions and System objects requires the
WLAN System Toolbox software.

Name Remarks and Limitations

WLAN Modeling
wlanHTConfig —
wlanNonHTConfig —
wlanRecoveryConfig —
wlanS1GConfig —
wlanVHTConfig —
Signal Transmission
wlanHTData —

4-340

 Functions and Objects Supported for C/C++ Code Generation — Category List

Name Remarks and Limitations

wlanHTLTF —
wlanHTSIG —
wlanHTSTF —
wlanLLTF —
wlanLSIG —
wlanLSTF —
wlanNonHTData —
wlanVHTData —
wlanVHTLTF —
wlanVHTSIGA —
wlanVHTSIGB —
wlanVHTSTF —
wlanWaveformGenerator —
Signal Reception
wlanCoarseCFOEstimate —
wlanFormatDetect —
wlanFieldIndices —
wlanFineCFOEstimate —
wlanHTDataRecover —
wlanHTLTFChannelEstimate —
wlanHTLTFDemodulate —
wlanHTSIGRecover —
wlanLLTFChannelEstimate —
wlanLLTFDemodulate —
wlanLSIGRecover —
wlanNonHTDataRecover —
wlanPacketDetect —

4-341

4 Functions, Classes, and System Objects Supported for Code Generation

Name Remarks and Limitations

wlanVHTDataRecover —
wlanVHTLTFChannelEstimate —
wlanVHTLTFDemodulate —
wlanVHTSIGARecover —
wlanVHTSIGBRecover —
Propagation Channel
wlanTGacChannel “System Objects in MATLAB Code Generation”
wlanTGnChannel “System Objects in MATLAB Code Generation”

Note: WLAN System Toolbox functionality with the MATLAB Function block is not
supported.

4-342

5

Defining MATLAB Variables for C/C++
Code Generation

• “Variables Definition for Code Generation” on page 5-2
• “Best Practices for Defining Variables for C/C++ Code Generation” on page 5-3
• “Eliminate Redundant Copies of Variables in Generated Code” on page 5-7
• “Reassignment of Variable Properties” on page 5-9
• “Reuse the Same Variable with Different Properties” on page 5-10
• “Avoid Overflows in for-Loops” on page 5-14
• “Supported Variable Types” on page 5-16

5 Defining MATLAB Variables for C/C++ Code Generation

Variables Definition for Code Generation

In the MATLAB language, variables can change their properties dynamically at run time
so you can use the same variable to hold a value of any class, size, or complexity. For
example, the following code works in MATLAB:

function x = foo(c) %#codegen

if(c>0)

 x = 0;

else

 x = [1 2 3];

end

disp(x);

end

However, statically-typed languages like C must be able to determine variable properties
at compile time. Therefore, for C/C++ code generation, you must explicitly define the
class, size, and complexity of variables in MATLAB source code before using them. For
example, rewrite the above source code with a definition for x:

function x = foo(c) %#codegen

x = zeros(1,3);

if(c>0)

 x = 0;

else

 x = [1 2 3];

end

disp(x);

end

For more information, see “Best Practices for Defining Variables for C/C++ Code
Generation” on page 5-3.

5-2

 Best Practices for Defining Variables for C/C++ Code Generation

Best Practices for Defining Variables for C/C++ Code Generation

In this section...

“Define Variables By Assignment Before Using Them” on page 5-3
“Use Caution When Reassigning Variables” on page 5-5
“Use Type Cast Operators in Variable Definitions” on page 5-5
“Define Matrices Before Assigning Indexed Variables” on page 5-6

Define Variables By Assignment Before Using Them

For C/C++ code generation, you should explicitly and unambiguously define the class,
size, and complexity of variables before using them in operations or returning them as
outputs. Define variables by assignment, but note that the assignment copies not only
the value, but also the size, class, and complexity represented by that value to the new
variable. For example:

Assignment: Defines:

a = 14.7; a as a real double scalar.
b = a; b with properties of a (real double scalar).
c = zeros(5,2); c as a real 5-by-2 array of doubles.
d = [1 2 3 4 5; 6 7 8 9 0]; d as a real 5-by-2 array of doubles.
y = int16(3); y as a real 16-bit integer scalar.

Define properties this way so that the variable is defined on the required execution paths
during C/C++ code generation (see Defining a Variable for Multiple Execution Paths).

The data that you assign to a variable can be a scalar, matrix, or structure. If your
variable is a structure, define the properties of each field explicitly (see Defining Fields in
a Structure).

Initializing the new variable to the value of the assigned data sometimes results in
redundant copies in the generated code. To avoid redundant copies, you can define
variables without initializing their values by using the coder.nullcopy construct as
described in “Eliminate Redundant Copies of Variables in Generated Code” on page
5-7.

5-3

5 Defining MATLAB Variables for C/C++ Code Generation

When you define variables, they are local by default; they do not persist between function
calls. To make variables persistent, see persistent.

Defining a Variable for Multiple Execution Paths

Consider the following MATLAB code:

...

if c > 0

 x = 11;

end

% Later in your code ...

if c > 0

 use(x);

end

...

Here, x is assigned only if c > 0 and used only when c > 0. This code works in
MATLAB, but generates a compilation error during code generation because it detects
that x is undefined on some execution paths (when c <= 0),.

To make this code suitable for code generation, define x before using it:

x = 0;

...

if c > 0

 x = 11;

end

% Later in your code ...

if c > 0

 use(x);

end

...

Defining Fields in a Structure

Consider the following MATLAB code:

...

if c > 0

 s.a = 11;

 disp(s);

else

 s.a = 12;

 s.b = 12;

5-4

 Best Practices for Defining Variables for C/C++ Code Generation

end

% Try to use s

use(s);

...

Here, the first part of the if statement uses only the field a, and the else clause uses
fields a and b. This code works in MATLAB, but generates a compilation error during C/
C++ code generation because it detects a structure type mismatch. To prevent this error,
do not add fields to a structure after you perform certain operations on the structure. For
more information, see “Structure Definition for Code Generation” on page 8-2.

To make this code suitable for C/C++ code generation, define all fields of s before using it.

...

% Define all fields in structure s

s = struct(‘a’,0, ‘b’, 0);

if c > 0

 s.a = 11;

 disp(s);

else

 s.a = 12;

 s.b = 12;

end

% Use s

use(s);

...

Use Caution When Reassigning Variables

In general, you should adhere to the "one variable/one type" rule for C/C++ code
generation; that is, each variable must have a specific class, size and complexity.
Generally, if you reassign variable properties after the initial assignment, you get a
compilation error during code generation, but there are exceptions, as described in
“Reassignment of Variable Properties” on page 5-9.

Use Type Cast Operators in Variable Definitions

By default, constants are of type double. To define variables of other types, you can
use type cast operators in variable definitions. For example, the following code defines
variable y as an integer:

...

x = 15; % x is of type double by default.

5-5

5 Defining MATLAB Variables for C/C++ Code Generation

y = uint8(x); % y has the value of x, but cast to uint8.

...

Define Matrices Before Assigning Indexed Variables

When generating C/C++ code from MATLAB, you cannot grow a variable by writing into
an element beyond its current size. Such indexing operations produce run-time errors.
You must define the matrix first before assigning values to its elements.

For example, the following initial assignment is not allowed for code generation:

g(3,2) = 14.6; % Not allowed for creating g

 % OK for assigning value once created

For more information about indexing matrices, see “Incompatibility with MATLAB in
Matrix Indexing Operations for Code Generation” on page 7-32.

5-6

 Eliminate Redundant Copies of Variables in Generated Code

Eliminate Redundant Copies of Variables in Generated Code

In this section...

“When Redundant Copies Occur” on page 5-7
“How to Eliminate Redundant Copies by Defining Uninitialized Variables” on page
5-7
“Defining Uninitialized Variables” on page 5-8

When Redundant Copies Occur

During C/C++ code generation, the code generator checks for statements that attempt to
access uninitialized memory. If it detects execution paths where a variable is used but is
potentially not defined, it generates a compile-time error. To prevent these errors, define
variables by assignment before using them in operations or returning them as function
outputs.

Note, however, that variable assignments not only copy the properties of the assigned
data to the new variable, but also initialize the new variable to the assigned value.
This forced initialization sometimes results in redundant copies in C/C++ code. To
eliminate redundant copies, define uninitialized variables by using the coder.nullcopy
function, as described in “How to Eliminate Redundant Copies by Defining Uninitialized
Variables” on page 5-7.

How to Eliminate Redundant Copies by Defining Uninitialized Variables

1 Define the variable with coder.nullcopy.
2 Initialize the variable before reading it.

When the uninitialized variable is an array, you must initialize all of its elements
before passing the array as an input to a function or operator — even if the function
or operator does not read from the uninitialized portion of the array.

What happens if you access uninitialized data?

Uninitialized memory contains arbitrary values. Therefore, accessing uninitialized
data may lead to segmentation violations or nondeterministic program behavior
(different runs of the same program may yield inconsistent results).

5-7

5 Defining MATLAB Variables for C/C++ Code Generation

Defining Uninitialized Variables

In the following code, the assignment statement X = zeros(1,N) not only defines X to
be a 1-by-5 vector of real doubles, but also initializes each element of X to zero.

function X = fcn %#codegen

N = 5;

X = zeros(1,N);

for i = 1:N

 if mod(i,2) == 0

 X(i) = i;

 else

 X(i) = 0;

 end

end

This forced initialization creates an extra copy in the generated code. To eliminate this
overhead, use coder.nullcopy in the definition of X:

function X = fcn2 %#codegen

N = 5;

X = coder.nullcopy(zeros(1,N));

for i = 1:N

 if mod(i,2) == 0

 X(i) = i;

 else

 X(i) = 0;

 end

end

5-8

 Reassignment of Variable Properties

Reassignment of Variable Properties

For C/C++ code generation, there are certain variables that you can reassign after the
initial assignment with a value of different class, size, or complexity:

Dynamically sized variables

A variable can hold values that have the same class and complexity but different sizes.
If the size of the initial assignment is not constant, the variable is dynamically sized in
generated code. For more information, see “Variable-Size Data”.

Variables reused in the code for different purposes

You can reassign the type (class, size, and complexity) of a variable after the initial
assignment if each occurrence of the variable can have only one type. In this case, the
variable is renamed in the generated code to create multiple independent variables.
For more information, see “Reuse the Same Variable with Different Properties” on page
5-10.

5-9

5 Defining MATLAB Variables for C/C++ Code Generation

Reuse the Same Variable with Different Properties

In this section...

“When You Can Reuse the Same Variable with Different Properties” on page 5-10
“When You Cannot Reuse Variables” on page 5-10
“Limitations of Variable Reuse” on page 5-13

When You Can Reuse the Same Variable with Different Properties

You can reuse (reassign) an input, output, or local variable with different class, size,
or complexity if the code generator can unambiguously determine the properties of
each occurrence of this variable during C/C++ code generation. If so, MATLAB creates
separate uniquely named local variables in the generated code. You can view these
renamed variables in the code generation report (see “MATLAB Code Variables in a
Report” on page 22-17).

A common example of variable reuse is in if-elseif-else or switch-case
statements. For example, the following function example1 first uses the variable t in an
if statement, where it holds a scalar double, then reuses t outside the if statement to
hold a vector of doubles.

function y = example1(u) %#codegen

if all(all(u>0))

 % First, t is used to hold a scalar double value

 t = mean(mean(u)) / numel(u);

 u = u - t;

end

% t is reused to hold a vector of doubles

t = find(u > 0);

y = sum(u(t(2:end-1)));

To compile this example and see how MATLAB renames the reused variable t, see
Variable Reuse in an if Statement.

When You Cannot Reuse Variables

You cannot reuse (reassign) variables if it is not possible to determine the class, size, and
complexity of an occurrence of a variable unambiguously during code generation. In this
case, variables cannot be renamed and a compilation error occurs.

5-10

 Reuse the Same Variable with Different Properties

For example, the following example2 function assigns a fixed-point value to x in the if
statement and reuses x to store a matrix of doubles in the else clause. It then uses x
after the if-else statement. This function generates a compilation error because after
the if-else statement, variable x can have different properties depending on which if-
else clause executes.

function y = example2(use_fixpoint, data) %#codegen

 if use_fixpoint

 % x is fixed-point

 x = fi(data, 1, 12, 3);

 else

 % x is a matrix of doubles

 x = data;

 end

 % When x is reused here, it is not possible to determine its

 % class, size, and complexity

 t = sum(sum(x));

 y = t > 0;

end

Variable Reuse in an if Statement

To see how MATLAB renames a reused variable t:

1 Create a MATLAB file example1.m containing the following code.

function y = example1(u) %#codegen

if all(all(u>0))

 % First, t is used to hold a scalar double value

 t = mean(mean(u)) / numel(u);

 u = u - t;

end

% t is reused to hold a vector of doubles

t = find(u > 0);

y = sum(u(t(2:end-1)));

end

2 Compile example1.

For example, to generate a MEX function, enter:

codegen -o example1x -report example1.m -args {ones(5,5)}

Note: codegen requires a MATLAB Coder license.

5-11

5 Defining MATLAB Variables for C/C++ Code Generation

When the compilation is complete, codegen generates a MEX function, example1x
in the current folder, and provides a link to the code generation report.

3 Open the code generation report.
4 In the MATLAB code pane of the code generation report, place your pointer over the

variable t inside the if statement.

The code generation report highlights both instances of t in the if statement
because they share the same class, size, and complexity. It displays the data type
information for t at this point in the code. Here, t is a scalar double.

5 In the MATLAB code pane of the report, place your pointer over the variable t
outside the for-loop.

This time, the report highlights both instances of t outside the if statement. The
report indicates that t might hold up to 25 doubles. The size of t is :25, that is, a
column vector containing a maximum of 25 doubles.

6 Click the Variables tab to view the list of variables used in example1.

5-12

 Reuse the Same Variable with Different Properties

The report displays a list of the variables in example1. There are two uniquely
named local variables t>1 and t>2.

7 In the list of variables, place your pointer over t>1.

The code generation report highlights both instances of t in the if statement.
8 In the list of variables, place your pointer over t>2

The code generation report highlights both instances of t outside the if statement.

Limitations of Variable Reuse

The following variables cannot be renamed in generated code:

• Persistent variables.
• Global variables.
• Variables passed to C code using coder.ref, coder.rref, coder.wref.
• Variables whose size is set using coder.varsize.
• Variables whose names are controlled using coder.cstructname.
• The index variable of a for-loop when it is used inside the loop body.
• The block outputs of a MATLAB Function block in a Simulink model.
• Chart-owned variables of a MATLAB function in a Stateflow® chart.

5-13

5 Defining MATLAB Variables for C/C++ Code Generation

Avoid Overflows in for-Loops

When memory integrity checks are enabled, if the code generator detects that a loop
variable might overflow on the last iteration of the for-loop, it reports an error.

To avoid this error, use the workarounds provided in the following table.

Loop conditions causing the error Workaround

• The loop counter increments by 1
• The end value equals the maximum

value of the integer type
• The loop is not covering the full range of

the integer type

Rewrite the loop so that the end value is
not equal to the maximum value of the
integer type. For example, replace:

N=intmax('int16')

for k=N-10:N

with:

for k=1:10

• The loop counter decrements by 1
• The end value equals the minimum

value of the integer type
• The loop is not covering the full range of

the integer type

Rewrite the loop so that the end value is
not equal to the minimum value of the
integer type. For example, replace:

N=intmin('int32')

for k=N+10:-1:N

with:

for k=10:-1:1

• The loop counter increments or
decrements by 1

• The start value equals the minimum or
maximum value of the integer type

• The end value equals the maximum or
minimum value of the integer type

The loop covers the full range of the integer
type.

Rewrite the loop casting the type of the
loop counter start, step, and end values to
a bigger integer or to double For example,
rewrite:

M= intmin('int16');

N= intmax('int16');

for k=M:N

 % Loop body

end

to

M= intmin('int16');

N= intmax('int16');

for k=int32(M):int32(N)

 % Loop body

5-14

 Avoid Overflows in for-Loops

Loop conditions causing the error Workaround
end

• The loop counter increments or
decrements by a value not equal to 1

• On last loop iteration, the loop variable
value is not equal to the end value

Note: The software error checking is
conservative. It may incorrectly report a
loop as being potentially infinite.

Rewrite the loop so that the loop variable
on the last loop iteration is equal to the end
value.

5-15

5 Defining MATLAB Variables for C/C++ Code Generation

Supported Variable Types

You can use the following data types for C/C++ code generation from MATLAB:

Type Description

char Character array
complex Complex data. Cast function takes real and imaginary

components
double Double-precision floating point
int8, int16, int32,
int64

Signed integer

logical Boolean true or false
single Single-precision floating point
struct Structure
uint8, uint16,
uint32, uint64

Unsigned integer

Fixed-point See “Fixed-Point Data Types”.

5-16

6

Defining Data for Code Generation

• “Data Definition for Code Generation” on page 6-2
• “Code Generation for Complex Data” on page 6-4
• “Code Generation for Character Arrays” on page 6-9
• “Array Size Restrictions for Code Generation” on page 6-10
• “Code Generation for Constants in Structures and Arrays” on page 6-11

6 Defining Data for Code Generation

Data Definition for Code Generation

To generate efficient standalone code, you must define the following types and classes of
data differently than you normally would when running your code in MATLAB.

Data What's Different More Information

Arrays Maximum number of
elements is restricted

“Array Size Restrictions for
Code Generation” on page
6-10

Complex numbers • Complexity of variables
must be set at time of
assignment and before
first use

• Expressions containing
a complex number or
variable evaluate to a
complex result, even if
the result is zero

Note: Because MATLAB
does not support complex
integer arithmetic, you
cannot generate code for
functions that use complex
integer arithmetic

“Code Generation for
Complex Data” on page
6-4

Characters Restricted to 8 bits of
precision

“Code Generation for
Character Arrays” on page
6-9

Enumerated data • Supports integer-based
enumerated types only

• Restricted use in
switch statements and
for-loops

“Enumerations”

Function handles • Using the same bound
variable to reference
different function

“Function Handles”

6-2

 Data Definition for Code Generation

Data What's Different More Information

handles can cause a
compile-time error.

• Cannot pass function
handles to or from
primary or extrinsic
functions

• Cannot view function
handles from the
debugger

6-3

6 Defining Data for Code Generation

Code Generation for Complex Data

In this section...

“Restrictions When Defining Complex Variables” on page 6-4
“Code Generation for Complex Data with Zero-Valued Imaginary Parts” on page
6-4
“Results of Expressions That Have Complex Operands” on page 6-8

Restrictions When Defining Complex Variables

For code generation, you must set the complexity of variables at the time of assignment.
Assign a complex constant to the variable or use the complex function. For example:

x = 5 + 6i; % x is a complex number by assignment.

y = complex(5,6); % y is the complex number 5 + 6i.

After assignment, you cannot change the complexity of a variable. Code generation for
the following function fails because x(k) = 3 + 4i changes the complexity of x.

function x = test1()

x = zeros(3,3); % x is real

for k = 1:numel(x)

 x(k) = 3 + 4i;

end

end

To resolve this issue, assign a complex constant to x.

function x = test1()

x = zeros(3,3)+ 0i; %x is complex

for k = 1:numel(x)

 x(k) = 3 + 4i;

end

end

Code Generation for Complex Data with Zero-Valued Imaginary Parts

For code generation, complex data that has all zero-valued imaginary parts remains
complex. This data does not become real. This behavior has the following implications:

6-4

 Code Generation for Complex Data

• In some cases, results from functions that sort complex data by absolute value can
differ from the MATLAB results. See “Functions That Sort Complex Values by
Absolute Value” on page 6-5.

• For functions that require that complex inputs are sorted by absolute value, complex
inputs with zero-valued imaginary parts must be sorted by absolute value. These
functions include ismember, union, intersect, setdiff, and setxor.

Functions That Sort Complex Values by Absolute Value

Functions that sort complex values by absolute value include sort, issorted,
sortrows, median, min, and max. These functions sort complex numbers by absolute
value even when the imaginary parts are zero. In general, sorting the absolute values
produces a different result than sorting the real parts. Therefore, when inputs to these
functions are complex with zero-valued imaginary parts in generated code, but real
in MATLAB, the generated code can produce different results than MATLAB. In the
following examples, the input to sort is real in MATLAB, but complex with zero-valued
imaginary parts in the generated code:

• You Pass Real Inputs to a Function Generated for Complex Inputs

1 Write this function:

function myout = mysort(A)

myout = sort(A);

end

2 Call mysort in MATLAB.

A = -2:2;

mysort(A)

ans =

 -2 -1 0 1 2

3 Generate a MEX function for complex inputs.

A = -2:2;

codegen mysort -args {complex(A)} -report

4 Call the MEX Function with real inputs.

mysort_mex(A)

ans =

6-5

6 Defining Data for Code Generation

 0 1 -1 2 -2

You generated the MEX function for complex inputs, therefore, it treats the
real inputs as complex numbers with zero-valued imaginary parts. It sorts the
numbers by the absolute values of the complex numbers. Because the imaginary
parts are zero, the MEX function returns the results to the MATLAB workspace
as real numbers. See “Inputs and Outputs for MEX Functions Generated for
Complex Arguments” on page 6-7.

• Input to sort Is Output from a Function That Returns Complex in Generated Code

1 Write this function:

function y = myfun(A)

x = eig(A);

y = sort(x,'descend');

The output from eig is the input to sort. In generated code, eig returns a
complex result. Therefore, in the generated code, x is complex.

2 Call myfun in MATLAB.

A = [2 3 5;0 5 5;6 7 4];

myfun(A)

ans =

 12.5777

 2.0000

 -3.5777

The result of eig is real. Therefore, the inputs to sort are real.
3 Generate a MEX function for complex inputs.

codegen myfun -args {complex(A)}

4 Call the MEX function.

myfun_mex(A)

ans =

 12.5777

 -3.5777

 2.0000

6-6

 Code Generation for Complex Data

In the MEX function, eig returns a complex result. Therefore, the inputs to
sort are complex. The MEX function sorts the inputs in descending order of the
absolute values.

Inputs and Outputs for MEX Functions Generated for Complex Arguments

For MEX functions created by MATLAB Coder:

• Suppose that you generate the MEX function for complex inputs. If you call the MEX
function with real inputs, the MEX function transforms the real inputs to complex
values with zero-valued imaginary parts.

• If the MEX function returns complex values that have all zero-valued imaginary
parts, the MEX function returns the values to the MATLAB workspace as real values.
For example, consider this function:

function y = foo()

 y = 1 + 0i; % y is complex with imaginary part equal to zero

end

If you generate a MEX function for foo and view the code generation report, you see
that y is complex.

codegen foo -report

If you run the MEX function, you see that in the MATLAB workspace, the result of
foo_mex is the real value 1.

z = foo_mex

ans =

 1

6-7

6 Defining Data for Code Generation

Results of Expressions That Have Complex Operands

In general, expressions that contain one or more complex operands produce a complex
result in generated code, even if the value of the result is zero. Consider the following line
of code:

z = x + y;

Suppose that at run time, x has the value 2 + 3i and y has the value 2 - 3i. In
MATLAB, this code produces the real result z = 4. During code generation, the types
for x and y are known, but their values are not known. Because either or both operands
in this expression are complex, z is defined as a complex variable requiring storage for a
real and an imaginary part. z equals the complex result 4 + 0i in generated code, not 4,
as in MATLAB code.

Exceptions to this behavior are:

• When the imaginary parts of complex results are zero, MEX functions return the
results to the MATLAB workspace as real values. See “Inputs and Outputs for MEX
Functions Generated for Complex Arguments” on page 6-7.

• When the imaginary part of the argument is zero, complex arguments to extrinsic
functions are real .

function y = foo()

 coder.extrinsic('sqrt')

 x = 1 + 0i; % x is complex

 y = sqrt(x); % x is real, y is real

end

• Functions that take complex arguments but produce real results return real values.

y = real(x); % y is the real part of the complex number x.

y = imag(x); % y is the real-valued imaginary part of x.

y = isreal(x); % y is false (0) for a complex number x.

• Functions that take real arguments but produce complex results return complex
values.

z = complex(x,y); % z is a complex number for a real x and y.

6-8

 Code Generation for Character Arrays

Code Generation for Character Arrays

The code generator translates the 16-bit Unicode encoding of a character in MATLAB
to an 8-bit encoding that the locale setting determines. The code generator does not
support characters that require more than 1 byte in MATLAB. This restriction applies to
character arrays that are passed between MATLAB and the code generator. For example,
the restriction applies to entry-point function inputs and to outputs from extrinsic calls.
For code generation, some MATLAB functions accept only 7-bit ASCII characters. See
“Functions and Objects Supported for C/C++ Code Generation — Alphabetical List” on
page 4-2.

If a character is not in the 7-bit ASCII codeset, casting the character to a numeric type,
such as double, produces a different result in the generated code than in MATLAB. A
best practice for code generation is to avoid performing arithmetic with characters.

More About
• “Locale Settings for MATLAB Process”

6-9

6 Defining Data for Code Generation

Array Size Restrictions for Code Generation

For code generation, the maximum number of elements of an array is constrained by the
code generator and the target hardware.

For fixed-size arrays and variable-size arrays that use static memory allocation, the
maximum number of elements is the smaller of:

• intmax('int32').
• The largest integer that fits in the C int data type on the target hardware.

For variable-size arrays that use dynamic memory allocation, the maximum number of
elements is the smaller of:

• intmax('int32').
• The largest power of 2 that fits in the C int data type on the target hardware.

These restrictions apply even on a 64-bit platform.

For a fixed-size array, if the number of elements exceeds the maximum, the code
generator reports an error at compile time. For a variable-size array, if the number of
elements exceeds the maximum during execution of the generated MEX in MATLAB,
the MEX code reports an error. Generated standalone code cannot report array size
violations.

See Also

• “Variable-Size Data”
• coder.HardwareImplementation

6-10

 Code Generation for Constants in Structures and Arrays

Code Generation for Constants in Structures and Arrays

The code generator does not recognize constant structure fields or array elements in the
following cases:

Fields or elements are assigned inside control constructs

In the following code, the code generator recognizes that the structure fields s.a and s.b
are constants.

function y = mystruct()

s.a = 3;

s.b = 5;

y = zeros(s.a,s.b);

If any structure field is assigned inside a control construct, the code generator does
not recognize the constant fields. This limitation also applies to arrays with constant
elements. Consider the following code:

function y = mystruct(x)

s.a = 3;

if x > 1

 s.b = 4;

else

 s.b = 5;

end

y = zeros(s.a,s.b);

The code generator does not recognize that s.a and s.b are constant. If variable-sizing
is enabled, y is treated as a variable-size array. If variable-sizing is disabled, the code
generator reports an error.

Constants are assigned to array elements using non-scalar indexing

In the following code, the code generator recognizes that a(1) is constant.

function y = myarray()

a = zeros(1,3);

a(1) = 20;

y = coder.const(a(1));

In the following code, because a(1) is assigned using non-scalar indexing, the code
generator does not recognize that a(1) is constant.

6-11

6 Defining Data for Code Generation

function y = myarray()

a = zeros(1,3);

a(1:2) = 20;

y = coder.const(a(1));

A function returns a structure or array that has constant and nonconstant elements

For an output structure that has both constant and nonconstant fields, the code
generator does not recognize the constant fields. This limitation also applies to arrays
that have constant and nonconstant elements. Consider the following code:

function y = mystruct_out(x)

s = create_structure(x);

y = coder.const(s.a);

function s = create_structure(x)

s.a = 10;

s.b = x;

Because create_structure returns a structure s that has one constant field and
one nonconstant field, the code generator does not recognize that s.a is constant. The
coder.const call fails because s.a is not constant.

6-12

7

Code Generation for Variable-Size
Data

• “What Is Variable-Size Data?” on page 7-2
• “Variable-Size Data Definition for Code Generation” on page 7-3
• “Bounded Versus Unbounded Variable-Size Data” on page 7-4
• “Control Memory Allocation of Variable-Size Data” on page 7-5
• “Specify Variable-Size Data Without Dynamic Memory Allocation” on page 7-6
• “Variable-Size Data in Code Generation Reports” on page 7-9
• “Define Variable-Size Data for Code Generation” on page 7-11
• “C Code Interface for Arrays” on page 7-17
• “Diagnose and Fix Variable-Size Data Errors” on page 7-22
• “Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on

page 7-26
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” on page

7-35

7 Code Generation for Variable-Size Data

What Is Variable-Size Data?

Variable-size data is data whose size can change at run time. By contrast, fixed-size data
is data whose size is known and locked at compile time and, therefore, cannot change at
run time.

For example, in the following MATLAB function nway, B is a variable-size array; its
length is not known at compile time.

function B = nway(A,n)

% Compute average of every N elements of A and put them in B.

if ((mod(numel(A),n) == 0) && (n >= 1 && n <= numel(A)))

 B = ones(1,numel(A)/n);

 k = 1;

 for i = 1 : numel(A)/n

 B(i) = mean(A(k + (0:n-1)));

 k = k + n;

 end

else

 error('n <= 0 or does not divide number of elements evenly');

end

7-2

 Variable-Size Data Definition for Code Generation

Variable-Size Data Definition for Code Generation

In the MATLAB language, data can vary in size. By contrast, the semantics of generated
code constrains the class, complexity, and shape of every expression, variable, and
structure field. Therefore, for code generation, you must use each variable consistently.
Each variable must:

• Be either complex or real (determined at first assignment)
• Have a consistent shape

For fixed-size data, the shape is the same as the size returned in MATLAB. For
example, if size(A) == [4 5], the shape of variable A is 4 x 5. For variable-size
data, the shape can be abstract. That is, one or more dimensions can be unknown
(such as 4x? or ?x?).

By default, the compiler detects code logic that attempts to change these fixed attributes
after initial assignments, and flags these occurrences as errors during code generation.
However, you can override this behavior by defining variables or structure fields as
variable-size data.

For more information, see “Bounded Versus Unbounded Variable-Size Data” on page
7-4

7-3

7 Code Generation for Variable-Size Data

Bounded Versus Unbounded Variable-Size Data

You can generate code for bounded and unbounded variable-size data. Bounded variable-
size data has fixed upper bounds; this data can be allocated statically on the stack
or dynamically on the heap. Unbounded variable-size data does not have fixed upper
bounds; this data must be allocated on the heap. If you use unbounded data, you must
use dynamic memory allocation so that the compiler:

• Does not check for upper bounds
• Allocates memory on the heap instead of the stack

You can control the memory allocation of variable-size data. For more information, see
“Control Memory Allocation of Variable-Size Data” on page 7-5.

7-4

 Control Memory Allocation of Variable-Size Data

Control Memory Allocation of Variable-Size Data

Data whose size (in bytes) is greater than or equal to the dynamic memory allocation
threshold is allocated on the heap. The default dynamic memory allocation threshold is
64 kilobytes. Data whose size is less than this threshold is allocated on the stack.

Dynamic memory allocation is an expensive operation; the performance cost might be
too high for small data sets. If you use small variable-size data sets or data that does
not change size at run time, disable dynamic memory allocation. See “Control Dynamic
Memory Allocation” on page 21-107.

You can control memory allocation globally for your application by modifying the
dynamic memory allocation threshold. See “Generate Code for a MATLAB Function
That Expands a Vector in a Loop” on page 21-110. You can control memory allocation
for individual variables by specifying upper bounds. See “Specifying Upper Bounds for
Variable-Size Data” on page 7-6.

7-5

7 Code Generation for Variable-Size Data

Specify Variable-Size Data Without Dynamic Memory Allocation

In this section...

“Fixing Upper Bounds Errors” on page 7-6
“Specifying Upper Bounds for Variable-Size Data” on page 7-6

Fixing Upper Bounds Errors

If the code generator cannot determine or compute the upper bound, you must specify an
upper bound. See “Specifying Upper Bounds for Variable-Size Data” on page 7-6 and
“Diagnosing and Fixing Errors in Detecting Upper Bounds” on page 7-24

Specifying Upper Bounds for Variable-Size Data

• “When to Specify Upper Bounds for Variable-Size Data” on page 7-6
• “Specifying Upper Bounds on the Command Line for Variable-Size Inputs” on page

7-6
• “Specifying Unknown Upper Bounds for Variable-Size Inputs” on page 7-7
• “Specifying Upper Bounds for Local Variable-Size Data” on page 7-7
• “Using a Matrix Constructor with Nonconstant Dimensions” on page 7-8

When to Specify Upper Bounds for Variable-Size Data

When using static allocation on the stack during code generation, the code generator
must be able to determine upper bounds for variable-size data. Specify the upper bounds
explicitly for variable-size data from external sources, such as inputs and outputs.

Specifying Upper Bounds on the Command Line for Variable-Size Inputs

Use the coder.typeof construct with the -args option on the codegen command line
(requires a MATLAB Coder license). For example:

codegen foo -args {coder.typeof(double(0),[3 100],1)}

This command specifies that the input to function foo is a matrix of real doubles
with two variable dimensions. The upper bound for the first dimension is 3; the upper
bound for the second dimension is 100. For a detailed explanation of this syntax, see
coder.typeof.

7-6

 Specify Variable-Size Data Without Dynamic Memory Allocation

Specifying Unknown Upper Bounds for Variable-Size Inputs

If you use dynamic memory allocation, you can specify that you don't know the upper
bounds of inputs. To specify an unknown upper bound, use the infinity constant Inf in
place of a numeric value. For example:

codegen foo -args {coder.typeof(double(0), [1 Inf])}

In this example, the input to function foo is a vector of real doubles without an upper
bound.

Specifying Upper Bounds for Local Variable-Size Data

When using static allocation, MATLAB uses a sophisticated analysis to calculate the
upper bounds of local data at compile time. However, when the analysis fails to detect an
upper bound or calculates an upper bound that is not precise enough for your application,
you need to specify upper bounds explicitly for local variables.

You do not need to specify upper bounds when using dynamic allocation on the heap. In
this case, MATLAB assumes variable-size data is unbounded and does not attempt to
determine upper bounds.

Constraining the Value of a Variable That Specifies Dimensions of Variable-Size Data

Use the assert function with relational operators to constrain the value of variables
that specify the dimensions of variable-size data. For example:

function y = dim_need_bound(n) %#codegen

assert (n <= 5);

L= ones(n,n);

M = zeros(n,n);

M = [L; M];

y = M;

This assert statement constrains input n to a maximum size of 5, defining L and M as
variable-sized matrices with upper bounds of 5 for each dimension.

Specifying the Upper Bounds for All Instances of a Local Variable

Use the coder.varsize function to specify the upper bounds for all instances of a local
variable in a function. For example:

function Y = example_bounds1(u) %#codegen

Y = [1 2 3 4 5];

7-7

7 Code Generation for Variable-Size Data

coder.varsize('Y',[1 10]);

if (u > 0)

 Y = [Y Y+u];

else

 Y = [Y Y*u];

end

The second argument of coder.varsize specifies the upper bound for each instance
of the variable specified in the first argument. In this example, the argument [1 10]
indicates that for every instance of Y:

• First dimension is fixed at size 1
• Second dimension can grow to an upper bound of 10

By default, coder.varsize assumes dimensions of 1 are fixed size. For more
information, see the coder.varsize reference page.

Using a Matrix Constructor with Nonconstant Dimensions

You can define a variable-size matrix by using a constructor with nonconstant
dimensions. For example:

function y = var_by_assign(u) %#codegen

if (u > 0)

 y = ones(3,u);

else

 y = zeros(3,1);

end

If you are not using dynamic memory allocation, you must also add an assert statement
to provide upper bounds for the dimensions. For example:

function y = var_by_assign(u) %#codegen

assert (u < 20);

if (u > 0)

 y = ones(3,u);

else

 y = zeros(3,1);

end

7-8

 Variable-Size Data in Code Generation Reports

Variable-Size Data in Code Generation Reports

In this section...

“What Reports Tell You About Size” on page 7-9
“How Size Appears in Code Generation Reports” on page 7-10
“How to Generate a Code Generation Report” on page 7-10

What Reports Tell You About Size

Code generation reports:

• Differentiate fixed-size from variable-size data
• Identify variable-size data with unknown upper bounds
• Identify variable-size data with fixed dimensions

If you define a variable-size array and then subsequently fix the dimensions of this
array in the code, the report appends * to the size of the variable. In the generated C
code, this variable appears as a variable-size array, but the size of its dimensions does
not change during execution.

• Provide guidance on how to fix size mismatch and upper bounds errors.

7-9

7 Code Generation for Variable-Size Data

How Size Appears in Code Generation Reports

:? means variable size,
unknown upper bound

No colon prefix (:)
 means fixed size

:100 means variable size,
upper bound = 100

* means that you declared y as variable size,
but subsequently fixed its dimensions

How to Generate a Code Generation Report

Add the -report option to your codegen command.

7-10

 Define Variable-Size Data for Code Generation

Define Variable-Size Data for Code Generation

In this section...

“When to Define Variable-Size Data Explicitly” on page 7-11
“Using a Matrix Constructor with Nonconstant Dimensions” on page 7-11
“Inferring Variable Size from Multiple Assignments” on page 7-12
“Defining Variable-Size Data Explicitly Using coder.varsize” on page 7-13

When to Define Variable-Size Data Explicitly

For code generation, you must assign variables to have a specific class, size, and
complexity before using them in operations or returning them as outputs. Generally, you
cannot reassign variable properties after the initial assignment. Therefore, attempts to
grow a variable or structure field after assigning it a fixed size might cause a compilation
error. In these cases, you must explicitly define the data as variable sized using one of
these methods:

Method See

Assign the data from a variable-size matrix
constructor such as

• ones

• zeros

• repmat

“Using a Matrix Constructor with
Nonconstant Dimensions” on page 7-11

Assign multiple, constant sizes to the
same variable before using (reading) the
variable.

“Inferring Variable Size from Multiple
Assignments” on page 7-12

Define all instances of a variable to be
variable sized

“Defining Variable-Size Data Explicitly
Using coder.varsize” on page 7-13

Using a Matrix Constructor with Nonconstant Dimensions

You can define a variable-size matrix by using a constructor with nonconstant
dimensions. For example:

7-11

7 Code Generation for Variable-Size Data

function y = var_by_assign(u) %#codegen

if (u > 0)

 y = ones(3,u);

else

 y = zeros(3,1);

end

If you are not using dynamic memory allocation, you must also add an assert statement
to provide upper bounds for the dimensions. For example:

function y = var_by_assign(u) %#codegen

assert (u < 20);

if (u > 0)

 y = ones(3,u);

else

 y = zeros(3,1);

end

Inferring Variable Size from Multiple Assignments

You can define variable-size data by assigning multiple, constant sizes to the same
variable before you use (read) the variable in your code. When MATLAB uses static
allocation on the stack for code generation, it infers the upper bounds from the largest
size specified for each dimension. When you assign the same size to a given dimension
across all assignments, MATLAB assumes that the dimension is fixed at that size. The
assignments can specify different shapes as well as sizes.

When dynamic memory allocation is used, MATLAB does not check for upper bounds; it
assumes variable-size data is unbounded.

Inferring Upper Bounds from Multiple Definitions with Different Shapes

function y = var_by_multiassign(u) %#codegen

if (u > 0)

 y = ones(3,4,5);

else

 y = zeros(3,1);

end

When static allocation is used, this function infers that y is a matrix with three
dimensions, where:

• First dimension is fixed at size 3

7-12

 Define Variable-Size Data for Code Generation

• Second dimension is variable with an upper bound of 4
• Third dimension is variable with an upper bound of 5

The code generation report represents the size of matrix y like this:

When dynamic allocation is used, the function analyzes the dimensions of y differently:

• First dimension is fixed at size 3
• Second and third dimensions are unbounded

In this case, the code generation report represents the size of matrix y like this:

Defining Variable-Size Data Explicitly Using coder.varsize

Use the function coder.varsize to define one or more variables or structure fields as
variable-size data. Optionally, you can also specify which dimensions vary along with
their upper bounds (see “Specifying Which Dimensions Vary” on page 7-14). For
example:

• Define B as a variable-size 2-by-2 matrix, where each dimension has an upper bound
of 64:

coder.varsize('B', [64 64]);

• Define B as a variable-size matrix:

coder.varsize('B');

When you supply only the first argument, coder.varsize assumes all dimensions of
B can vary and that the upper bound is size(B).

7-13

7 Code Generation for Variable-Size Data

For more information, see the coder.varsize reference page.

Specifying Which Dimensions Vary

You can use the function coder.varsize to specify which dimensions vary. For
example, the following statement defines B as a row vector whose first dimension is fixed
at 2, but whose second dimension can grow to an upper bound of 16:

coder.varsize('B',[2, 16],[0 1])

The third argument specifies which dimensions vary. This argument must be a logical
vector or a double vector containing only zeros and ones. Dimensions that correspond to
zeros or false have fixed size; dimensions that correspond to ones or true vary in size.
coder.varsize usually treats dimensions of size 1 as fixed (see “Defining Variable-Size
Matrices with Singleton Dimensions” on page 7-14).

For more information about the syntax, see the coder.varsize reference page.

Allowing a Variable to Grow After Defining Fixed Dimensions

Function var_by_if defines matrix Y with fixed 2-by-2 dimensions before first use
(where the statement Y = Y + u reads from Y). However, coder.varsize defines Y
as a variable-size matrix, allowing it to change size based on decision logic in the else
clause:

function Y = var_by_if(u) %#codegen

if (u > 0)

 Y = zeros(2,2);

 coder.varsize('Y');

 if (u < 10)

 Y = Y + u;

 end

else

 Y = zeros(5,5);

end

Without coder.varsize, MATLAB infers Y to be a fixed-size, 2-by-2 matrix and
generates a size mismatch error during code generation.

Defining Variable-Size Matrices with Singleton Dimensions

A singleton dimension is a dimension for which size(A,dim) = 1. Singleton dimensions
are fixed in size when:

7-14

 Define Variable-Size Data for Code Generation

• You specify a dimension with an upper bound of 1 in coder.varsize expressions.

For example, in this function, Y behaves like a vector with one variable-size
dimension:

function Y = dim_singleton(u) %#codegen

Y = [1 2];

coder.varsize('Y', [1 10]);

if (u > 0)

 Y = [Y 3];

else

 Y = [Y u];

end

• You initialize variable-size data with singleton dimensions using matrix constructor
expressions or matrix functions.

For example, in this function, both X and Y behave like vectors where only their
second dimensions are variable sized:

function [X,Y] = dim_singleton_vects(u) %#codegen

Y = ones(1,3);

X = [1 4];

coder.varsize('Y','X');

if (u > 0)

 Y = [Y u];

else

 X = [X u];

end

You can override this behavior by using coder.varsize to specify explicitly that
singleton dimensions vary. For example:

function Y = dim_singleton_vary(u) %#codegen

Y = [1 2];

coder.varsize('Y', [1 10], [1 1]);

if (u > 0)

 Y = [Y Y+u];

else

 Y = [Y Y*u];

end

In this example, the third argument of coder.varsize is a vector of ones, indicating
that each dimension of Y varies in size. For more information, see the coder.varsize
reference page.

7-15

7 Code Generation for Variable-Size Data

Defining Variable-Size Structure Fields

To define structure fields as variable-size arrays, use colon (:) as the index expression.
The colon (:) indicates that all elements of the array are variable sized. For example:

function y=struct_example() %#codegen

d = struct('values', zeros(1,0), 'color', 0);

data = repmat(d, [3 3]);

coder.varsize('data(:).values');

for i = 1:numel(data)

 data(i).color = rand-0.5;

 data(i).values = 1:i;

end

y = 0;

for i = 1:numel(data)

 if data(i).color > 0

 y = y + sum(data(i).values);

 end;

end

The expression coder.varsize('data(:).values') defines the field values inside
each element of matrix data to be variable sized.

Here are other examples:

• coder.varsize('data.A(:).B')

In this example, data is a scalar variable that contains matrix A. Each element of
matrix A contains a variable-size field B.

• coder.varsize('data(:).A(:).B')

This expression defines field B inside each element of matrix A inside each element of
matrix data to be variable sized.

7-16

 C Code Interface for Arrays

C Code Interface for Arrays

In this section...

“C Code Interface for Statically Allocated Arrays” on page 7-17
“C Code Interface for Dynamically Allocated Arrays” on page 7-18
“Utility Functions for Creating emxArray Data Structures” on page 7-20

C Code Interface for Statically Allocated Arrays

For statically allocated arrays, the generated code contains the definition of the array
and the size of the array.

For example, consider the MATLAB function myuniquetol.

function B = myuniquetol(A, tol) %#codegen

A = sort(A);

coder.varsize('B', [1 100], [0 1]);

B = A(1);

k = 1;

for i = 2:length(A)

 if abs(A(k) - A(i)) > tol

 B = [B A(i)];

 k = i;

 end

end

The statement coder.varsize('B', [1 100], [0 1]) specifies that B is a variable-
size array whose first dimension is fixed at 1 and second dimension can vary up to 100
elements. Without this statement, B is a dynamically allocated array.

Generate code for myuniquetol specifying that input A is a variable-size real double
vector whose first dimension is fixed at 1 and second dimension can vary up to 100
elements.

codegen -config:lib -report myuniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

In the generated code, the function declaration is:

extern void myuniquetol(const double A_data[], const int A_size[2], double tol,

 double B_data[], int B_size[2])

7-17

7 Code Generation for Variable-Size Data

The function signature declares the input argument A and the output argument
B. A_size contains the size of A. B_size contains the size of B after the call to
myuniquetol. Use B_size to determine the number of elements of B that you can access
after the call to myuniquetol. B_size[0] contains the size of the first dimension.
B_size[1] contains the size of the second dimension. Therefore, the number of elements
of B is B_size[0]*B_Size[1]. Even though B has 100 elements in the C code, only
B_size[0]*B_Size[1] elements contain valid data.

The following C main function shows how to call myuniquetol.

void main()

{

 double A[100], B[100];

 int A_size[2] = { 1, 100 };

 int B_size[2];

 int i;

 for (i = 0; i < 100; i++) {

 A[i] = (double)1/i;

 }

 myuniquetol(A, A_size, 0.1, B, B_size);

}

C Code Interface for Dynamically Allocated Arrays

In generated code, MATLAB represents dynamically allocated data as a structure type
called emxArray. An embeddable version of the MATLAB mxArray, the emxArray is a
family of data types, specialized for all base types.

emxArray Structure Definition

typedef struct emxArray_<baseTypedef>

{

 <baseType> *data;

 int *size;

 int allocatedSize;

 int numDimensions;

 boolean_T canFreeData;

} emxArray_<baseTypedef>;

baseTypedef is the predefined type in rtwtypes.h corresponding to baseType. For
example, here is the definition for an emxArray of base type double with unknown
upper bounds:

7-18

 C Code Interface for Arrays

typedef struct emxArray_real_T

{

 double *data;

 int *size;

 int allocatedSize;

 int numDimensions;

 boolean_T canFreeData;

} emxArray_real_T;

The predefined type corresponding to double is real_T. For more information on the
correspondence between built-in data types and predefined types in rtwtypes.h, see
“How MATLAB Coder Infers C/C++ Data Types” on page 27-9.

To define two variables, in1 and in2, of this type, use this statement:

emxArray_real_T *in1, *in2;

C Code Interface for Structure Fields

Field Description

*data Pointer to data of type <baseType>.
*size Pointer to first element of size vector. Length of

the vector equals the number of dimensions.
allocatedSize Number of elements currently allocated for the

array. If the size changes, MATLAB reallocates
memory based on the new size.

numDimensions Number of dimensions of the size vector, that
is, the number of dimensions you can access
without crossing into unallocated or unused
memory.

canFreeData Boolean flag indicating how to deallocate
memory:

• true – MATLAB deallocates memory
automatically

• false – Calling program determines when to
deallocate memory

7-19

7 Code Generation for Variable-Size Data

Utility Functions for Creating emxArray Data Structures

When you generate code that uses variable-size data, the code generator exports a
set of utility functions that you can use to create and interact with emxArrays in
your generated code. To call these functions in your main C function, include the
generated header file. For example, when you generate code for function foo, include
foo_emxAPI.h in your main C function. For more information, see the “Write a C Main
Function” section in “Using Dynamic Memory Allocation for an "Atoms" Simulation” on
page 21-116.

Note: The code generator exports emxArray utility functions only for variable-size
arrays that are entry-point function arguments or that are used by functions called by
coder.ceval.

Function Arguments Description

emxArray_<baseType>

*emxCreateWrapper_<baseType>

(...)

*data

num_rows

num_cols

Creates a new 2-
dimensional emxArray,
but does not allocate
it on the heap. Instead
uses memory provided
by the user and sets
canFreeData to
false so it does not
inadvertently free user
memory, such as the
stack.

emxArray_<baseType>

*emxCreateWrapperND_<baseType>

(...)

*data

numDimensions

*size

Same as
emxCreateWrapper_<baseType>,
except it creates a
new N-dimensional
emxArray.

emxArray_<baseType>

*emxCreate_<baseType> (...)

num_rows

num_cols

Creates a new two-
dimensional emxArray
on the heap, initialized
to zero. All data
elements have the

7-20

 C Code Interface for Arrays

Function Arguments Description

data type specified by
<baseType>.

emxArray_<baseType>

*emxCreateND_<baseType> (...)

numDimensions

*size

Same as
emxCreate_<baseType>,
except it creates a
new N-dimensional
emxArray on the heap.

void emxInitArray_<baseType>

(...)

**emxArray

numDimensions

Creates a new empty
emxArray on the heap.
All data elements have
the data type specified
by <baseType>.

void emxInitArray_<structType>

(...)

*structure Creates empty
emxArrays in a
structure.

void emxDestroyArray_<baseType>

(...)

*emxArray Frees dynamic
memory allocated by
emxCreate_<baseType>,
emxCreateND_<baseType>,
and
emxInitArray_baseType

functions.
void emxDestroyArray_<structType>

(...)

*structure Frees dynamic
memory allocated by
emxInitArray_<structType>

functions.

By default, when you generate C/C++ source code, static libraries, dynamic libraries, and
executables, MATLAB Coder generates an example C/C++ main function. The example
main function is a template that can help you to incorporate generated C/C++ code into
your application. If you generate code that uses dynamically allocated data, the example
main function includes calls to emxArray utility functions that create emxArrays
required for this data. The example main function also initializes emxArray data to zero
values. For more information, see “Incorporate Generated Code Using an Example Main
Function” on page 25-20.

7-21

7 Code Generation for Variable-Size Data

Diagnose and Fix Variable-Size Data Errors

In this section...

“Diagnosing and Fixing Size Mismatch Errors” on page 7-22
“Diagnosing and Fixing Errors in Detecting Upper Bounds” on page 7-24

Diagnosing and Fixing Size Mismatch Errors

Check your code for these issues:

Assigning Variable-Size Matrices to Fixed-Size Matrices

You cannot assign variable-size matrices to fixed-size matrices in generated code.
Consider this example:

function Y = example_mismatch1(n) %#codegen

assert(n < 10);

B = ones(n,n);

A = magic(3);

A(1) = mean(A(:));

if (n == 3)

 A = B;

end

Y = A;

Compiling this function produces this error:

??? Dimension 1 is fixed on the left-hand side

but varies on the right ...

There are several ways to fix this error:

• Allow matrix A to grow by adding the coder.varsize construct:

function Y = example_mismatch1_fix1(n) %#codegen

coder.varsize('A');

assert(n < 10);

B = ones(n,n);

A = magic(3);

A(1) = mean(A(:));

if (n == 3)

7-22

 Diagnose and Fix Variable-Size Data Errors

 A = B;

end

Y = A;

• Explicitly restrict the size of matrix B to 3-by-3 by modifying the assert statement:

function Y = example_mismatch1_fix2(n) %#codegen

coder.varsize('A');

assert(n == 3)

B = ones(n,n);

A = magic(3);

A(1) = mean(A(:));

if (n == 3)

 A = B;

end

Y = A;

• Use explicit indexing to make B the same size as A:

function Y = example_mismatch1_fix3(n) %#codegen

assert(n < 10);

B = ones(n,n);

A = magic(3);

A(1) = mean(A(:));

if (n == 3)

 A = B(1:3, 1:3);

end

Y = A;

Empty Matrix Reshaped to Match Variable-Size Specification

If you assign an empty matrix [] to variable-size data, MATLAB might silently reshape
the data in generated code to match a coder.varsize specification. For example:

function Y = test(u) %#codegen

Y = [];

coder.varsize(‘Y’, [1 10]);

if u < 0

 Y = [Y u];

end

In this example, coder.varsize defines Y as a column vector of up to 10 elements,
so its first dimension is fixed at size 1. The statement Y = [] designates the first
dimension of Y as 0, creating a mismatch. The right hand side of the assignment is an
empty matrix and the left hand side is a variable-size vector. In this case, MATLAB

7-23

7 Code Generation for Variable-Size Data

reshapes the empty matrix Y = [] in generated code to Y = zeros(1,0) so it matches
the coder.varsize specification.

Performing Binary Operations on Fixed and Variable-Size Operands

You cannot perform binary operations on operands of different sizes. Operands have
different sizes if one has fixed dimensions and the other has variable dimensions. For
example:

function z = mismatch_operands(n) %#codegen

assert(n >= 3 && n < 10);

x = ones(n,n);

y = magic(3);

z = x + y;

When you compile this function, you get an error because y has fixed dimensions (3 x 3),
but x has variable dimensions. Fix this problem by using explicit indexing to make x the
same size as y:

function z = mismatch_operands_fix(n) %#codegen

assert(n >= 3 && n < 10);

x = ones(n,n);

y = magic(3);

z = x(1:3,1:3) + y;

Diagnosing and Fixing Errors in Detecting Upper Bounds

Check your code for these issues:

Using Nonconstant Dimensions in a Matrix Constructor

You can define variable-size data by assigning a variable to a matrix with nonconstant
dimensions. For example:

function y = dims_vary(u) %#codegen

if (u > 0)

 y = ones(3,u);

else

 y = zeros(3,1);

end

However, compiling this function generates an error because you did not specify an upper
bound for u.

7-24

 Diagnose and Fix Variable-Size Data Errors

There are several ways to fix the problem:

• Enable dynamic memory allocation and recompile. During code generation, MATLAB
does not check for upper bounds when it uses dynamic memory allocation for variable-
size data.

• If you do not want to use dynamic memory allocation, add an assert statement
before the first use of u:

function y = dims_vary_fix(u) %#codegen

assert (u < 20);

if (u > 0)

 y = ones(3,u);

else

 y = zeros(3,1);

end

7-25

7 Code Generation for Variable-Size Data

Incompatibilities with MATLAB in Variable-Size Support for Code
Generation

In this section...

“Incompatibility with MATLAB for Scalar Expansion” on page 7-26
“Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays” on
page 7-28
“Incompatibility with MATLAB in Determining Size of Empty Arrays” on page 7-29
“Incompatibility with MATLAB in Determining Class of Empty Arrays” on page 7-30
“Incompatibility with MATLAB in Vector-Vector Indexing” on page 7-31
“Incompatibility with MATLAB in Matrix Indexing Operations for Code Generation” on
page 7-32
“Incompatibility with MATLAB in Concatenating Variable-Size Matrices” on page
7-33
“Differences When Curly-Brace Indexing of Variable-Size Cell Array Inside
Concatenation Returns No Elements” on page 7-33
“Dynamic Memory Allocation Not Supported for MATLAB Function Blocks” on page
7-34

Incompatibility with MATLAB for Scalar Expansion

Scalar expansion is a method of converting scalar data to match the dimensions of vector
or matrix data. Except for some matrix operators, MATLAB arithmetic operators work
on corresponding elements of arrays with equal dimensions. For vectors and rectangular
arrays, both operands must be the same size unless one is a scalar. If one operand is a
scalar and the other is not, MATLAB applies the scalar to every element of the other
operand—this property is known as scalar expansion.

During code generation, the standard MATLAB scalar expansion rules apply except
when operating on two variable-size expressions. In this case, both operands must be
the same size. The generated code does not perform scalar expansion even if one of the
variable-size expressions turns out to be scalar at run time. Instead, it generates a size
mismatch error at run time for MEX functions. Run-time error checking does not occur
for non-MEX builds; the generated code will have unspecified behavior.

7-26

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

For example, in the following function, z is scalar for the switch statement case 0 and
case 1. MATLAB applies scalar expansion when evaluating y(:) = z; for these two
cases.

function y = scalar_exp_test_err1(u) %#codegen

y = ones(3);

switch u

 case 0

 z = 0;

 case 1

 z = 1;

 otherwise

 z = zeros(3);

end

y(:) = z;

When you generate code for this function, the code generator determines that z is
variable size with an upper bound of 3.

If you run the MEX function with u equal to zero or one, even though z is scalar at run
time, the generated code does not perform scalar expansion and a run-time error occurs.

scalar_exp_test_err1_mex(0)

Sizes mismatch: 9 ~= 1.

Error in scalar_exp_test_err1 (line 11)

7-27

7 Code Generation for Variable-Size Data

y(:) = z;

Workaround

Use indexing to force z to be a scalar value:

function y = scalar_exp_test_err1(u) %#codegen

y = ones(3);

switch u

 case 0

 z = 0;

 case 1

 z = 1;

 otherwise

 z = zeros(3);

end

y(:) = z(1);

Incompatibility with MATLAB in Determining Size of Variable-Size N-D
Arrays

For variable-size N-D arrays, the size function can return a different result in generated
code than in MATLAB. In generated code, size(A) returns a fixed-length output
because it does not drop trailing singleton dimensions of variable-size N-D arrays. By
contrast, size(A) in MATLAB returns a variable-length output because it drops trailing
singleton dimensions.

For example, if the shape of array A is :?x:?x:? and size(A,3)==1, size(A) returns:

• Three-element vector in generated code
• Two-element vector in MATLAB code

Workarounds

If your application requires generated code to return the same size of variable-size N-D
arrays as MATLAB code, consider one of these workarounds:

• Use the two-argument form of size.

For example, size(A,n) returns the same answer in generated code and MATLAB
code.

• Rewrite size(A):

7-28

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

B = size(A);

X = B(1:ndims(A));

This version returns X with a variable-length output. However, you cannot pass
a variable-size X to matrix constructors such as zeros that require a fixed-size
argument.

Incompatibility with MATLAB in Determining Size of Empty Arrays

The size of an empty array in generated code might be different from its size in MATLAB
source code. The size might be 1x0 or 0x1 in generated code, but 0x0 in MATLAB.
Therefore, you should not write code that relies on the specific size of empty matrices.

For example, consider the following code:

function y = foo(n) %#codegen

x = [];

i = 0;

while (i < 10)

 x = [5 x];

 i = i + 1;

end

if n > 0

 x = [];

end

y = size(x);

end

Concatenation requires its operands to match on the size of the dimension that is not
being concatenated. In the preceding concatenation the scalar value has size 1x1 and x
has size 0x0. To support this use case, the code generator determines the size for x as [1
x :?]. Because there is another assignment x = [] after the concatenation, the size of
x in the generated code is 1x0 instead of 0x0.

For incompatibilities with MATLAB in determining the size of an empty array that
results from deleting elements of an array, see “Size of Empty Array That Results from
Deleting Elements of an Array” on page 2-10.

Workaround

If your application checks whether a matrix is empty, use one of these workarounds:

• Rewrite your code to use the isempty function instead of the size function.

7-29

7 Code Generation for Variable-Size Data

• Instead of using x=[] to create empty arrays, create empty arrays of a specific size
using zeros. For example:

function y = test_empty(n) %#codegen

x = zeros(1,0);

i=0;

while (i < 10)

 x = [5 x];

 i = i + 1;

end

if n > 0

 x = zeros(1,0);

end

y=size(x);

end

Incompatibility with MATLAB in Determining Class of Empty Arrays

The class of an empty array in generated code can be different from its class in MATLAB
source code. Therefore, do not write code that relies on the class of empty matrices.

For example, consider the following code:

function y = fun(n)

x = [];

if n > 1

 x = ['a' x];

end

y=class(x);

end

fun(0) returns double in MATLAB, but char in the generated code. When the
statement n > 1 is false, MATLAB does not execute x = ['a' x]. The class of x
is double, the class of the empty array. However, the code generator considers all
execution paths. It determines that based on the statement x = ['a' x], the class of x
is char.

Workaround

Instead of using x=[] to create an empty array, create an empty array of a specific class.
For example, use blanks(0) to create an empty array of characters.

function y = fun(n)

x = blanks(0);

if n > 1

7-30

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

 x = ['a' x];

end

y=class(x);

end

Incompatibility with MATLAB in Vector-Vector Indexing

In vector-vector indexing, you use one vector as an index into another vector. When
either vector is variable sized, you might get a run-time error during code generation.
Consider the index expression A(B). The general rule for indexing is that size(A(B))
== size(B). However, when both A and B are vectors, MATLAB applies a special rule:
use the orientation of A as the orientation of the output. For example, if size(A) == [1
5] and size(B) == [3 1], then size(A(B)) == [1 3].

In this situation, if the code generator detects that both A and B are vectors at compile
time, it applies the special rule and gives the same result as MATLAB. However, if either
A or B is a variable-size matrix (has shape ?x?) at compile time, the code generator
applies only the general indexing rule. Then, if both A and B become vectors at run
time, the code generator reports a run-time error when you run the MEX function. Run-
time error checking does not occur for non-MEX builds; the generated code will have
unspecified behavior. It is best practice to generate and test a MEX function before
generating C code.

Workaround

Force your data to be a vector by using the colon operator for indexing: A(B(:)). For
example, suppose your code intentionally toggles between vectors and regular matrices at
run time. You can do an explicit check for vector-vector indexing:

...

if isvector(A) && isvector(B)

 C = A(:);

 D = C(B(:));

else

 D = A(B);

end

...

The indexing in the first branch specifies that C and B(:) are compile-time vectors. As a
result, the code generator applies the standard vector-vector indexing rule.

7-31

7 Code Generation for Variable-Size Data

Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation

The following limitation applies to matrix indexing operations for code generation:

• Initialization of the following style:

for i = 1:10

 M(i) = 5;

end

In this case, the size of M changes as the loop is executed. Code generation does not
support increasing the size of an array over time.

For code generation, preallocate M as highlighted in this code.

M = zeros(1,10);

for i = 1:10

 M(i) = 5;

end

The following limitation applies to matrix indexing operations for code generation when
dynamic memory allocation is disabled:

• M(i:j) where i and j change in a loop

During code generation, memory is not dynamically allocated for the size of the
expressions that change as the program executes. To implement this behavior, use
for-loops as shown:

...

M = ones(10,10);

for i=1:10

 for j = i:10

 M(i,j) = 2*M(i,j);

 end

end

...

Note: The matrix M must be defined before entering the loop, as shown in the
highlighted code.

7-32

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

Incompatibility with MATLAB in Concatenating Variable-Size Matrices

For code generation, when you concatenate variable-size arrays, the dimensions that are
not being concatenated must match exactly.

Differences When Curly-Brace Indexing of Variable-Size Cell Array Inside
Concatenation Returns No Elements

Suppose that:

• c is a variable-size cell array.
• You access the contents of c by using curly braces. For example, c{2:4}.
• You include the results in concatenation. For example, [a c{2:4} b].
• c{I} returns no elements. Either c is empty or the indexing inside the curly braces

produces an empty result.

For these conditions, MATLAB omits c{I} from the concatenation. For example, [a
c{I} b] becomes [a b]. The code generator treats c{I} as the empty array [c{I}].
The concatenation becomes [...[c{i}]...]. This concatenation then omits the array
[c{I}]. So that the properties of [c{I}] are compatible with the concatenation [...
[c{i}]...], the code generator assigns the class, size, and complexity of [c{I}]
according to these rules:

• The class and complexity are the same as the base type of the cell array.
• The size of the second dimension is always 0.
• For the rest of the dimensions, the size of Ni depends on whether the corresponding

dimension in the base type is fixed or variable size.

• If the corresponding dimension in the base type is variable size, the dimension has
size 0 in the result.

• If the corresponding dimension in the base type is fixed size, the dimension has
that size in the result.

Suppose that c has a base type with class int8 and size:10x7x8x:?. In the generated
code, the class of [c{I}] is int8. The size of [c{I}] is 0x0x8x0. The second dimension
is 0. The first and last dimensions are 0 because those dimensions are variable size in the
base type. The third dimension is 8 because the size of the third dimension of the base
type is a fixed size 8.

7-33

7 Code Generation for Variable-Size Data

Inside concatenation, if curly-brace indexing of a variable-size cell array returns no
elements, the generated code can have the following differences from MATLAB:

• The class of [...c{i}...] in the generated code can differ from the class in
MATLAB.

When c{I} returns no elements, MATLAB removes c{I} from the concatenation.
Therefore, c{I} does not affect the class of the result. MATLAB determines the class
of the result based on the classes of the remaining arrays, according to a precedence
of classes. See “Valid Combinations of Unlike Classes”. In the generated code, the
class of [c{I}] affects the class of the result of the overall concatenation [...
[c{I}]...] because the code generator treats c{I} as [c{I}]. The previously
described rules determine the class of [c{I}].

• In the generated code, the size of [c{I}] can differ from the size in MATLAB.

In MATLAB, the concatenation [c{I}] is a 0x0 double. In the generated code, the
previously described rules determine the size of [c{I}].

Dynamic Memory Allocation Not Supported for MATLAB Function Blocks

You cannot use dynamic memory allocation for variable-size data in MATLAB Function
blocks. Use bounded instead of unbounded variable-size data.

7-34

 Variable-Sizing Restrictions for Code Generation of Toolbox Functions

Variable-Sizing Restrictions for Code Generation of Toolbox
Functions

In this section...

“Common Restrictions” on page 7-35
“Toolbox Functions with Restrictions For Variable-Size Data” on page 7-36

Common Restrictions

The following common restrictions apply to multiple toolbox functions, but only for code
generation. To determine which of these restrictions apply to specific library functions,
see the table in “Toolbox Functions with Restrictions For Variable-Size Data” on page
7-36.

Variable-length vector restriction

Inputs to the library function must be variable-length vectors or fixed-size vectors.
A variable-length vector is a variable-size array that has the shape 1x:n or :nx1
(one dimension is variable sized and the other is fixed at size 1). Other shapes are not
permitted, even if they are vectors at run time.

Automatic dimension restriction

When the function selects the working dimension automatically, it bases the selection
on the upper bounds for the dimension sizes. In the case of the sum function, sum(X)
selects its working dimension automatically, while sum(X, dim) uses dim as the explicit
working dimension.

For example, if X is a variable-size matrix with dimensions 1x:3x:5, sum(x) behaves
like sum(X,2) in generated code. In MATLAB, it behaves like sum(X,2) provided
size(X,2) is not 1. In MATLAB, when size(X,2) is 1, sum(X) behaves like
sum(X,3). Consequently, you get a run-time error if an automatically selected working
dimension assumes a length of 1 at run time.

To avoid the issue, specify the intended working dimension explicitly as a constant value.

Array-to-vector restriction

The function issues an error when a variable-size array that is not a variable-length
vector assumes the shape of a vector at run time. To avoid the issue, specify the input
explicitly as a variable-length vector instead of a variable-size array.

7-35

7 Code Generation for Variable-Size Data

Array-to-scalar restriction

The function issues an error if a variable-size array assumes a scalar value at run time.
To avoid this issue, specify scalars as fixed size.

Toolbox Functions with Restrictions For Variable-Size Data

The following table list functions that have code generation restrictions for variable-size
data. For additional restrictions for these functions, and restrictions for all functions and
objects supported for code generation, see “Functions and Objects Supported for C/C++
Code Generation — Alphabetical List” on page 4-2.

Function Restrictions for Variable-Size Data

all • See “Automatic dimension restriction” on page 7-35.
• An error occurs if you pass the first argument a

variable-size matrix that is 0-by-0 at run time.
any • See “Automatic dimension restriction” on page 7-35.

• An error occurs if you pass the first argument a
variable-size matrix that is 0-by-0 at run time.

bsxfun • Dimensions expand only where one input array or the
other has a fixed length of 1.

cat • Dimension argument must be a constant.
• An error occurs if variable-size inputs are empty at run

time.
conv • See “Variable-length vector restriction” on page

7-35.
• Input vectors must have the same orientation, either

both row vectors or both column vectors.
cov • For cov(X), see “Array-to-vector restriction” on page

7-35.
cross • Variable-size array inputs that become vectors at run

time must have the same orientation.
deconv • For both arguments, see “Variable-length vector

restriction” on page 7-35.

7-36

 Variable-Sizing Restrictions for Code Generation of Toolbox Functions

Function Restrictions for Variable-Size Data

detrend • For first argument for row vectors only, see “Array-to-
vector restriction” on page 7-35 .

diag • See “Array-to-vector restriction” on page 7-35 .
diff • See “Automatic dimension restriction” on page 7-35.

• Length of the working dimension must be greater than
the difference order input when the input is variable
sized. For example, if the input is a variable-size matrix
that is 3-by-5 at run time, diff(x,2,1) works but
diff(x,5,1) generates a run-time error.

fft • See “Automatic dimension restriction” on page 7-35.
filter • For first and second arguments, see “Variable-length

vector restriction” on page 7-35.
• See “Automatic dimension restriction” on page 7-35.

hist • For second argument, see “Variable-length vector
restriction” on page 7-35.

• For second input argument, see “Array-to-scalar
restriction” on page 7-36.

histc • See “Automatic dimension restriction” on page 7-35.
ifft • See “Automatic dimension restriction” on page 7-35.
ind2sub • First input (the size vector input) must be fixed size.
interp1 • For the xq input, see “Array-to-vector restriction” on

page 7-35.
• If v becomes a row vector at run time, the array to

vector restriction applies. If v becomes a column vector
at run time, this restriction does not apply.

ipermute • Order input must be fixed size.
issorted • For optional rows input, see “Variable-length vector

restriction” on page 7-35.
magic • Argument must be a constant.

• Output can be fixed-size matrices only.
max • See “Automatic dimension restriction” on page 7-35.

7-37

7 Code Generation for Variable-Size Data

Function Restrictions for Variable-Size Data

mean • See “Automatic dimension restriction” on page 7-35.
• An error occurs if you pass as the first argument a

variable-size matrix that is 0-by-0 at run time.
median • See “Automatic dimension restriction” on page 7-35.

• An error occurs if you pass as the first argument a
variable-size matrix that is 0-by-0 at run time.

min • See “Automatic dimension restriction” on page 7-35.
mode • See “Automatic dimension restriction” on page 7-35.

• An error occurs if you pass as the first argument a
variable-size matrix that is 0-by-0 at run time.

mtimes • When an input is variable-size, MATLAB determines
whether to generate code for a general matrix*matrix
multiplication or a scalar*matrix multiplication, based
on whether one of the arguments is a fixed-size scalar.
If neither argument is a fixed-size scalar, the inner
dimensions of the two arguments must agree even if a
variable-size matrix input is a scalar at run time.

nchoosek • The second input, k, must be a fixed-size scalar.
• The second input, k, must be a constant for static

allocation. If you enable dynamic allocation, the second
input can be a variable.

• You cannot create a variable-size array by passing in a
variable, k, unless you enable dynamic allocation.

permute • Order input must be fixed-size.
planerot • Input must be a fixed-size, two-element column vector.

It cannot be a variable-size array that takes on the size
2-by-1 at run time.

poly • See “Variable-length vector restriction” on page
7-35.

polyfit • For first and second arguments, see “Variable-length
vector restriction” on page 7-35.

7-38

 Variable-Sizing Restrictions for Code Generation of Toolbox Functions

Function Restrictions for Variable-Size Data

prod • See “Automatic dimension restriction” on page 7-35.
• An error occurs if you pass as the first argument a

variable-size matrix that is 0-by-0 at run time.
rand • For an upper-bounded variable N, rand(1,N) produces

a variable-length vector of 1x:M where M is the upper
bound on N.

• For an upper-bounded variable N, rand([1 N]) may
produce a variable-length vector of :1x:M where M is the
upper bound on N.

randi • For an upper-bounded variable N, randi(imax,1,N)
produces a variable-length vector of 1x:M where M is the
upper bound on N.

• For an upper-bounded variable N, randi(imax,[1 N])
may produce a variable-length vector of :1x:M where M
is the upper bound on N.

randn • For an upper-bounded variable N, randn(1,N) produces
a variable-length vector of 1x:M where M is the upper
bound on N.

• For an upper-bounded variable N, randn([1 N]) may
produce a variable-length vector of :1x:M where M is the
upper bound on N.

reshape • If the input is a variable-size array and the output
array has at least one fixed-length dimension, do not
specify the output dimension sizes in a size vector sz.
Instead, specify the output dimension sizes as scalar
values, sz1,...,szN. Specify fixed-size dimensions as
constants.

• When the input is a variable-size empty array, the
maximum dimension size of the output array (also
empty) cannot be larger than that of the input.

roots • See “Variable-length vector restriction” on page
7-35.

7-39

7 Code Generation for Variable-Size Data

Function Restrictions for Variable-Size Data

shiftdim • If you do not supply the second argument, the number
of shifts is determined at compilation time by the upper
bounds of the dimension sizes. Consequently, at run
time the number of shifts is constant.

• An error occurs if the dimension that is shifted to the
first dimension has length 1 at run time. To avoid the
error, supply the number of shifts as the second input
argument (must be a constant).

• First input argument must have the same number of
dimensions when you supply a positive number of shifts.

std • See “Automatic dimension restriction” on page 7-35.
• An error occurs if you pass a variable-size matrix with

0-by-0 dimensions at run time.
sub2ind • First input (the size vector input) must be fixed size.
sum • See “Automatic dimension restriction” on page 7-35.

• An error occurs if you pass as the first argument a
variable-size matrix that is 0-by-0 at run time.

trapz • See “Automatic dimension restriction” on page 7-35.
• An error occurs if you pass as the first argument a

variable-size matrix that is 0-by-0 at run time.
typecast • See “Variable-length vector restriction” on page 7-35

on first argument.
var • See “Automatic dimension restriction” on page 7-35.

• An error occurs if you pass a variable-size matrix with
0-by-0 dimensions at run time.

7-40

8

Code Generation for MATLAB
Structures

• “Structure Definition for Code Generation” on page 8-2
• “Structure Operations Allowed for Code Generation” on page 8-3
• “Define Scalar Structures for Code Generation” on page 8-4
• “Define Arrays of Structures for Code Generation” on page 8-6
• “Index Substructures and Fields” on page 8-8
• “Assign Values to Structures and Fields” on page 8-10

8 Code Generation for MATLAB Structures

Structure Definition for Code Generation

To generate efficient standalone code for structures, you must define and use structures
differently than you normally would when running your code in the MATLAB
environment:

What's Different More Information

Use a restricted set of operations. “Structure Operations Allowed for Code
Generation” on page 8-3

Observe restrictions on properties and
values of scalar structures.

“Define Scalar Structures for Code
Generation” on page 8-4

Make structures uniform in arrays. “Define Arrays of Structures for Code
Generation” on page 8-6

Reference structure fields individually
during indexing.

“Index Substructures and Fields” on page
8-8

Avoid type mismatch when assigning
values to structures and fields.

“Assign Values to Structures and Fields” on
page 8-10

8-2

 Structure Operations Allowed for Code Generation

Structure Operations Allowed for Code Generation

To generate efficient standalone code for MATLAB structures, you are restricted to the
following operations:

• Define structures as local and persistent variables by assignment and using the
struct function

• Index structure fields using dot notation
• Define primary function inputs as structures
• Pass structures to local functions

8-3

8 Code Generation for MATLAB Structures

Define Scalar Structures for Code Generation

In this section...

“Restrictions When Defining Scalar Structures by Assignment” on page 8-4
“Adding Fields in Consistent Order on Each Control Flow Path” on page 8-4
“Restriction on Adding New Fields After First Use” on page 8-5

Restrictions When Defining Scalar Structures by Assignment

When you define a scalar structure by assigning a variable to a preexisting structure,
you do not need to define the variable before the assignment. However, if you already
defined that variable, it must have the same class, size, and complexity as the structure
you assign to it. In the following example, p is defined as a structure that has the same
properties as the predefined structure S:

...

S = struct('a', 0, 'b', 1, 'c', 2);

p = S;

...

Adding Fields in Consistent Order on Each Control Flow Path

When you create a structure, you must add fields in the same order on each control flow
path. For example, the following code generates a compiler error because it adds the
fields of structure x in a different order in each if statement clause:

function y = fcn(u) %#codegen

if u > 0

 x.a = 10;

 x.b = 20;

else

 x.b = 30; % Generates an error (on variable x)

 x.a = 40;

end

y = x.a + x.b;

In this example, the assignment to x.a comes before x.b in the first if statement
clause, but the assignments appear in reverse order in the else clause. Here is the
corrected code:

8-4

 Define Scalar Structures for Code Generation

function y = fcn(u) %#codegen

if u > 0

 x.a = 10;

 x.b = 20;

else

 x.a = 40;

 x.b = 30;

end

y = x.a + x.b;

Restriction on Adding New Fields After First Use

You cannot add fields to a structure after you perform the following operations on the
structure:

• Reading from the structure
• Indexing into the structure array
• Passing the structure to a function

For example, consider this code:

...

x.c = 10; % Defines structure and creates field c

y = x; % Reads from structure

x.d = 20; % Generates an error

...

In this example, the attempt to add a new field d after reading from structure x
generates an error.

This restriction extends across the structure hierarchy. For example, you cannot add
a field to a structure after operating on one of its fields or nested structures, as in this
example:

function y = fcn(u) %#codegen

x.c = 10;

y = x.c;

x.d = 20; % Generates an error

In this example, the attempt to add a new field d to structure x after reading from the
structure's field c generates an error.

8-5

8 Code Generation for MATLAB Structures

Define Arrays of Structures for Code Generation

In this section...

“Ensuring Consistency of Fields” on page 8-6
“Using repmat to Define an Array of Structures with Consistent Field Properties” on
page 8-6
“Defining an Array of Structures by Using struct” on page 8-7
“Defining an Array of Structures Using Concatenation” on page 8-7

Ensuring Consistency of Fields

For code generation, when you create an array of MATLAB structures, corresponding
fields in the array elements must have the same size, type, and complexity.

Once you have created the array of structures, you can make the structure fields
variable-size using coder.varsize. For more information, see “Declare a Variable-Size
Structure Field.”.

Using repmat to Define an Array of Structures with Consistent Field
Properties

You can create an array of structures from a scalar structure by using the MATLAB
repmat function, which replicates and tiles an existing scalar structure:

1 Create a scalar structure, as described in “Define Scalar Structures for Code
Generation” on page 8-4.

2 Call repmat, passing the scalar structure and the dimensions of the array.
3 Assign values to each structure using standard array indexing and structure dot

notation.

For example, the following code creates X, a 1-by-3 array of scalar structures. Each
element of the array is defined by the structure s, which has two fields, a and b:

...

s.a = 0;

s.b = 0;

X = repmat(s,1,3);

8-6

 Define Arrays of Structures for Code Generation

X(1).a = 1;

X(2).a = 2;

X(3).a = 3;

X(1).b = 4;

X(2).b = 5;

X(3).b = 6;

...

Defining an Array of Structures by Using struct

To create an array of structures using the struct function, specify the field value
arguments as cell arrays. Each cell array element is the value of the field in the
corresponding structure array element. For code generation, corresponding fields in
the structures must have the same type. Therefore, the elements in a cell array of field
values must have the same type.

For example, the following code creates a 1-by-3 structure array. For each structure in
the array of structures, a has type double and b has type char.

s = struct('a', {1 2 3}, 'b', {'a' 'b' 'c'});

Defining an Array of Structures Using Concatenation

To create a small array of structures, you can use the concatenation operator, square
brackets ([]), to join one or more structures into an array (see “Concatenating
Matrices”). For code generation, the structures that you concatenate must have the same
size, class, and complexity.

For example, the following code uses concatenation and a local function to create the
elements of a 1-by-3 structure array:

...

W = [sab(1,2) sab(2,3) sab(4,5)];

function s = sab(a,b)

 s.a = a;

 s.b = b;

...

8-7

8 Code Generation for MATLAB Structures

Index Substructures and Fields

Use these guidelines when indexing substructures and fields for code generation:

Reference substructure field values individually using dot notation

For example, the following MATLAB code uses dot notation to index fields and
substructures:

...

substruct1.a1 = 15.2;

substruct1.a2 = int8([1 2;3 4]);

mystruct = struct('ele1',20.5,'ele2',single(100),

 'ele3',substruct1);

substruct2 = mystruct;

substruct2.ele3.a2 = 2*(substruct1.a2);

...

The generated code indexes elements of the structures in this example by resolving
symbols as follows:

Dot Notation Symbol Resolution

substruct1.a1 Field a1 of local structure substruct1
substruct2.ele3.a1 Value of field a1 of field ele3, a substructure of local structure

substruct2

substruct2.ele3.a2(1,1) Value in row 1, column 1 of field a2 of field ele3, a substructure
of local structure substruct2

Reference field values individually in structure arrays

To reference the value of a field in a structure array, you must index into the array to
the structure of interest and then reference that structure's field individually using dot
notation, as in this example:

...

y = X(1).a % Extracts the value of field a

 % of the first structure in array X

...

8-8

 Index Substructures and Fields

To reference all the values of a particular field for each structure in an array, use this
notation in a for loop, as in this example:

...

s.a = 0;

s.b = 0;

X = repmat(s,1,5);

for i = 1:5

 X(i).a = i;

 X(i).b = i+1;

end

This example uses the repmat function to define an array of structures, each with two
fields a and b as defined by s. See “Define Arrays of Structures for Code Generation” on
page 8-6 for more information.

Do not reference fields dynamically

You cannot reference fields in a structure by using dynamic names, which express the
field as a variable expression that MATLAB evaluates at run time (see “Generate Field
Names from Variables”).

8-9

8 Code Generation for MATLAB Structures

Assign Values to Structures and Fields

When assigning values to a structure, substructure, or field for code generation, use
these guidelines:

Field properties must be consistent across structure-to-structure assignments

If: Then:

Assigning one structure to another
structure.

Define each structure with the same
number, type, and size of fields.

Assigning one structure to a substructure
of a different structure and vice versa.

Define the structure with the same
number, type, and size of fields as the
substructure.

Assigning an element of one structure to an
element of another structure.

The elements must have the same type and
size.

For structures with constant fields, do not assign field values inside control flow constructs

In the following code, the code generator recognizes that the structure fields s.a and s.b
are constants.

function y = mystruct()

s.a = 3;

s.b = 5;

y = zeros(s.a,s.b);

If a field of a structure is assigned inside a control flow construct, the code generator does
not recognize that s.a and s.b are constant. Consider the following code:

function y = mystruct(x)

s.a = 3;

if x > 1

 s.b = 4;

else

 s.b = 5;

end

y = zeros(s.a,s.b);

If variable-sizing is enabled, y is treated as a variable-size array. If variable-sizing is
disabled, y, the code generator reports an error.

8-10

 Assign Values to Structures and Fields

Do not assign mxArrays to structures

You cannot assign mxArrays to structure elements; convert mxArrays to known types
before code generation (see “Working with mxArrays” on page 14-17).

Do not assign classes to structure fields

You cannot assign classes to structure fields.

Do not assign cell arrays to structure fields

You cannot assign cell arrays to structure fields.

8-11

9

Code Generation for Cell Arrays

• “Code Generation for Cell Arrays” on page 9-2
• “Control Whether a Cell Array Is Variable-Size” on page 9-6
• “Define Cell Array Inputs” on page 9-9
• “Cell Array Limitations for Code Generation” on page 9-10

9 Code Generation for Cell Arrays

Code Generation for Cell Arrays

When you generate code from MATLAB code that contains cell arrays, the code generator
classifies the cell arrays as homogeneous or heterogeneous. This classification determines
how a cell array is represented in the generated code. It also determines how you can use
the cell array in MATLAB code from which you generate code.

When you use cell arrays in MATLAB code that is intended for code generation, you must
adhere to certain restrictions. See “Cell Array Limitations for Code Generation” on page
9-10.

Homogeneous vs. Heterogeneous Cell Arrays

A homogeneous cell array has these characteristics:

• The cell array is represented as an array in the generated code.
• All elements have the same properties. The type associated with the cell array

specifies the properties of all elements rather than the properties of individual
elements.

• The cell array can be variable-size.
• You can index into the cell array with an index whose value is determined at run

time.

A heterogeneous cell array has these characteristics:

• The cell array is represented as a structure in the generated code. Each element is
represented as a field of the structure.

• The elements can have different properties. The type associated with the cell array
specifies the properties of each element individually.

• The cell array cannot be variable-size.
• You must index into the cell array with a constant index or with for-loops that have

constant bounds.

The code generator uses heuristics to determine the classification of a cell array as
homogeneous or heterogeneous. It considers the properties (class, size, complexity) of
the elements and other factors, such as how you use the cell array in your program.
Depending on how you use a cell array, the code generator can classify a cell array as
homogeneous in one case and heterogeneous in another case. For example, consider the

9-2

 Code Generation for Cell Arrays

cell array {1 [2 3]}. The code generator can classify this cell array as a heterogeneous
1-by-2 cell array. The first element is double scalar. The second element is a 1-by-2
array of doubles. However, if you index into this cell array with an index whose value is
determined at run time, the code generator classifies it as a homogeneous cell array. The
elements are variable-size arrays of doubles with an upper bound of 2.

Controlling Whether a Cell Array Is Homogeneous or Heterogeneous

For cell arrays with certain characteristics, you cannot control the classification as
homogeneous or heterogeneous:

• If the elements have different classes, the cell array must be heterogeneous.
• If the cell array is variable-size, it must be homogeneous.
• If you index into the cell array with an index whose value is determined at run time,

the cell array must be homogeneous.

For other cell arrays, you can control the classification as homogeneous or heterogeneous.

To control the classification of cell arrays that are entry-point function inputs:

• At the command line, use the coder.CellType methods makeHomogeneous or
makeHeterogeneous.

• In the MATLAB Coder app, select cell (Homogeneous) or cell (Heterogeneous)
from the type menu. See “Define or Edit Input Parameter Type by Using the App” on
page 18-14.

To control the classification of cell arrays that are not entry-point function inputs:

• If the cell array is fixed-size, you can force an otherwise homogeneous cell array to be
heterogeneous by using coder.cstructname. For example:

function y = mycell()

%#codegen

c = {1 2 3};

coder.cstructname(c, 'myname');

y = c;

end

• If the cell array elements have the same class, you can force a cell array to be
homogeneous by using coder.varsize. See “Control Whether a Cell Array Is
Variable-Size” on page 9-6.

9-3

9 Code Generation for Cell Arrays

Naming the Structure Type That Represents a Heterogeneous Cell Array in
the Generated Code

The code generator represents a heterogeneous cell array as a structure in the generated
code. You can name the generated structure type. You cannot name the fields of the
structure.

If the cell array is an entry-point function input, see “Define Cell Array Inputs” on page
9-9. If the cell array is not an entry-point function input, use coder.cstructname
in the MATLAB function. For example:

function y = mycell()

%#codegen

c = {1 'a'};

coder.cstructname(c, 'myname');

y = c;

end

Cell Arrays in Reports

To see whether a cell array is homogeneous or heterogeneous, view the variable in the
code generation report.

For a homogeneous cell array, the report has one entry that specifies the properties of all
elements. The notation {:} indicates that all elements of the cell array have the same
properties.

For a heterogeneous cell array, the report has an entry for each element. For example, for
a heterogeneous cell array c with two elements, the entry for c{1} shows the properties
for the first element. The entry for c{2} shows the properties for the second element.

9-4

 Code Generation for Cell Arrays

See Also
coder.CellType | coder.cstructname | coder.varsize

More About
• “Control Whether a Cell Array Is Variable-Size” on page 9-6
• “Cell Array Limitations for Code Generation” on page 9-10
• “Code Generation Reports” on page 22-9

9-5

9 Code Generation for Cell Arrays

Control Whether a Cell Array Is Variable-Size

The code generator classifies a variable-size cell array as homogeneous. The cell array
elements must have the same class. In the generated code, the cell array is represented
as an array.

If a cell array is an entry-point function input, to make it variable-size:

• At the command line, you can use the coder.typeof function or the
coder.newtype function to create a type for a variable-size cell array. For example,
to create a type for a cell array whose first dimension is fixed and whose second
dimension has an upper bound of 10, use this code:

 t = coder.typeof({1 2 3}, [1 10], [0 1])

See “Specify Variable-Size Cell Array Inputs” on page 21-60.
• In the MATLAB Coder app, select Homogeneous cell array as the type of the input.

For the variable-size dimension, specify that it is unbounded or has an upper bound.

If a cell array is not an entry-point function input, to make it variable-size:

• Create the cell array by using the cell function. For example:

function z = mycell(n, j)

%#codegen

x = cell(1,n);

for i = 1:n

 x{i} = i;

end

z = x{j};

end

For code generation, when you create a variable-size cell array by using cell, you
must adhere to certain restrictions. See “Definition of Variable-Size Cell Array by
Using cell” on page 9-11.

• Grow the cell array. For example:

function z = mycell(n)

%#codegen

c = {1 2 3};

for i = 1:n

 c{end + 1} = 1;

9-6

 Control Whether a Cell Array Is Variable-Size

end

z = c{n};

end

• Force the cell array to be variable-size by using coder.varsize. Consider this code:

function y = mycellfun()

%#codegen

c = {1 2 3};

coder.varsize('c', [1 10]);

y = c;

end

Without coder.varsize, c is fixed-size with dimensions 1-by-3. With
coder.varsize, c is variable-size with an upper bound of 10.

Sometimes, using coder.varsize changes the classification of a cell array from
heterogeneous to homogeneous. Consider this code:

function y = mycell()

%#codegen

c = {1 [2 3]};

y = c{2};

end

The code generator classifies c as heterogeneous because the elements have different
sizes. c is fixed-size with dimensions 1-by-2. If you use coder.varsize with c, it
becomes homogeneous. For example:

function y = mycell()

%#codegen

c = {1 [2 3]};

coder.varsize('c', [1 10], [0 1]);

y = c{2};

end

c becomes a variable-size homogeneous cell array with dimensions 1-by-:10.

To force c to be homogeneous, but not variable-size, specify that none of the
dimensions vary. For example:

function y = mycell()

%#codegen

c = {1 [2 3]};

coder.varsize('c', [1 2], [0 0]);

9-7

9 Code Generation for Cell Arrays

y = c{2};

end

See Also
coder.CellType | coder.varsize

More About
• “Code Generation for Cell Arrays” on page 9-2
• “Cell Array Limitations for Code Generation” on page 9-10
• “Variable-Size Data Definition for Code Generation” on page 7-3

9-8

 Define Cell Array Inputs

Define Cell Array Inputs

To define types for cell arrays that are inputs to entry-point functions, use one of these
approaches:

To Define Types: See

At the command line “Specify Cell Array Inputs at the Command
Line” on page 21-56

Programmatically in the MATLAB file “Define Input Properties Programmatically
in the MATLAB File” on page 21-67

In the MATLAB Coder app “Automatically Define Input Types by
Using the App” on page 18-4

“Define Input Parameter by Example by
Using the App” on page 18-7

“Define or Edit Input Parameter Type by
Using the App” on page 18-14

See Also
coder.CellType

More About
• “Code Generation for Cell Arrays” on page 9-2

9-9

9 Code Generation for Cell Arrays

Cell Array Limitations for Code Generation

When you use cell arrays in MATLAB code that is intended for code generation, you must
adhere to these restrictions:

• “Cell Array Element Assignment” on page 9-10
• “Definition of Variable-Size Cell Array by Using cell” on page 9-11
• “Cell Array Indexing” on page 9-14
• “Growing a Cell Array by Using {end + 1}” on page 9-15
• “Variable-Size Cell Arrays” on page 9-16
• “Cell Array Contents” on page 9-17
• “Cell Arrays in Structures” on page 9-17
• “Passing Cell Arrays to External C/C++ Functions” on page 9-17

Cell Array Element Assignment

You must assign a cell array element on all execution paths before you use it. For
example:

function z = foo(n)

%#codegen

c = cell(1,3);

if n < 1

 c{2} = 1;

else

 c{2} = n;

end

z = c{2};

end

The code generator considers passing a cell array to a function or returning it from
a function as a use of all elements of the cell array. Therefore, before you pass a cell
array to a function or return it from a function, you must assign all of its elements. For
example, the following code is not allowed because it does not assign a value to c{2} and
c is a function output.

function c = foo()

9-10

 Cell Array Limitations for Code Generation

%#codegen

c = cell(1,3);

c{1} = 1;

c{3} = 3;

end

The assignment of values to elements must be consistent on all execution paths. The
following code is not allowed because y{2} is double on one execution path and char on
the other execution path.

function y = foo(n)

y = cell(1,3)

if n > 1;

 y{1} = 1

 y{2} = 2;

 y{3} = 3;

else

 y{1} = 10;

 y{2} = 'a';

 y{3} = 30;

end

Definition of Variable-Size Cell Array by Using cell

For code generation, before you use a cell array element, you must assign a value to
it. When you use cell to create a variable-size cell array, for example, cell(1,n),
MATLAB assigns an empty matrix to each element. However, for code generation, the
elements are unassigned. For code generation, after you use cell to create a variable-
size cell array, you must assign all elements of the cell array before any use of the cell
array. For example:

function z = mycell(n, j)

%#codegen

x = cell(1,n);

for i = 1:n

 x{i} = i;

end

z = x{j};

end

The code generator analyzes your code to determine whether all elements are assigned
before the first use of the cell array. If the code generator detects that some elements are
not assigned, code generation fails with a message like this message:

9-11

9 Code Generation for Cell Arrays

Unable to determine that every element of 'y' is assigned before this line.

Sometimes, even though your code assigns all elements of the cell array, the code
generator reports this message because the analysis does not detect that all elements are
assigned. See “Unable to Determine That Every Element of Cell Array Is Assigned” on
page 31-10.

To avoid this error, follow these guidelines:

• When you use cell to define a variable-size cell array, write code that follows this
pattern:

function z = mycell(n, j)

%#codegen

x = cell(1,n);

for i = 1:n

 x{i} = i;

end

z = x{j};

end

Here is the pattern for a multidimensional cell array:

function z = mycell(m,n,p)

%#codegen

x = cell(m,n,p);

for i = 1:m

 for j =1:n

 for k = 1:p

 x{i,j,k} = i+j+k;

 end

 end

end

z = x{m,n,p};

end

• Increment or decrement the loop counter by 1.
• Define the cell array within one loop or one set of nested loops. For example, this code

is not allowed:

function z = mycell(n, j)

x = cell(1,n);

for i = 1:5

 x{i} = 5;

9-12

 Cell Array Limitations for Code Generation

end

for i = 6:n

 x{i} = 5;

end

z = x{j};

end

• Use the same variables for the cell dimensions and loop initial and end values. For
example, code generation fails for the following code because the cell creation uses n
and the loop end value uses m:

function z = mycell(n, j)

x = cell(1,n);

m = n;

for i = 1:m

 x{i} = 2;

end

z = x{j};

end

Rewrite the code to use n for the cell creation and the loop end value:

function z = mycell(n, j)

x = cell(1,n);

for i = 1:n

 x{i} = 2;

end

z = x{j};

end

• Create the cell array with this pattern:

x = cell(1,n)

Do not assign the cell array to a field of a structure or a property of an object. For
example, this code is not allowed:

myobj.prop = cell(1,n)

for i = 1:n

...

end

Do not use the cell function inside the cell array constructor {}. For example, this
code is not allowed:

x = {cell(1,n)};

9-13

9 Code Generation for Cell Arrays

• The cell array creation and the loop that assigns values to the cell array elements
must be together in a unique execution path. For example, the following code is not
allowed.

function z = mycell(n)

if n > 3

 c = cell(1,n);

else

 c = cell(n,1);

end

for i = 1:n

 c{i} = i;

end

z = c{n};

end

To fix this code, move the assignment loop inside the code block that creates the cell
array.

function z = cellerr(n)

if n > 3

 c = cell(1,n);

 for i = 1:n

 c{i} = i;

 end

else

 c = cell(n,1);

 for i = 1:n

 c{i} = i;

 end

end

z = c{n};

end

Cell Array Indexing

• You cannot index cell arrays by using smooth parentheses(). Consider indexing cell
arrays by using curly braces{} to access the contents of the cell.

• You must index into heterogeneous cell arrays by using constant indices or by using
for-loops with constant bounds.

For example, the following code is not allowed.

9-14

 Cell Array Limitations for Code Generation

x = {1, 'mytext'};

disp(x{randi});

You can index into a heterogeneous cell array in a for-loop with constant bounds
because the code generator unrolls the loop. Unrolling creates a separate copy of
the loop body for each loop iteration, which makes the index in each loop iteration
constant. However, if the for-loop has a large body or it has many iterations, the
unrolling can increase compile time and generate inefficient code.

If A and B are constant, the following code shows indexing into a heterogeneous cell
array in a for-loop with constant bounds.

x = {1, 'mytext'};

for i = A:B

 disp(x{i});

end

Growing a Cell Array by Using {end + 1}

To grow a cell array X, you can use X{end + 1}. For example:

...

X = {1 2};

X{end + 1} = 'a';

...

When you use {end + 1} to grow a cell array, follow these restrictions:

• Use only {end + 1}. Do not use {end + 2}, {end + 3}, and so on.
• Use {end + 1} with vectors only. For example, the following code is not allowed

because X is a matrix, not a vector:

...

X = {1 2; 3 4};

X{end + 1} = 5;

...

• Use {end + 1} only with a variable. In the following code, {end + 1} does not
cause {1 2 3} to grow. In this case, the code generator treats {end + 1} as an out-
of-bounds index into X{2}.

...

9-15

9 Code Generation for Cell Arrays

X = {'a' { 1 2 3 }};

X{2}{end + 1} = 4;

...

• When {end + 1} grows a cell array in a loop, the cell array must be variable-size.
Therefore, the cell array must be homogeneous.

This code is allowed because X is homogeneous.

...

X = {1 2};

for i=1:n

 X{end + 1} = 3;

end

...

This code is not allowed because X is heterogeneous.

...

X = {1 'a' 2 'b'};

for i=1:n

 X{end + 1} = 3;

end

...

Variable-Size Cell Arrays

• Heterogeneous cell arrays cannot be variable-size. See “Control Whether a Cell Array
Is Variable-Size” on page 9-6.

• If you use coder.varsize to make a variable-size cell array, define the cell array
with curly braces. For example:

...

c = {1 [2 3]};

coder.varsize('c')

...

Do not use the cell function. For example, this code is not allowed:

...

c = cell(1,3);

coder.varsize('c')

...

9-16

 Cell Array Limitations for Code Generation

Cell Array Contents

Cell arrays cannot contain mxarrays. In a cell array, you cannot store a value that an
extrinsic function returns.

Cell Arrays in Structures

Structures cannot contain cell arrays.

Passing Cell Arrays to External C/C++ Functions

You cannot pass a cell array to coder.ceval. If a variable is an input argument to
coder.ceval, define the variable as an array or structure instead of as a cell array.

More About
• “Code Generation for Cell Arrays” on page 9-2
• “Differences in Behavior After Compiling MATLAB Code” on page 2-8

9-17

10

Code Generation for Enumerated
Data

• “Code Generation for Enumerations” on page 10-2
• “Customize Enumerated Types in Generated Code” on page 10-6

10 Code Generation for Enumerated Data

Code Generation for Enumerations
Enumerations represent a fixed set of named values. Enumerations help make your
MATLAB code and generated C/C++ code more readable. For example, the generated
code can test equality with code such as if (x == Red) instead of using strcmp.

For code generation, when you use enumerations, adhere to these restrictions:

• “Define Enumerations for Code Generation” on page 10-2
• “Use Allowed Operations on Enumerations” on page 10-3
• “Use MATLAB Toolbox Functions That Support Enumerations” on page 10-4

Define Enumerations for Code Generation

For code generation, the enumeration class must derive from one of these base types:
int8, uint8, int16, uint16, or int32. For example:

classdef PrimaryColors < int32

 enumeration

 Red(1),

 Blue(2),

 Yellow(4)

 end

end

You can use the base type to control the size of an enumerated type in generated C/C++
code. You can:

• Represent an enumerated type as a fixed-size integer that is portable to different
targets.

• Reduce memory usage.
• Interface with legacy code.
• Match company standards.

The base type determines the representation of the enumerated type in generated C/C++
code.

If the base type is int32, the code generator produces a C enumerated type. Consider the
following MATLAB enumerated type definition:

classdef LEDcolor < int32

 enumeration

10-2

 Code Generation for Enumerations

 GREEN(1),

 RED(2)

 end

end

This enumerated type definition results in the following C code:

enum LEDcolor

{

 GREEN = 1,

 RED

};

typedef enum LEDcolor LEDcolor;

For built-in integer base types other than int32, the code generator produces a typedef
statement for the enumerated type and #define statements for the enumerated values.
Consider the following MATLAB enumerated type definition:

classdef LEDcolor < int16

 enumeration

 GREEN(1),

 RED(2)

 end

end

This enumerated type definition results in the following C code:

typedef short LEDcolor;

#define GREEN ((LEDcolor)1)

#define RED ((LEDcolor)2)

The C type in the typedef statement depends on:

• The integer sizes defined for the production hardware in the hardware
implementation object or the project settings. See coder.HardwareImplementation.

• The setting that determines the use of built-in C types or MathWorks typedefs in the
generated code. See “Specify Data Types Used in Generated Code” on page 21-38
and “How MATLAB Coder Infers C/C++ Data Types” on page 27-9 .

Use Allowed Operations on Enumerations

For code generation, you are restricted to the operations on enumerations listed in this
table.

10-3

10 Code Generation for Enumerated Data

Operation Example

assignment operator, = xon = LEDcolor.GREEN

xoff = LEDcolor.RED

relational operators,< > <= >= == ~=

You cannot use == or ~= to test equality
between an enumeration member and a
character array or cell array of character
arrays.

xon == xoff

cast operation double(LEDcolor.RED)

indexing operation m = [1 2]

n = LEDcolor(m)

p = n(LEDcolor.GREEN)

control flow statements: if, switch, while if state == sysMode.ON

 led = LEDcolor.GREEN;

else

 led = LEDcolor.RED;

end

Use MATLAB Toolbox Functions That Support Enumerations

For code generation, you can use enumerations with these MATLAB toolbox functions:

• cast

• cat

• circshift

• fliplr

• flipud

• histc

• intersect

• ipermute

• isequal

• isequaln

• isfinite

• isinf

10-4

 Code Generation for Enumerations

• ismember

• isnan

• issorted

• length

• permute

• repmat

• reshape

• rot90

• setdiff

• setxor

• shiftdim

• sort

• sortrows

• squeeze

• union

• unique

More About
• “Generate Code for an LED Control Function That Uses Enumerated Types” on

page 21-186
• “Customize Enumerated Types in Generated Code” on page 10-6

10-5

10 Code Generation for Enumerated Data

Customize Enumerated Types in Generated Code

For code generation, to customize an enumeration, in the static methods section of the
class definition, include customized versions of the methods listed in this table.

Method Description Default Value
Returned or Specified

When to Use

getDefaultValue Returns the default
enumerated value.

First value in the
enumeration class
definition.

For a default value
that is different than
the first enumeration
value, provide a
getDefaultValue

method that returns
the default value
that you want. See
“Specify a Default
Enumeration Value”
on page 10-7.

getHeaderFile Specifies the file that
defines an externally
defined enumerated
type.

'' To use an externally
defined enumerated
type, provide a
getHeaderFile

method that returns
the path to the
header file that
defines the type.
In this case, the
code generator does
not produce the
class definition.
See “Specify a
Header File” on page
10-8

addClassNameToEnumNames Specifies whether
the class name
becomes a prefix in
the generated code.

false — prefix is
not used.

If you want the
class name to
become a prefix
in the generated
code, set the

10-6

 Customize Enumerated Types in Generated Code

Method Description Default Value
Returned or Specified

When to Use

return value of the
addClassNameToEnumNames

method to true. See
“Include Class Name
Prefix in Generated
Enumerated Type
Value Names” on
page 10-8.

Specify a Default Enumeration Value

If the value of a variable that is cast to an enumerated type does not match one of the
enumerated type values:

• Generated MEX reports an error.
• Generated C/C++ code replaces the value of the variable with the enumerated type

default value.

Unless you specify otherwise, the default value for an enumerated type is the first
value in the enumeration class definition. To specify a different default value, add
your own getDefaultValue method to the methods section. In this example, the first
enumeration member value is LEDcolor.GREEN, but the getDefaultValue method
returns LEDcolor.RED:

classdef LEDcolor < int32

 enumeration

 GREEN(1),

 RED(2)

 end

 methods (Static)

 function y = getDefaultValue()

 y = LEDcolor.RED;

 end

 end

end

10-7

10 Code Generation for Enumerated Data

Specify a Header File

To specify that an enumerated type is defined in an external file, provide a customized
getHeaderFile method. This example specifies that LEDcolor is defined in the
external file my_LEDcolor.h.

classdef LEDcolor < int32

 enumeration

 GREEN(1),

 RED(2)

 end

 methods(Static)

 function y=getHeaderFile()

 y='my_LEDcolor.h';

 end

 end

end

You must provide my_LEDcolor.h. For example:

enum LEDcolor

{

 GREEN = 1,

 RED

};

typedef enum LEDcolor LEDcolor;

Include Class Name Prefix in Generated Enumerated Type Value Names

By default, the generated enumerated type value name does not include the class name
prefix. For example:

enum LEDcolor

{

 GREEN = 1,

 RED

};

typedef enum LEDcolor LEDcolor;

To include the class name prefix, provide an addClassNameToEnumNames method that
returns true. For example:

10-8

 Customize Enumerated Types in Generated Code

classdef LEDcolor < int32

 enumeration

 GREEN(1),

 RED(2)

 end

 methods(Static)

 function y = addClassNameToEnumNames()

 y=true;

 end

 end

end

In the generated type definition, the enumerated value names include the class prefix
LEDcolor.

enum LEDcolor

{

 LEDcolor_GREEN = 1,

 LEDcolor_RED

};

typedef enum LEDcolor LEDcolor;

More About
• Modifying Superclass Methods and Properties
• “Code Generation for Enumerations” on page 10-2

10-9

11

Code Generation for MATLAB Classes

• “MATLAB Classes Definition for Code Generation” on page 11-2
• “Classes That Support Code Generation” on page 11-8
• “Generate Code for MATLAB Value Classes” on page 11-9
• “Generate Code for MATLAB Handle Classes and System Objects” on page 11-14
• “MATLAB Classes in Code Generation Reports” on page 11-17
• “Troubleshooting Code Generation Issues with MATLAB Classes” on page 11-20
• “Handle Object Limitations for Code Generation” on page 11-22
• “System Objects Requirements and Limitations for Code Generation” on page

11-25

11 Code Generation for MATLAB Classes

MATLAB Classes Definition for Code Generation

To generate efficient standalone code for MATLAB classes, you must use classes
differently than when running your code in the MATLAB environment.

What’s Different More Information

Class must be in a single file. Because
of this limitation, code generation is not
supported for a class definition that uses an
@-folder.

“Create a Single, Self-Contained Class
Definition File”

Restricted set of language features. “Language Limitations” on page 11-2
Restricted set of code generation features. “Code Generation Features Not Compatible

with Classes” on page 11-3
Definition of class properties. “Defining Class Properties for Code

Generation” on page 11-4
Use of handle classes. “Generate Code for MATLAB Handle

Classes and System Objects” on page
11-14

“Handle Object Limitations for Code
Generation” on page 11-22

Calls to base class constructor. “Calls to Base Class Constructor” on page
11-5

Global variables containing MATLAB
objects are not supported for code
generation.

N/A

Inheritance from built-in MATLAB classes
is not supported.

“Inheritance from Built-In MATLAB
Classes Not Supported” on page 11-7

Language Limitations

Although code generation support is provided for common features of classes such
as properties and methods, there are a number of advanced features which are not
supported, such as:

• Events

11-2

 MATLAB Classes Definition for Code Generation

• Listeners
• Arrays of objects
• Recursive data structures

• Linked lists
• Trees
• Graphs

• Overloadable operators subsref, subsassign, and subsindex

In MATLAB, classes can define their own versions of the subsref, subsassign, and
subsindex methods. Code generation does not support classes that have their own
definitions of these methods.

• The empty method

In MATLAB, classes have a built-in static method, empty, which creates an empty
array of the class. Code generation does not support this method.

• The following MATLAB handle class methods:

• addlistener

• delete

• eq

• findobj

• findpro

• The AbortSet property attribute

Code Generation Features Not Compatible with Classes

• You can generate code for entry-point MATLAB functions that use classes, but you
cannot generate code directly for a MATLAB class.

For example, if ClassNameA is a class definition, you cannot generate code by
executing:

codegen ClassNameA

• If an entry-point MATLAB function has an input or output that is a MATLAB class,
you cannot generate code for this function.

11-3

11 Code Generation for MATLAB Classes

For example, if function foo takes one input, a, that is a MATLAB object, you cannot
generate code for foo by executing:

codegen foo -args {a}

• Code generation does not support classes in matrices or structures. As a workaround,
consider using cell arrays because code generation supports classes in cell arrays.

• Code generation does not support assigning an object of a value class into a
nontunable property. For example, obj.prop=v; is invalid when prop is a
nontunable property and v is an object based on a value class.

• You cannot use coder.extrinsic to declare a class or method as extrinsic.
• You cannot pass a MATLAB class to the coder.ceval function.
• If you use classes in code in the MATLAB Function block, you cannot use the

debugger to view class information.
• The coder.nullcopy function does not support MATLAB classes as inputs.

Defining Class Properties for Code Generation

For code generation, you must define class properties differently than you do when
running your code in the MATLAB environment:

• Code generation does not support the property restriction syntax. For example, the
following class definition is not allowed because it uses the property restriction syntax
to restrict the types of the Number and Today properties.

classdef Myclass

 properties

 Number double

 Today char = date;

 end

end

• After defining a property, do not assign it an incompatible type. Do not use a property
before attempting to grow it.

When you define class properties for code generation, consider the same factors that
you take into account when defining variables. In the MATLAB language, variables
can change their class, size, or complexity dynamically at run time so you can use
the same variable to hold a value of varying class, size, or complexity. C and C++
use static typing. Before using variables, to determine their type, the code generator

11-4

 MATLAB Classes Definition for Code Generation

requires a complete assignment to each variable. Similarly, before using properties,
you must explicitly define their class, size, and complexity.

• Initial values:

• If the property does not have an explicit initial value, the code generator assumes
that it is undefined at the beginning of the constructor. The code generator does
not assign an empty matrix as the default.

• If the property does not have an initial value and the code generator cannot
determine that the property is assigned prior to first use, the software generates a
compilation error.

• For System objects, if a nontunable property is a structure, you must completely
assign the structure. You cannot do partial assignment using subscripting.

For example, for a nontunable property, you can use the following assignment:

mySystemObject.nonTunableProperty=struct('fieldA','a','fieldB','b');

You cannot use the following partial assignments:

mySystemObject.nonTunableProperty.fieldA = a;

mySystemObject.nonTunableProperty.fieldB = b;

• If dynamic memory allocation is enabled, code generation supports variable-size
properties for handle classes. Without dynamic memory allocation, you cannot
generate code for handle classes that have variable-size properties.

• coder.varsize is not supported for class properties.
• MATLAB computes class initial values at class loading time before code generation.

If you use persistent variables in MATLAB class property initialization, the value of
the persistent variable computed when the class loads belongs to MATLAB; it is not
the value used at code generation time. If you use coder.target in MATLAB class
property initialization, coder.target('MATLAB') returns true (1).

Calls to Base Class Constructor

If a class constructor contains a call to the constructor of the base class, the call to the
base class constructor must come before for, if, return, switch or while statements.

For example, if you define a class B based on class A:

classdef B < A

 methods

11-5

11 Code Generation for MATLAB Classes

 function obj = B(varargin)

 if nargin == 0

 a = 1;

 b = 2;

 elseif nargin == 1

 a = varargin{1};

 b = 1;

 elseif nargin == 2

 a = varargin{1};

 b = varargin{2};

 end

 obj = obj@A(a,b);

 end

 end

end

Because the class definition for B uses an if statement before calling the base class
constructor for A, you cannot generate code for function callB:

function [y1,y2] = callB

x = B;

y1 = x.p1;

y2 = x.p2;

end

However, you can generate code for callB if you define class B as:

classdef B < A

 methods

 function obj = NewB(varargin)

 [a,b] = getaandb(varargin{:});

 obj = obj@A(a,b);

 end

 end

end

function [a,b] = getaandb(varargin)

if nargin == 0

 a = 1;

 b = 2;

elseif nargin == 1

 a = varargin{1};

 b = 1;

11-6

 MATLAB Classes Definition for Code Generation

elseif nargin == 2

 a = varargin{1};

 b = varargin{2};

end

end

Inheritance from Built-In MATLAB Classes Not Supported

You cannot generate code for classes that inherit from built-in MATLAB classes. For
example, you cannot generate code for the following class:

classdef myclass < double

11-7

11 Code Generation for MATLAB Classes

Classes That Support Code Generation

You can generate code for MATLAB value and handle classes and user-defined System
objects. Your class can have multiple methods and properties and can inherit from
multiple classes.

To generate code for: Example:

Value classes “Generate Code for MATLAB Value
Classes” on page 11-9

Handle classes including user-defined
System objects

“Generate Code for MATLAB Handle
Classes and System Objects” on page
11-14

For more information, see:

• “Role of Classes in MATLAB”
• “MATLAB Classes Definition for Code Generation” on page 11-2

11-8

 Generate Code for MATLAB Value Classes

Generate Code for MATLAB Value Classes

This example shows how to generate code for a MATLAB value class and then view the
generated code in the code generation report.

1 In a writable folder, create a MATLAB value class, Shape. Save the code as
Shape.m.

classdef Shape

% SHAPE Create a shape at coordinates

% centerX and centerY

 properties

 centerX;

 centerY;

 end

 properties (Dependent = true)

 area;

 end

 methods

 function out = get.area(obj)

 out = obj.getarea();

 end

 function obj = Shape(centerX,centerY)

 obj.centerX = centerX;

 obj.centerY = centerY;

 end

 end

 methods(Abstract = true)

 getarea(obj);

 end

 methods(Static)

 function d = distanceBetweenShapes(shape1,shape2)

 xDist = abs(shape1.centerX - shape2.centerX);

 yDist = abs(shape1.centerY - shape2.centerY);

 d = sqrt(xDist^2 + yDist^2);

 end

 end

end

2 In the same folder, create a class, Square, that is a subclass of Shape. Save the code
as Square.m.

classdef Square < Shape

% Create a Square at coordinates center X and center Y

11-9

11 Code Generation for MATLAB Classes

% with sides of length of side

 properties

 side;

 end

 methods

 function obj = Square(side,centerX,centerY)

 obj@Shape(centerX,centerY);

 obj.side = side;

 end

 function Area = getarea(obj)

 Area = obj.side^2;

 end

 end

end

3 In the same folder, create a class, Rhombus, that is a subclass of Shape. Save the
code as Rhombus.m.

classdef Rhombus < Shape

 properties

 diag1;

 diag2;

 end

 methods

 function obj = Rhombus(diag1,diag2,centerX,centerY)

 obj@Shape(centerX,centerY);

 obj.diag1 = diag1;

 obj.diag2 = diag2;

 end

 function Area = getarea(obj)

 Area = 0.5*obj.diag1*obj.diag2;

 end

 end

end

4 Write a function that uses this class.

function [TotalArea, Distance] = use_shape

%#codegen

s = Square(2,1,2);

r = Rhombus(3,4,7,10);

TotalArea = s.area + r.area;

Distance = Shape.distanceBetweenShapes(s,r);

5 Generate a static library for use_shape and generate a code generation report.

11-10

 Generate Code for MATLAB Value Classes

codegen -config:lib -report use_shape

codegen generates a C static library with the default name, use_shape, and
supporting files in the default folder, codegen/lib/use_shape.

6 Click the View report link.
7 In the report, on the MATLAB code tab, click the link to the Rhombus class.

The report displays the class definition of the Rhombus class and highlights the
class constructor. On the Variables tab, it provides details of the variables used
in the class. If a variable is a MATLAB object, by default, the report displays the
object without displaying its properties. To view the list of properties, expand the
list. Within the list of properties, the list of inherited properties is collapsed. In the
following report, the lists of properties and inherited properties are expanded.

11-11

11 Code Generation for MATLAB Classes

8 At the top right side of the report, expand the Calls list.

The Calls list shows that there is a call to the Rhombus constructor from use_shape
and that this constructor calls the Shape constructor.

9 The constructor for the Rhombus class calls the Shape method of the base Shape
class: obj@Shape. In the report, click the Shape link in this call.

The link takes you to the Shape method in the Shape class definition.

11-12

 Generate Code for MATLAB Value Classes

11-13

11 Code Generation for MATLAB Classes

Generate Code for MATLAB Handle Classes and System Objects

This example shows how to generate code for a user-defined System object and then view
the generated code in the code generation report.

1 In a writable folder, create a System object, AddOne, which subclasses from
matlab.System. Save the code as AddOne.m.

classdef AddOne < matlab.System

% ADDONE Compute an output value that increments the input by one

 methods (Access=protected)

 % stepImpl method is called by the step method

 function y = stepImpl(~,x)

 y = x+1;

 end

 end

end

2 Write a function that uses this System object.

function y = testAddOne(x)

%#codegen

 p = AddOne();

 y = p.step(x);

end

3 Generate a MEX function for this code.

codegen -report testAddOne -args {0}

The -report option instructs codegen to generate a code generation report, even
if no errors or warnings occur. The -args option specifies that the testAddOne
function takes one scalar double input.

4 Click the View report link.
5 In the report, on the MATLAB Code tab Functions panel, click testAddOne, then

click the Variables tab. You can view information about the variable p on this tab.

11-14

 Generate Code for MATLAB Handle Classes and System Objects

6 To view the class definition, on the Classes panel, click AddOne.

11-15

11 Code Generation for MATLAB Classes

11-16

 MATLAB Classes in Code Generation Reports

MATLAB Classes in Code Generation Reports

What Reports Tell You About Classes

Code generation reports:

• Provide a hierarchical tree of the classes used in your MATLAB code.
• Display a list of methods for each class in the MATLAB code tab.
• Display the objects used in your MATLAB code together with their properties on the

Variables tab.
• Provide a filter so that you can sort methods by class, size, and complexity.
• List the set of calls from and to the selected method in the Calls list.

How Classes Appear in Code Generation Reports

In the MATLAB Code Tab

The report displays an alphabetical hierarchical list of the classes used in the your
MATLAB code. For each class, you can:

• Expand the class information to view the class methods.
• View a class method by clicking its name. The report displays the methods in the

context of the full class definition.
• Filter the methods by size, complexity, and class by using the Filter functions and

methods option.

Default Constructors

If a class has a default constructor, the report displays the constructor in italics.
Specializations

If the same class is specialized into multiple different classes, the report differentiates
the specializations by grouping each one under a single node in the tree. The report
associates the class definition functions and static methods with the primary node. It
associates the instance-specific methods with the corresponding specialized node.

For example, consider a base class, Shape that has two specialized subclasses,
Rhombus and Square. The Shape class has an abstract method, getarea, and a
static method, distanceBetweenShapes. The code generation report, displays a

11-17

11 Code Generation for MATLAB Classes

node for the specialized Rhombus and Square classes with their constructors and
getarea method. It displays a node for the Shape class and its associated static method,
distanceBetweenShapes, and two instances of the Shape class, Shape1 and Shape2.

Packages

If you define classes as part of a package, the report displays the package in the list
of classes. You can expand the package to view the classes that it contains. For more
information about packages, see “Packages Create Namespaces”.

In the Variables Tab

The report displays the objects in the selected function or class. By default, for classes
that have properties, the list of properties is collapsed. To expand the list, click the
+ symbol next to the object name. Within the list of properties, the list of inherited
properties is collapsed. To expand the list of inherited properties, click the + symbol next
to Inherited.

The report displays the properties using just the base property name, not the fully
qualified name. For example, if your code uses variable obj1 that is a MATLAB object

11-18

 MATLAB Classes in Code Generation Reports

with property prop1, then the report displays the property as prop1 not obj1.prop1.
When you sort the Variables column, the sort order is based on the fully qualified
property name.

In the Call Stack

The call stack lists the functions and methods in the order that the top-level function
calls them. It also lists the local functions that each function calls.

11-19

11 Code Generation for MATLAB Classes

Troubleshooting Code Generation Issues with MATLAB Classes

Class class does not have a property with name name

If a MATLAB class has a method, mymethod, that returns a handle class with a property,
myprop, you cannot generate code for the following type of assignment:

obj.mymethod().myprop=...

For example, consider the following classes:

classdef MyClass < handle

 properties

 myprop

 end

 methods

 function this = MyClass

 this.myprop = MyClass2;

 end

 function y = mymethod(this)

 y = this.myprop;

 end

 end

end

classdef MyClass2 < handle

 properties

 aa

 end

end

You cannot generate code for function foo.

function foo

h = MyClass;

h.mymethod().aa = 12;

In this function, h.mymethod() returns a handle object of type MyClass2. In MATLAB,
the assignment h.mymethod().aa = 12; changes the property of that object. Code
generation does not support this assignment.

11-20

 Troubleshooting Code Generation Issues with MATLAB Classes

Solution

Rewrite the code to return the object and then assign a value to a property of the object.

function foo

h = MyClass;

b=h.mymethod();

b.aa=12;

11-21

11 Code Generation for MATLAB Classes

Handle Object Limitations for Code Generation
The code generator statically determines the lifetimes of handle objects. It can reuse
memory rather than rely on a dynamic memory management scheme such as reference
counting or garbage collection. It generates code that does not use dynamic memory
allocation or incur the overhead of run-time automatic memory management. These
characteristics of the generated code are important for some safety-critical and real-time
applications.

When you use handle objects, the static analysis that the code generator uses requires
that you adhere to the following restrictions:

• “A Variable Outside a Loop Cannot Refer to a Handle Object Created Inside a Loop”
on page 11-22

• “A Handle Object That a Persistent Variable Refers To Must Be a Singleton Object”
on page 11-22

A Variable Outside a Loop Cannot Refer to a Handle Object Created
Inside a Loop

Consider the handle class mycls and the function usehandle1. The code generator
reports an error because p, which is outside the loop, has a property that refers to a
mycls object created inside the loop.

classdef mycls < handle

 properties

 prop

 end

end

function usehandle1

p = mycls;

for i = 1:10

 p.prop = mycls;

end

A Handle Object That a Persistent Variable Refers To Must Be a Singleton
Object

If a persistent variable refers to a handle object, the code generator allows only one
instance of the object during the program’s lifetime. The object must be a singleton object.

11-22

 Handle Object Limitations for Code Generation

To create a singleton handle object, enclose statements that create the object in the if
isempty() guard for the persistent variable.

For example, consider the class mycls and the function usehandle2. The code generator
reports an error for usehandle2 because p.prop refers to the mycls object that the
statement inner = mycls creates. This statement creates a mycls object for each
invocation of usehandle2.

classdef mycls < handle

 properties

 prop

 end

end

function usehandle2(x)

assert(isa(x, 'double'));

persistent p;

inner = mycls;

inner.prop = x;

if isempty(p)

 p = mycls;

 p.prop = inner;

end

If you move the statements inner = mycls and inner.prop = x inside the if
isempty() guard, code generation succeeds. The statement inner = mycls executes
only once during the program’s lifetime.

function usehandle2(x)

assert(isa(x, 'double'));

persistent p;

if isempty(p)

 inner = mycls;

 inner.prop = x;

 p = mycls;

 p.prop = inner;

end

Consider the function usehandle3. The code generator reports an error for usehandle3
because the persistent variable p refers to the mycls object that the statement
myobj = mycls creates. This statement creates a mycls object for each invocation of
usehandle3.

function usehandle3(x)

11-23

11 Code Generation for MATLAB Classes

assert(isa(x, 'double'));

myobj = mycls;

myobj.prop = x;

doinit(myobj);

disp(myobj.prop);

function doinit(obj)

persistent p;

if isempty(p)

 p = obj;

end

If you make myobj persistent and enclose the statement myobj = mycls inside an if
isempty() guard, code generation succeeds. The statement myobj = mycls executes
only once during the program’s lifetime.

function usehandle3(x)

assert(isa(x, 'double'));

persistent myobj;

if isempty(myobj)

 myobj = mycls;

end

doinit(myobj);

function doinit(obj)

persistent p;

if isempty(p)

 p = obj;

end

11-24

 System Objects Requirements and Limitations for Code Generation

System Objects Requirements and Limitations for Code Generation

The following usage rules and limitations apply to using System objects in code
generated from MATLAB.

Object Construction and Initialization

• If objects are stored in persistent variables, initialize System objects once by
embedding the object handles in an if statement with a call to isempty().

• Set arguments to System object constructors as compile-time constants.
• You cannot initialize System objects properties with other MATLAB class objects

as default values in code generation. You must initialize these properties in the
constructor.

Inputs and Outputs

• System objects accept a maximum of 1024 inputs. A maximum of 8 dimensions per
input is supported.

• The data type of the inputs should not change.
• If you want the size of inputs to change, verify that variable-size is enabled. Code

generation support for variable-size data also requires that the Enable variable
sizing option is enabled, which is the default in MATLAB.

Note: Variable-size properties in MATLAB Function block in Simulink are not
supported. System objects predefined in the software do not support variable-size if
their data exceeds the DynamicMemoryAllocationThreshold value.

• Do not set System objects to become outputs from the MATLAB Function block.
• Do not use the Save and Restore Simulation State as SimState option for any System

object in a MATLAB Function block.
• Do not pass a System object as an example input argument to a function being

compiled with codegen.
• Do not pass a System object to functions declared as extrinsic (functions called in

interpreted mode) using the coder.extrinsic function. System objects returned
from extrinsic functions and scope System objects that automatically become extrinsic
can be used as inputs to another extrinsic function, but do not generate code.

Tunable and Nontunable Properties

11-25

11 Code Generation for MATLAB Classes

• The value assigned to a nontunable property must be a constant and there can be at
most one assignment to that property (including the assignment in the constructor).

• For most System objects, the only time you can set their nontunable properties during
code generation is when you construct the objects.

• For System objects that are predefined in the software, you can set their tunable
properties at construction time or using dot notation after the object is locked.

• For System objects that you define, you can change their tunable properties
at construction time or using dot notation during code generation. For
getNumInputsImpl and getNumOutputsImpl methods, if you set the
return argument from an object property, that object property must have the
Nontunable attribute.

• Objects cannot be used as default values for properties.

Global Variables

• Global variables are allowed in a System object, unless you will be using that System
object in Simulink via the MATLAB System block. To avoid syncing global variables
between a MEX file and the workspace, use a coder configuration object. For example:

f = coder.MEXConfig;

f.GlobalSyncMethod = 'NoSync'

Then, include '-config f' in your codegen command.

Methods

• Code generation support is available only for these System object methods:

• get

• getNumInputs

• getNumOutputs

• isDone (for sources only)
• isLocked

• release

• reset

• set (for tunable properties)
• step

• For System objects that you define,

11-26

 System Objects Requirements and Limitations for Code Generation

Code generation support is available only for these methods:

• getDiscreteStateImpl

• getNumInputsImpl

• getNumOutputsImpl

• infoImpl

• isDoneImpl

• isInputDirectFeedThroughImpl

• outputImpl

• processTunedPropertiesImpl

• releaseImpl — Code is not generated automatically for this method. To release
an object, you must explicitly call the release method in your code.

• resetImpl

• setupImpl

• stepImpl

• updateImpl

• validateInputsImpl

• validatePropertiesImpl

11-27

12

Code Generation for Function Handles

• “Function Handle Limitations for Code Generation” on page 12-2
• “Code Generation for Anonymous Functions” on page 12-4

12 Code Generation for Function Handles

Function Handle Limitations for Code Generation

When you use function handles in MATLAB code intended for code generation, adhere to
the following restrictions:

Do not use the same bound variable to reference different function handles

In some cases, using the same bound variable to reference different function handles
causes a compile-time error. For example, this code does not compile:

function y = foo(p)

x = @plus;

if p

 x = @minus;

end

y = x(1, 2);

Do not pass function handles to or from coder.ceval

You cannot pass function handles as inputs to or outputs from coder.ceval. For
example, suppose that f and str.f are function handles:

f = @sin;

str.x = pi;

str.f = f;

The following statements result in compilation errors:

coder.ceval('foo', @sin);

coder.ceval('foo', f);

coder.ceval('foo', str);

Do not associate a function handle with an extrinsic function

You cannot create a function handle that references an extrinsic MATLAB function.

Do not pass function handles to or from extrinsic functions

You cannot pass function handles to or from feval and other extrinsic MATLAB
functions.

Do not pass function handles to or from entry-point functions

You cannot pass function handles as inputs to or outputs from entry-point functions. For
example, consider this function:

12-2

 Function Handle Limitations for Code Generation

function x = plotFcn(fhandle, data)

assert(isa(fhandle,'function_handle') && isa(data,'double'));

plot(data, fhandle(data));

x = fhandle(data);

In this example, the function plotFcn receives a function handle and its data as
inputs. plotFcn attempts to call the function referenced by the fhandle with the input
data and plot the results. However, this code generates a compilation error. The error
indicates that the function isa does not recognize 'function_handle' as a class name
when called inside a MATLAB function to specify properties of inputs.

More About
• “Declaring MATLAB Functions as Extrinsic Functions” on page 14-12
• “Code Generation for Anonymous Functions” on page 12-4

12-3

12 Code Generation for Function Handles

Code Generation for Anonymous Functions

You can use anonymous functions in MATLAB code intended for code generation.
For example, you can generate code for the following MATLAB code that defines an
anonymous function that finds the square of a number.

sqr = @(x) x.^2;

a = sqr(5);

Anonymous functions are useful for creating a function handle to pass to a MATLAB
function that evaluates an expression over a range of values. For example, this MATLAB
code uses an anonymous function to create the input to the fzero function:

b = 2;

c = 3.5;

x = fzero(@(x) x^3 + b*x + c,0);

Anonymous Function Limitations for Code Generation

The data type of an anonymous function is function_handle. Therefore, for code
generation, anonymous functions have the same limitations that function handles have.
Anonymous functions also have the code generation limitations of handle classes.

More About
• “Function Handle Limitations for Code Generation” on page 12-2
• “Handle Object Limitations for Code Generation” on page 11-22
• “Parameterizing Functions”

12-4

13

Defining Functions for Code
Generation

• “Specify Variable Numbers of Arguments” on page 13-2
• “Supported Index Expressions” on page 13-3
• “Apply Operations to a Variable Number of Arguments” on page 13-4
• “Implement Wrapper Functions” on page 13-6
• “Variable Length Argument Lists for Code Generation” on page 13-7

13 Defining Functions for Code Generation

Specify Variable Numbers of Arguments

You can use varargin in a function definition to specify that the function accepts a
variable number of input arguments for a given input argument. You can use varargout
in a function definition to specify that the function returns a variable number of
arguments for a given output argument.

When you use varargin and varargout for code generation, adhere to the following
restrictions:

• You cannot use varargout in the function definition for a top-level function.
• You cannot use varargin in the function definition for a top-level function in

a MATLAB Function block in a Simulink model, or in a MATLAB function in a
Stateflow diagram.

• If you use varargin to define an argument to a top-level function, the code generator
produces the function with a fixed number of arguments. This fixed number of
arguments is based on the number of example arguments that you provide on the
command line or in a MATLAB Coder project test file.

Common applications of varargin and varargout for code generation are to:

• “Apply Operations to a Variable Number of Arguments” on page 13-4
• “Implement Wrapper Functions” on page 13-6
• Pass property/value pairs

Code generation relies on loop unrolling to produce simple and efficient code for
varargin and varargout. This technique permits most common uses of varargin and
varargout, but some uses are not allowed (see “Variable Length Argument Lists for
Code Generation” on page 13-7).

For more information about using varargin and varargout in MATLAB functions, see
Passing Variable Numbers of Arguments.

13-2

 Supported Index Expressions

Supported Index Expressions

In MATLAB, varargin and varargout are cell arrays. For code generation, to index
varargin and varargout, you must use a syntax that code generation supports. You
can use the most common syntax — curly braces {}. For example:

%#codegen

function [x,y,z] = fcn(a,b,c)

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)

for i = 1:length(varargin)

 varargout{i} = varargin{i};

end

You can use the following index expressions. The exp arguments must be constant
expressions or depend on a loop index variable.

Expression Description

varargin{exp} Read the value of element exp
varargin{exp1: exp2} Read the values of elements

exp1 through exp2

varargin

(read only)

varargin{:} Read the values of all
elements

varargout

(read and write)
varargout{exp} Read or write the value of

element exp

Note: The use of () is not supported for indexing into varargin and varargout arrays.

13-3

13 Defining Functions for Code Generation

Apply Operations to a Variable Number of Arguments

You can use varargin and varargout in for-loops to apply operations to a variable
number of arguments. To index into varargin and varargout arrays in generated
code, the value of the loop index variable must be known at compile time. Therefore,
during code generation, the compiler attempts to automatically unroll these for-loops.
Unrolling eliminates the loop logic by creating a separate copy of the loop body in the
generated code for each iteration. Within each iteration, the loop index variable becomes
a constant. For example, the following function automatically unrolls its for-loop in the
generated code:

%#codegen

function [cmlen,cmwth,cmhgt] = conv_2_metric(inlen,inwth,inhgt)

[cmlen,cmwth,cmhgt] = inch_2_cm(inlen,inwth,inhgt);

function varargout = inch_2_cm(varargin)

for i = 1:length(varargin)

 varargout{i} = varargin{i} * 2.54;

end

When to Force Loop Unrolling

To automatically unroll for-loops containing varargin and varargout expressions,
the relationship between the loop index expression and the index variable must be
determined at compile time.

In the following example, the function fcn cannot detect a logical relationship between
the index expression j and the index variable i:

%#codegen

function [x,y,z] = fcn(a,b,c)

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)

j = 0;

for i = 1:length(varargin)

 j = j+1;

 varargout{j} = varargin{j};

end

As a result, the function does not unroll the loop and generates a compilation error:

13-4

 Apply Operations to a Variable Number of Arguments

Nonconstant expression or empty matrix.

This expression must be constant because

its value determines the size or class of some expression.

To fix the problem, you can force loop unrolling by wrapping the loop header in the
function coder.unroll, as follows:

%#codegen

function [x,y,z] = fcn(a,b,c)

 [x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)

 j = 0;

 for i = coder.unroll(1:length(varargin))

 j = j + 1;

 varargout{j} = varargin{j};

 end;

Using Variable Numbers of Arguments in a for-Loop

The following example multiplies a variable number of input dimensions in inches by
2.54 to convert them to centimeters:

%#codegen

function [cmlen,cmwth,cmhgt] = conv_2_metric(inlen,inwth,inhgt)

[cmlen,cmwth,cmhgt] = inch_2_cm(inlen,inwth,inhgt);

function varargout = inch_2_cm(varargin)

for i = 1:length(varargin)

 varargout{i} = varargin{i} * 2.54;

end

Key Points About the Example

• varargin and varargout appear in the local function inch_2_cm, not in the top-
level function conv_2_metric.

• The index into varargin and varargout is a for-loop variable

For more information, see “Variable Length Argument Lists for Code Generation” on
page 13-7.

13-5

13 Defining Functions for Code Generation

Implement Wrapper Functions

You can use varargin and varargout to write wrapper functions that accept up to 64
inputs and pass them directly to another function.

Passing Variable Numbers of Arguments from One Function to Another

The following example passes a variable number of inputs to different optimization
functions, based on a specified input method:

%#codegen

function answer = fcn(method,a,b,c)

answer = optimize(method,a,b,c);

function answer = optimize(method,varargin)

 if strcmp(method,'simple')

 answer = simple_optimization(varargin{:});

 else

 answer = complex_optimization(varargin{:});

 end

...

Key Points About the Example

• You can use {:} to read all elements of varargin and pass them to another function.
• You can mix variable and fixed numbers of arguments.

For more information, see “Variable Length Argument Lists for Code Generation” on
page 13-7.

13-6

 Variable Length Argument Lists for Code Generation

Variable Length Argument Lists for Code Generation

Use variable length argument lists in top-level functions according to guidelines

When you use varargin and varargout for code generation, adhere to these
restrictions:

• You cannot use varargout in the function definition for a top-level function.
• You cannot use varargin in the function definition for a top-level function in

a MATLAB Function block in a Simulink model, or in a MATLAB function in a
Stateflow diagram.

• If you use varargin to define an argument to a top-level function, the code generator
produces the function with a fixed number of arguments. This fixed number of
arguments is based on the number of example arguments that you provide on the
command line or in a MATLAB Coder project test file.

A top-level function is:

• The function called by Simulink in a MATLAB Function block or by Stateflow in a
MATLAB function.

• The function that you provide on the command line to codegen or fiaccel.

For example, the following code generates compilation errors:

%#codegen

function varargout = inch_2_cm(varargin)

for i = 1:length(varargin)

 varargout{i} = varargin{i} * 2.54;

end

To fix the problem, write a top-level function that specifies a fixed number of inputs
and outputs. Then call inch_2_cm as an external function or local function, as in this
example:

%#codegen

function [cmL, cmW, cmH] = conv_2_metric(inL, inW, inH)

[cmL, cmW, cmH] = inch_2_cm(inL, inW, inH);

function varargout = inch_2_cm(varargin)

for i = 1:length(varargin)

 varargout{i} = varargin{i} * 2.54;

end

13-7

13 Defining Functions for Code Generation

Use curly braces {} to index into the argument list

For code generation, you can use curly braces {}, but not parentheses (), to index
into varargin and varargout arrays. For more information, see “Supported Index
Expressions” on page 13-3.

Verify that indices can be computed at compile time

If you use an expression to index into varargin or varargout, make sure that the value
of the expression can be computed at compile time. For examples, see “Apply Operations
to a Variable Number of Arguments” on page 13-4.

Do not write to varargin

Generated code treats varargin as a read-only variable. If you want to write to input
arguments, copy the values into a local variable.

13-8

14

Calling Functions for Code Generation

• “Resolution of Function Calls for Code Generation” on page 14-2
• “Resolution of File Types on Code Generation Path” on page 14-6
• “Compilation Directive %#codegen” on page 14-8
• “Call Local Functions” on page 14-9
• “Call Supported Toolbox Functions” on page 14-10
• “Extrinsic Functions” on page 14-11
• “Code Generation for Recursive Functions” on page 14-20
• “Force Code Generator to Use Run-Time Recursion” on page 14-24

14 Calling Functions for Code Generation

Resolution of Function Calls for Code Generation

From a MATLAB function, you can call local functions, supported toolbox functions,
and other MATLAB functions. MATLAB resolves function names for code generation as
follows:

14-2

 Resolution of Function Calls for Code Generation

Subfunction?

Function
on the code
generation

path?

Function
on

MATLAB
path?

Extrinsic
function?

Function
on

MATLAB
path?

YesYes
Dispatch to
MATLAB

for execution
at runtime

No

No

No

Yes

Suitable
for code

 generation?

Yes

Yes

Yes

Generate

C code

Start

Generate error

No

No

No

14-3

14 Calling Functions for Code Generation

Key Points About Resolving Function Calls

The diagram illustrates key points about how MATLAB resolves function calls for code
generation:

• Searches two paths, the code generation path and the MATLAB path

See “Compile Path Search Order” on page 14-4.
• Attempts to compile functions unless the code generator determines that it should not

compile them or you explicitly declare them to be extrinsic.

If a MATLAB function is not supported for code generation, you can declare it to
be extrinsic by using the construct coder.extrinsic, as described in “Declaring
MATLAB Functions as Extrinsic Functions” on page 14-12. During simulation,
the code generator produces code for the call to an extrinsic function, but does not
generate the internal code for the function. Therefore, simulation can run only on
platforms where MATLAB software is installed. During standalone code generation,
the code generator attempts to determine whether the extrinsic function affects the
output of the function in which it is called — for example by returning mxArrays
to an output variable. Provided that the output does not change, code generation
proceeds, but the extrinsic function is excluded from the generated code. Otherwise,
compilation errors occur.

The code generator detects calls to many common visualization functions, such as
plot, disp, and figure. The software treats these functions like extrinsic functions
but you do not have to declare them extrinsic using the coder.extrinsic function.

• Resolves file type based on precedence rules described in “Resolution of File Types on
Code Generation Path” on page 14-6

Compile Path Search Order

During code generation, function calls are resolved on two paths:

1 Code generation path

MATLAB searches this path first during code generation. The code generation path
contains the toolbox functions supported for code generation.

2 MATLAB path

If the function is not on the code generation path, MATLAB searches this path.

14-4

 Resolution of Function Calls for Code Generation

MATLAB applies the same dispatcher rules when searching each path (see “Function
Precedence Order”).

When to Use the Code Generation Path

Use the code generation path to override a MATLAB function with a customized version.
A file on the code generation path shadows a file of the same name on the MATLAB path.

14-5

14 Calling Functions for Code Generation

Resolution of File Types on Code Generation Path

MATLAB uses the following precedence rules for code generation:

14-6

 Resolution of File Types on Code Generation Path

MEX-file?

MDL-file?

P-file?

M-file and
MEX-file in same

directory?

Yes

No

No

No

Yes

M-file?

Yes

Yes

Start

No

Compile
M-file

Generate
error

YesNo 14-7

14 Calling Functions for Code Generation

Compilation Directive %#codegen

Add the %#codegen directive (or pragma) to your function after the function signature
to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB code analyzer to help you diagnose and fix violations
that would result in errors during code generation.

function y = my_fcn(x) %#codegen

....

Note: The %#codegen directive is not necessary for MATLAB Function blocks.
Code inside a MATLAB Function block is always intended for code generation. The
%#codegen directive, or the absence of it, does not change the error checking behavior.

14-8

 Call Local Functions

Call Local Functions

Local functions are functions defined in the body of MATLAB function. They work the
same way for code generation as they do when executing your algorithm in the MATLAB
environment.

The following example illustrates how to define and call a local function mean:

function [mean, stdev] = stats(vals)

%#codegen

% Calculates a statistical mean and a standard

% deviation for the values in vals.

len = length(vals);

mean = avg(vals, len);

stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);

plot(vals,'-+');

function mean = avg(array,size)

mean = sum(array)/size;

14-9

14 Calling Functions for Code Generation

Call Supported Toolbox Functions

You can call toolbox functions directly if they are supported for code generation. For a list
of supported functions, see “Functions and Objects Supported for C/C++ Code Generation
— Alphabetical List” on page 4-2.

14-10

 Extrinsic Functions

Extrinsic Functions

The code generator attempts to generate code for functions, even if they are not
supported for C code generation. The software detects calls to many common
visualization functions, such as plot, disp, and figure. The software treats these
functions like extrinsic functions but you do not have to declare them extrinsic using
coder.extrinsic. During simulation, the code generator produces code for these
functions, but does not generate their internal code. During standalone code generation,
the code generator attempts to determine whether the visualization function affects the
output of the function in which it is called. Provided that the output does not change, the
code generator proceeds with code generation, but excludes the visualization function
from the generated code. Otherwise, compilation errors occur.

For example, you might want to call plot to visualize your results in the MATLAB
environment. If you generate a MEX function from a function that calls plot and
then run the generated MEX function, the code generator dispatches calls to the plot
function to MATLAB. If you generate a library or executable, the generated code does not
contain calls to the plot function. The code generation report highlights calls from your
MATLAB code to extrinsic functions so that it is easy to determine which functions are
supported only in the MATLAB environment.

For unsupported functions other than common visualization functions, you must declare
the functions to be extrinsic (see “Resolution of Function Calls for Code Generation”
on page 14-2). Extrinsic functions are not compiled, but instead executed in MATLAB
during simulation (see “Resolution of Extrinsic Functions During Simulation” on page
14-16).

There are two ways to declare a function to be extrinsic:

14-11

14 Calling Functions for Code Generation

• Use the coder.extrinsic construct in main functions or local functions (see
“Declaring MATLAB Functions as Extrinsic Functions” on page 14-12).

• Call the function indirectly using feval (see “Calling MATLAB Functions Using
feval” on page 14-16).

Declaring MATLAB Functions as Extrinsic Functions

To declare a MATLAB function to be extrinsic, add the coder.extrinsic construct at
the top of the main function or a local function:

coder.extrinsic('function_name_1', ... , 'function_name_n');

Declaring Extrinsic Functions

The following code declares the MATLAB patch function extrinsic in the local function
create_plot. You do not have to declare axis as extrinsic because axis is one of the
common visualization functions that the code generator automatically treats as extrinsic.

function c = pythagoras(a,b,color) %#codegen

% Calculates the hypotenuse of a right triangle

% and displays the triangle.

c = sqrt(a^2 + b^2);

create_plot(a, b, color);

function create_plot(a, b, color)

%Declare patch as extrinsic

coder.extrinsic('patch');

x = [0;a;a];

y = [0;0;b];

patch(x, y, color);

axis('equal');

The code generator does not produce code for patch and axis, but instead dispatches
them to MATLAB for execution.

To test the function, follow these steps:

1 Convert pythagoras to a MEX function by executing this command at the MATLAB
prompt:

14-12

 Extrinsic Functions

codegen -report pythagoras -args {1, 1, [.3 .3 .3]}

2 Click the link to the code generation report and then, in the report, view the
MATLAB code for create_plot.

The report highlights the patch and axis functions to indicate that they are
supported only within the MATLAB environment.

3 Run the MEX function by executing this command:

pythagoras_mex(3, 4, [1.0 0.0 0.0]);

MATLAB displays a plot of the right triangle as a red patch object:

14-13

14 Calling Functions for Code Generation

When to Use the coder.extrinsic Construct

Use the coder.extrinsic construct to:

• Call MATLAB functions that do not produce output during simulation, without
generating unnecessary code (see “Resolution of Extrinsic Functions During
Simulation” on page 14-16).

• Make your code self-documenting and easier to debug. You can scan the source code
for coder.extrinsic statements to isolate calls to MATLAB functions, which can
potentially create and propagate mxArrays (see “Working with mxArrays” on page
14-17).

14-14

 Extrinsic Functions

• Save typing. With one coder.extrinsic statement, each subsequent function call
is extrinsic, as long as the call and the statement are in the same scope (see “Scope of
Extrinsic Function Declarations” on page 14-15).

• Declare the MATLAB function(s) extrinsic throughout the calling function scope (see
“Scope of Extrinsic Function Declarations” on page 14-15). To narrow the scope,
use feval (see “Calling MATLAB Functions Using feval” on page 14-16).

Rules for Extrinsic Function Declarations

Observe the following rules when declaring functions extrinsic for code generation:

• Declare the function extrinsic before you call it.
• Do not use the extrinsic declaration in conditional statements.

Scope of Extrinsic Function Declarations

The coder.extrinsic construct has function scope. For example, consider the following
code:

function y = foo %#codegen

coder.extrinsic('rat','min');

[N D] = rat(pi);

y = 0;

y = min(N, D);

In this example, rat and min as treated as extrinsic every time they are called in the
main function foo. There are two ways to narrow the scope of an extrinsic declaration
inside the main function:

• Declare the MATLAB function extrinsic in a local function, as in this example:

function y = foo %#codegen

coder.extrinsic('rat');

[N D] = rat(pi);

y = 0;

y = mymin(N, D);

function y = mymin(a,b)

coder.extrinsic('min');

y = min(a,b);

Here, the function rat is extrinsic every time it is called inside the main function
foo, but the function min is extrinsic only when called inside the local function
mymin.

14-15

14 Calling Functions for Code Generation

• Call the MATLAB function using feval, as described in “Calling MATLAB Functions
Using feval” on page 14-16.

Calling MATLAB Functions Using feval

The function feval is automatically interpreted as an extrinsic function during code
generation. Therefore, you can use feval to conveniently call functions that you want to
execute in the MATLAB environment, rather than compiled to generated code.

Consider the following example:

function y = foo

coder.extrinsic('rat');

[N D] = rat(pi);

y = 0;

y = feval('min', N, D);

Because feval is extrinsic, the statement feval('min', N, D) is evaluated by
MATLAB — not compiled — which has the same result as declaring the function min
extrinsic for just this one call. By contrast, the function rat is extrinsic throughout the
function foo.

Resolution of Extrinsic Functions During Simulation

The code generator resolves calls to extrinsic functions — functions that do not support
code generation — as follows:

14-16

 Extrinsic Functions

During simulation, the code generator produces code for the call to an extrinsic function,
but does not generate the internal code for the function. Therefore, you can run the
simulation only on platforms where you install MATLAB software.

During code generation, the code generator attempts to determine whether the extrinsic
function affects the output of the function in which it is called — for example by
returning mxArrays to an output variable (see “Working with mxArrays” on page
14-17). Provided that the output does not change, code generation proceeds, but the
extrinsic function is excluded from the generated code. Otherwise, the code generator
issues a compiler error.

Working with mxArrays

The output of an extrinsic function is an mxArray — also called a MATLAB array. The
only valid operations for mxArrays are:

• Storing mxArrays in variables

14-17

14 Calling Functions for Code Generation

• Passing mxArrays to functions and returning them from functions
• Converting mxArrays to known types at run time

To use mxArrays returned by extrinsic functions in other operations, you must first
convert them to known types, as described in “Converting mxArrays to Known Types” on
page 14-18.

Converting mxArrays to Known Types

To convert an mxArray to a known type, assign the mxArray to a variable whose type is
defined. At run time, the mxArray is converted to the type of the variable assigned to it.
However, if the data in the mxArray is not consistent with the type of the variable, you
get a run-time error.

For example, consider this code:

function y = foo %#codegen

coder.extrinsic('rat');

[N D] = rat(pi);

y = min(N, D);

Here, the top-level function foo calls the extrinsic MATLAB function rat, which returns
two mxArrays representing the numerator N and denominator D of the rational fraction
approximation of pi. Although you can pass these mxArrays to another MATLAB
function — in this case, min — you cannot assign the mxArray returned by min to the
output y.

If you run this function foo in a MATLAB Function block in a Simulink model, the code
generates the following error during simulation:

Function output 'y' cannot be of MATLAB type.

To fix this problem, define y to be the type and size of the value that you expect min to
return — in this case, a scalar double — as follows:

function y = foo %#codegen

coder.extrinsic('rat');

[N D] = rat(pi);

y = 0; % Define y as a scalar of type double

y = min(N,D);

14-18

 Extrinsic Functions

Restrictions on Extrinsic Functions for Code Generation

The full MATLAB run-time environment is not supported during code generation.
Therefore, the following restrictions apply when calling MATLAB functions extrinsically:

• MATLAB functions that inspect the caller, or read or write to the caller workspace do
not work during code generation. Such functions include:

• dbstack

• evalin

• assignin

• save

• The MATLAB debugger cannot inspect variables defined in extrinsic functions.
• Functions in generated code can produce unpredictable results if your extrinsic

function performs the following actions at run time:

• Change folders
• Change the MATLAB path
• Delete or add MATLAB files
• Change warning states
• Change MATLAB preferences
• Change Simulink parameters

Limit on Function Arguments

You can call functions with up to 64 inputs and 64 outputs.

14-19

14 Calling Functions for Code Generation

Code Generation for Recursive Functions

To generate code for recursive MATLAB functions, the code generator uses compile-
time recursion or run-time recursion. You can influence whether the code generator uses
compile-time or run-time recursion by modifying your MATLAB code. See “Force Code
Generator to Use Run-Time Recursion” on page 14-24.

You can disallow recursion or disable run-time recursion by modifying configuration
parameters.

When you use recursive functions in MATLAB code that is intended for code generation,
you must adhere to certain restrictions. See “Recursive Function Limitations for Code
Generation” on page 14-23.

Compile-Time Recursion

With compile-time recursion, the code generator creates multiple copies of a recursive
function in the generated code. The inputs to the copies have different sizes or constant
values. You can tell that the code generator used compile-time recursion by looking at
the code generation report or the generated C code. Here is an example of compile-time
recursion in the report.

14-20

 Code Generation for Recursive Functions

Sometimes, the function copies do not appear in the C/C++ code because of optimizations.
For example, consider this function:

function y = foo()

%#codegen

 x = 10;

 y = sub(x);

end

function y = sub(x)

coder.inline('never');

if x > 1

 y = x + sub(x-1);

else

 y = x;

end

end

In the code generation report, on the MATLAB code tab, you see multiple copies of the
MATLAB function sub. However, the C code does not contain function copies. Instead, it
returns the value 55.

14-21

14 Calling Functions for Code Generation

Run-Time Recursion

With run-time recursion, the code generator produces a recursive function in the
generated code. You can tell that the code generator used run-time recursion by looking
at the code generation report or the generated C code. Here is an example of run-time
recursion in the report.

Disallow Recursion

• In a code generation configuration object, set the CompileTimeRecursionLimit
configuration parameter to 0.

• In the MATLAB Coder app, set the value of the Compile-time recursion limit
setting to 0.

Disable Run-Time Recursion

Some coding standards, such as MISRA®, do not allow recursion. To increase the
likelihood of generating code that is compliant with MISRA C® , disable run-time
recursion.

• In a code generation configuration object, set EnableRuntimeRecursion to false.
• In the MATLAB Coder app, set Enable run-time recursion to No.

14-22

 Code Generation for Recursive Functions

If your code requires run-time recursion and run-time recursion is disabled, you must
rewrite your code so that it uses compile-time recursion or does not use recursion.

Recursive Function Limitations for Code Generation

When you use recursion in MATLAB code that is intended for code generation, follow
these restrictions:

• Assign all outputs of a run-time recursive function before the first recursive call in the
function.

• Assign all elements of cell array outputs of a run-time recursive function.
• Inputs and outputs of run-time recursive functions cannot be classes.
• The maximum stack usage on page 29-17 setting is ignored for run-time recursion.

More About
• “Force Code Generator to Use Run-Time Recursion” on page 14-24
• “Output Variable Must Be Assigned Before Run-Time Recursive Call” on page

31-4
• “Compile-Time Recursion Limit Reached” on page 31-7
• “Configure Build Settings” on page 21-26
• “Code Generation Reports” on page 22-9

14-23

14 Calling Functions for Code Generation

Force Code Generator to Use Run-Time Recursion

When your MATLAB code includes recursive function calls, the code generator uses
compile-time or run-time recursion. With compile-time recursion, the code generator
creates multiple copies of the function in the generated code. With run-time recursion,
the code generator produces a recursive function. If compile-time recursion results in too
many function copies or if you prefer run-time recursion, you can try to force the code
generator to use run-time recursion. Try one of these approaches:

• “Make the Input to the Recursive Function Variable-Size” on page 14-24
• “Assign Output Variable Before the Recursive Call” on page 14-25

Make the Input to the Recursive Function Variable-Size

Consider this code:

function z = call_mysum(A)

%#codegen

z = mysum(A);

end

function y = mysum(A)

coder.inline('never');

if size(A,2) == 1

 y = A(1);

else

 y = A(1)+ mysum(A(2:end));

end

end

If the input to mysum is fixed-size, the code generator uses compile-time recursion. To
force the code generator to use run-time conversion, make the input to mysum variable-
size by using coder.varsize.

function z = call_mysum(A)

%#codegen

B = A;

coder.varsize('B');

z = mysum(B);

end

function y = mysum(A)

14-24

 Force Code Generator to Use Run-Time Recursion

coder.inline('never');

if size(A,2) == 1

 y = A(1);

else

 y = A(1)+ mysum(A(2:end));

end

end

Assign Output Variable Before the Recursive Call

The code generator uses compile-time recursion for this code:

function y = callrecursive(n)

x = 10;

y = myrecursive(x,n);

end

function y = myrecursive(x,n)

coder.inline('never')

if x > 1

 y = n + myrecursive(x-1,n-1);

else

 y = n;

end

end

To force the code generator to use run-time recursion, modify myrecursive so that the
output y is assigned before the recursive call. Place the assignment y = n in the if
block and the recursive call in the else block.

function y = callrecursive(n)

x = 10;

y = myrecursive(x,n);

end

function y = myrecursive(x,n)

coder.inline('never')

if x == 1

 y = n;

else

 y = n + myrecursive(x-1,n-1);

end

end

14-25

14 Calling Functions for Code Generation

More About
• “Code Generation for Recursive Functions” on page 14-20
• “Output Variable Must Be Assigned Before Run-Time Recursive Call” on page

31-4
• “Compile-Time Recursion Limit Reached” on page 31-7

14-26

15

Fixed-Point Conversion

• “Detect Dead and Constant-Folded Code” on page 15-2
• “Convert MATLAB Code to Fixed-Point C Code” on page 15-5
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 15-7
• “Propose Fixed-Point Data Types Based on Derived Ranges” on page 15-21
• “Specify Type Proposal Options” on page 15-34
• “Detect Overflows” on page 15-38
• “Replace the exp Function with a Lookup Table” on page 15-47
• “Replace a Custom Function with a Lookup Table” on page 15-56
• “Enable Plotting Using the Simulation Data Inspector” on page 15-65
• “Visualize Differences Between Floating-Point and Fixed-Point Results” on page

15-66
• “View and Modify Variable Information” on page 15-77
• “Automated Fixed-Point Conversion” on page 15-81
• “Convert Fixed-Point Conversion Project to MATLAB Scripts” on page 15-102
• “Generated Fixed-Point Code” on page 15-105
• “Fixed-Point Code for MATLAB Classes” on page 15-111
• “Automated Fixed-Point Conversion Best Practices” on page 15-114
• “Replacing Functions Using Lookup Table Approximations” on page 15-122
• “MATLAB Language Features Supported for Automated Fixed-Point Conversion” on

page 15-123
• “Inspecting Data Using the Simulation Data Inspector” on page 15-125
• “Custom Plot Functions” on page 15-128
• “Data Type Issues in Generated Code” on page 15-130

15 Fixed-Point Conversion

Detect Dead and Constant-Folded Code

During the simulation of your test file, the MATLAB Coder app detects dead code or code
that is constant folded. The app uses the code coverage information when translating
your code from floating-point MATLAB code to fixed-point MATLAB code. Reviewing
code coverage results helps you to verify that your test file is exercising the algorithm
adequately.

The app inserts inline comments in the fixed-point code to mark the dead and
untranslated regions. It includes the code coverage information in the generated fixed-
point conversion HTML report. The app editor displays a color-coded bar to the left of the
code. This table describes the color coding.

Coverage Bar
Color

Indicates

Green One of the following situations:

• The entry-point function executes multiple times and the code
executes more than one time.

• The entry-point function executes one time and the code executes
one time.

Different shades of green indicate different ranges of line execution
counts. The darkest shade of green indicates the highest range.

Orange The entry-point function executes multiple times, but the code
executes one time.

Red Code does not execute.

What Is Dead Code?

Dead code is code that does not execute during simulation. Dead code can result from
these scenarios:

• Defensive code containing intended corner cases that are not reached
• Human error in the code, resulting in code that cannot be reached by any execution

path
• Inadequate test bench range

15-2

 Detect Dead and Constant-Folded Code

• Constant folding

Detect Dead Code

This example shows how to detect dead code in your algorithm by using the MATLAB
Coder app.

1 In a local writable folder, create the function myFunction.m.

function y = myFunction(u,v)

 %#codegen

 for i = 1:length(u)

 if u(i) > v(i)

 y=bar(u,v);

 else

 tmp = u;

 v = tmp;

 y = baz(u,v);

 end

 end

end

function y = bar(u,v)

 y = u+v;

end

function y = baz(u,v)

 y = u-v;

end

2 In the same folder, create a test file, myFunction_tb.

u = 1:100;

v = 101:200;

myFunction(u,v);

3 From the apps gallery, open the MATLAB Coder app.
4 Set Numeric Conversion to Convert to fixed point.
5 On the Select Source Files page, browse to the myFunction file, and click Open.
6 Click Next. On the Define Input Types page, browse to select the test file that you

created, myFunction_tb. Click Autodefine Input Types.
7 Click Next. On the Check for Run-Time Issues page, click Check for Issues.

The app runs the myFunction_tb test file and detects no issues.

15-3

15 Fixed-Point Conversion

8 Click Next. On the Convert to Fixed-Point page, click Analyze to simulate the
entry-point functions, gather range information, and get proposed data types.

The color-coded bar on the left side of the edit window indicates whether the code
executes. The code in the first condition of the if-statement does not execute during
simulation because u is never greater than v. The bar function never executes
because the if-statement never executes. These parts of the algorithm are marked
with a red bar, indicating that they are dead code.

9 To apply the proposed data types to the function, click Convert .

The MATLAB Coder app generates a fixed-point function, myFunction_fixpt. The
generated fixed-point code contains comments around the pieces of code identified
as dead code. The Validation Results pane proposes that you use a more thorough
test bench.

When the MATLAB Coder app detects dead code, consider editing your test file so
that your algorithm is exercised over its full range. If your test file already reflects
the full range of the input variables, consider editing your algorithm to eliminate the
dead code.

10 Close the MATLAB Coder app.

Fix Dead Code

1 Edit the test file myFunction_tb.m to include a wider range of inputs.

u = 1:100;

v = -50:2:149;

myFunction(u,v);

2 Reopen the MATLAB Coder app.
3 Using the same function and the edited test file, go through the conversion process

again.
4 After you click Analyze, this time the code coverage bar shows that all parts of the

algorithm execute with the new test file input ranges.

To finish the conversion process and convert the function to fixed point, click
Convert.

15-4

 Convert MATLAB Code to Fixed-Point C Code

Convert MATLAB Code to Fixed-Point C Code

To convert MATLAB Code to fixed-point C Code using the MATLAB Coder app:

1 Open the MATLAB Coder app.
2 Set Fixed-Point Conversion to Enabled.
3 On the Select Source Files page, add the entry-point function from which you want

to generate code.
4 Click Next to go to the Define Input Types step. The app analyzes the function for

coding issues and code generation readiness. If the app identifies issues, it opens the
Review Code Generation Readiness page where you can review and fix issues. If
the app does not find issues, it opens the Define Input Types page.

5 On the Define Input Types page, specify a test file that the app can use to define
the input types.

6 Click Next to go to the Check for Run-Time Issues step.
7 On the Check for Run-Time Issues page, specify a test file that calls your entry-

point function. Alternatively, at the prompt, enter code that calls your entry-point
function. The app generates instrumented MEX. It runs the test file or code that
you specified, replacing calls to your entry-point function with calls to the generated
MEX function. If the app finds issues, it provides warning and error messages. Click
a message to highlight the problematic code in a window where you can edit the
code.

8 Click Next to go to the Convert to Fixed Point step.
9 Propose data types based on simulation range data, derived (also known as static)

range data, or both. See “Propose Fixed-Point Data Types Based on Simulation
Ranges” on page 15-7 and “Propose Fixed-Point Data Types Based on Derived
Ranges” on page 15-21.

10 To convert the floating-point MATLAB code to fixed-point MATLAB code, click
Convert. During fixed-point conversion, the app validates the build using the
proposed fixed-point data types. See “Validating Types” on page 15-100.

11 Verify the behavior of the fixed-point MATLAB code. See “Testing Numerics” on page
15-100.

12 Click Next to go to the Generate Code step.
13 In the Generate dialog box, set Build source to Fixed-Point. Set the Build

type to build a static or dynamic library, or executable. Set Language to C. Click
Generate.

15-5

15 Fixed-Point Conversion

MATLAB Coder generates fixed-point C code for your entry-point MATLAB function.

Related Examples
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 15-7
• “Propose Fixed-Point Data Types Based on Derived Ranges” on page 15-21

15-6

 Propose Fixed-Point Data Types Based on Simulation Ranges

Propose Fixed-Point Data Types Based on Simulation Ranges
This example shows how to propose fixed-point data types based on simulation range
data using the MATLAB Coder app.

Prerequisites

This example requires the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB). See

http://www.mathworks.com/support/compilers/current_release/

You can use mex -setup to change the default compiler. See “Change Default
Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to
your local working folder.

Type Name Description

Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test.m MATLAB script that tests

ex_2ndOrder_filter.m

The ex_2ndOrder_filter Function

function y = ex_2ndOrder_filter(x) %#codegen

 persistent z

 if isempty(z)

 z = zeros(2,1);

 end

 % [b,a] = butter(2, 0.25)

15-7

15 Fixed-Point Conversion

 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];

 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));

 for i = 1:length(x)

 y(i) = b(1)*x(i) + z(1);

 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);

 z(2) = b(3)*x(i) - a(3) * y(i);

 end

end

The ex_2ndOrder_filter_test Script

The test script runs the ex_2ndOrder_filter function with three input signals: chirp,
step, and impulse to cover the full intended operating range of the system. The script
then plots the outputs.

% ex_2ndOrder_filter_test

%

% Define representative inputs

N = 256; % Number of points

t = linspace(0,1,N); % Time vector from 0 to 1 second

f1 = N/2; % Target frequency of chirp set to Nyquist

x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second

x_step = ones(1,N); % Step

x_impulse = zeros(1,N); % Impulse

x_impulse(1) = 1;

% Run the function under test

x = [x_chirp;x_step;x_impulse];

y = zeros(size(x));

for i = 1:size(x,1)

 y(i,:) = ex_2ndOrder_filter(x(i,:));

end

% Plot the results

titles = {'Chirp','Step','Impulse'}

clf

for i = 1:size(x,1)

 subplot(size(x,1),1,i)

 plot(t,x(i,:),t,y(i,:))

 title(titles{i})

 legend('Input','Output')

end

15-8

 Propose Fixed-Point Data Types Based on Simulation Ranges

xlabel('Time (s)')

figure(gcf)

disp('Test complete.')

Open the MATLAB Coder App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Enable Fixed-Point Conversion

Set Numeric Conversion to Convert to fixed point.

15-9

15 Fixed-Point Conversion

Select Source Files

1 To add the entry-point function ex_2ndOrder_filter to the project, browse
to the file ex_2ndOrder_filter.m, and then click Open. By default, the app
saves information and settings for this project in the current folder in a file named
ex_2ndOrder_filter.prj.

2 Click Next to go to the Define Input Types step.

The app screens ex_2ndOrder_filter.m for code violations and code generation
readiness issues. The app does not find issues in ex_2ndOrder_filter.m.

Define Input Types

1 On the Define Input Types page, to add ex_2ndOrder_filter_test as a test
file, browse to ex_2ndOrder_filter_test, and then click Open.

2 Click Autodefine Input Types.

The test file runs and displays the outputs of the filter for each of the input signals.

15-10

 Propose Fixed-Point Data Types Based on Simulation Ranges

The app determines from the test file that the input type of x is double(1x256).

15-11

15 Fixed-Point Conversion

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates instrumented MEX. It runs the test
file ex_2ndOrder_filter_test replacing calls to ex_2ndOrder_filter with calls
to the generated MEX function. If the app finds issues, it provides warning and error
messages. You can click a message to highlight the problematic code in a window where
you can edit the code.

1 On the Check for Run-Time Issues page, the app populates the test file field with
ex_2ndOrder_filter_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

Convert to Fixed Point

1 The app displays compiled information—type, size, and complexity—for variables in
your code. See “View and Modify Variable Information” on page 15-77.

15-12

 Propose Fixed-Point Data Types Based on Simulation Ranges

On the Function Replacements tab, the app displays functions that are not
supported for fixed-point conversion. See “Running a Simulation” on page 15-86.

2 Click the Analyze arrow . Verify that Analyze ranges using simulation is
selected and that the test bench file is ex_2ndOrder_filter_test. You can add
test files and select to run more than one test file during the simulation. If you run
multiple test files, the app merges the simulation results.

3 Select Log data for histogram.

By default, the Show code coverage option is selected. This option provides
code coverage information that helps you verify that your test file is testing your
algorithm over the intended operating range.

15-13

15 Fixed-Point Conversion

4 Click Analyze.

The simulation runs and the app displays a color-coded code coverage bar to the left
of the MATLAB code. Review this information to verify that the test file is testing
the algorithm adequately. The dark green line to the left of the code indicates that
the code runs every time the algorithm executes. The orange bar indicates that the
code next to it executes only once. This behavior is expected for this example because
the code initializes a persistent variable. If your test file does not cover all of your
code, update the test or add more test files.

15-14

 Propose Fixed-Point Data Types Based on Simulation Ranges

If a value has ... next to it, the value is rounded. Place your cursor over the ... to
view the actual value.

The app displays simulation minimum and maximum ranges on the Variables
tab. Using the simulation range data, the software proposes fixed-point types for
each variable based on the default type proposal settings, and displays them in the
Proposed Type column. The app enables the Convert option.

Note: You can manually enter static ranges. These manually entered ranges take
precedence over simulation ranges. The app uses the manually entered ranges to
propose data types. You can also modify and lock the proposed type.

15-15

15 Fixed-Point Conversion

5 Examine the proposed types and verify that they cover the full simulation range. To
view logged histogram data for a variable, click its Proposed Type field.

To modify the proposed data types, either enter the required type into the Proposed
Type field or use the histogram controls. For more information about the histogram,
see “Log Data for Histogram” on page 15-97.

6 To convert the floating-point algorithm to fixed point, click Convert.

During the fixed-point conversion process, the software validates the proposed types
and generates the following files in the codegen\ex_2ndOrder_filter\fixpt
folder in your local working folder.

• ex_2ndOrder_filter_fixpt.m — the fixed-point version of
ex_2ndOrder_filter.m.

• ex_2ndOrder_filter_wrapper_fixpt.m — this file converts the floating-
point data values supplied by the test file to the fixed-point types determined for
the inputs during conversion. These fixed-point values are fed into the converted
fixed-point design, ex_2ndOrder_filter_fixpt.m.

• ex_2ndOrder_filter_fixpt_report.html — this report shows the generated
fixed-point code and the fixed-point instrumentation results.

• ex_2ndOrder_filter_report.html — this report shows the original
algorithm and the fixed-point instrumentation results.

15-16

 Propose Fixed-Point Data Types Based on Simulation Ranges

• ex_2ndOrder_filter_fixpt_args.mat — MAT-file containing a structure for
the input arguments, a structure for the output arguments and the name of the
fixed-point file.

If errors or warnings occur during validation, you see them on the Type Validation
Output tab. See “Validating Types” on page 15-100.

7 In the Output Files list, select ex_2ndOrder_filter_fixpt.m. The app displays
the generated fixed-point code.

8 Click the Test arrow . Select Log inputs and outputs for comparison plots,
and then click Test.

15-17

15 Fixed-Point Conversion

To test the fixed-point MATLAB code, the app runs the test file that you used to
define input types. Optionally, you can add test files and select to run more than
one test file to test numerics. The software runs both a floating-point and a fixed-
point simulation and then calculates the errors for the output variable y. Because
you selected to log inputs and outputs for comparison plots, the app generates a plot
for each input and output. The app docks these plots in a single figure window.

15-18

 Propose Fixed-Point Data Types Based on Simulation Ranges

The app also reports error information on the Verification Output tab. The
maximum error is less than 0.03%. For this example, this margin of error is
acceptable.

If the difference is not acceptable, modify the fixed-point data types or your original
algorithm. For more information, see “Testing Numerics” on page 15-100.

9 On the Verification Output tab, the app provides a link to a type proposal
report. The report displays the generated fixed-point code and the proposed type
information.

10 Click Next to go to the Generate Code page.

15-19

15 Fixed-Point Conversion

Generate Fixed-Point C Code

1 In the Generate dialog box, set Build source to Fixed-Point and Build type to
Static Library.

2 Set Language to C.
3 Click Generate to generate a library using the default project settings.

MATLAB Coder builds the project and generates a C static library and supporting
files in the default subfolder, codegen/lib/ex_2ndOrder_filter.

4 The app displays the generated code for ex_2ndOrder_filter.c. In the generated
C code, variables are assigned fixed-point data types.

5 Click Next to go to the Finish Workflow page.

On the Finish Workflow page, the app displays a project summary and links to
generated output files.

15-20

 Propose Fixed-Point Data Types Based on Derived Ranges

Propose Fixed-Point Data Types Based on Derived Ranges

This example shows how to propose fixed-point data types based on static ranges using
the MATLAB Coder app. When you propose data types based on derived ranges you, do
not have to provide test files that exercise your algorithm over its full operating range.
Running such test files often takes a long time. You can save time by deriving ranges
instead.

Prerequisites

This example requires the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB). See

http://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\dti.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the dti.m and dti_test.m files to your local working folder.

Type Name Description

Function code dti.m Entry-point MATLAB function
Test file dti_test.m MATLAB script that tests

dti.m

The dti Function

The dti function implements a Discrete Time Integrator in MATLAB.

function [y, clip_status] = dti(u_in) %#codegen

15-21

15 Fixed-Point Conversion

% Discrete Time Integrator in MATLAB

%

% Forward Euler method, also known as Forward Rectangular, or left-hand

% approximation. The resulting expression for the output of the block at

% step 'n' is y(n) = y(n-1) + K * u(n-1)

%

init_val = 1;

gain_val = 1;

limit_upper = 500;

limit_lower = -500;

% variable to hold state between consecutive calls to this block

persistent u_state;

if isempty(u_state)

 u_state = init_val+1;

end

% Compute Output

if (u_state > limit_upper)

 y = limit_upper;

 clip_status = -2;

elseif (u_state >= limit_upper)

 y = limit_upper;

 clip_status = -1;

elseif (u_state < limit_lower)

 y = limit_lower;

 clip_status = 2;

elseif (u_state <= limit_lower)

 y = limit_lower;

 clip_status = 1;

else

 y = u_state;

 clip_status = 0;

end

% Update State

tprod = gain_val * u_in;

u_state = y + tprod;

The dti_test Function

The test script runs the dti function with a sine wave input. The script then plots the
input and output signals.

% dti_test

15-22

 Propose Fixed-Point Data Types Based on Derived Ranges

% cleanup

clear dti

% input signal

x_in = sin(2.*pi.*(0:0.001:2)).';

pause(10);

len = length(x_in);

y_out = zeros(1,len);

is_clipped_out = zeros(1,len);

for ii=1:len

 data = x_in(ii);

 % call to the dti function

 init_val = 0;

 gain_val = 1;

 upper_limit = 500;

 lower_limit = -500;

 % call to the design that does DTI

 [y_out(ii), is_clipped_out(ii)] = dti(data);

end

figure('Name', [mfilename, '_plot']);

subplot(2,1,1)

plot(1:len,x_in)

xlabel('Time')

ylabel('Amplitude')

title('Input Signal (Sin)')

subplot(2,1,2)

plot(1:len,y_out)

xlabel('Time')

ylabel('Amplitude')

title('Output Signal (DTI)')

disp('Test complete.');

Open the MATLAB Coder App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

15-23

15 Fixed-Point Conversion

Enable Fixed-Point Conversion

Set Numeric Conversion to Convert to fixed point.

Select Source Files

1 To add the entry-point function dti to the project, browse to the file dti.m, and then
click Open. By default, the app saves information and settings for this project in the
current folder in a file named dti.prj.

2 Click Next to go to the Define Input Types step.

The app screens dti.m for code violations and code generation readiness issues. The
app does not find issues in dti.m.

15-24

 Propose Fixed-Point Data Types Based on Derived Ranges

Define Input Types

1 On the Define Input Types page, to add dti_test as a test file, browse to
dti_test.m, and then click Open.

2 Click Autodefine Input Types.

The test file runs. The app determines from the test file that the input type of u_in
is double(1x1).

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates instrumented MEX. It runs the test
file dti_test replacing calls to dti with calls to the generated MEX function. If the
app finds issues, it provides warning and error messages. You can click a message to
highlight the problematic code in a window where you can edit the code.

1 On the Check for Run-Time Issues page, the app populates the test file field with
dti_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

15-25

15 Fixed-Point Conversion

Convert to Fixed Point

1 The app displays compiled information—type, size, and complexity—for variables
in your code. For more information, see “View and Modify Variable Information” on
page 15-77.

If functions are not supported for fixed-point conversion, the app displays them on
the Function Replacements tab.

2 Click the Analyze arrow .

a Select Analyze ranges using derived range analysis.
b Clear the Analyze ranges using simulation check box.

Design ranges are required to use derived range analysis.

15-26

 Propose Fixed-Point Data Types Based on Derived Ranges

3 On the Convert to Fixed Point page, on the Variables tab, for input u_in, select
Static Min and set it to -1. Set Static Max to 1.

To compute derived range information, at a minimum you must specify static
minimum and maximum values or proposed data types for all input variables.

Note: If you manually enter static ranges, these manually entered ranges take
precedence over simulation ranges. The app uses the manually entered ranges to
propose data types. You can also modify and lock the proposed type.

4 Click Analyze.

Range analysis computes the derived ranges and displays them in the Variables
tab. Using these derived ranges, the analysis proposes fixed-point types for each
variable based on the default type proposal settings. The app displays them in the
Proposed Type column.

In the dti function, the clip_status output has a minimum value of -2 and a
maximum of 2.

% Compute Output

if (u_state > limit_upper)

 y = limit_upper;

 clip_status = -2;

elseif (u_state >= limit_upper)

 y = limit_upper;

 clip_status = -1;

elseif (u_state < limit_lower)

 y = limit_lower;

 clip_status = 2;

elseif (u_state <= limit_lower)

 y = limit_lower;

 clip_status = 1;

else

15-27

15 Fixed-Point Conversion

 y = u_state;

 clip_status = 0;

end

When you derive ranges, the app analyzes the function and computes these
minimum and maximum values for clip_status.

The app provides a Quick derived range analysis option and the option to specify
a timeout in case the analysis takes a long time. See “Computing Derived Ranges” on
page 15-87.

5 To convert the floating-point algorithm to fixed point, click Convert.

15-28

 Propose Fixed-Point Data Types Based on Derived Ranges

During the fixed-point conversion process, the software validates the proposed types
and generates the following files in the codegen\dti\fixpt folder in your local
working folder:

• dti_fixpt.m — the fixed-point version of dti.m.
• dti_wrapper_fixpt.m — this file converts the floating-point data values

supplied by the test file to the fixed-point types determined for the inputs during
conversion. The app feeds these fixed-point values into the converted fixed-point
design, dti_fixpt.m.

• dti_fixpt_report.html — this report shows the generated fixed-point code
and the fixed-point instrumentation results.

• dti_report.html — this report shows the original algorithm and the fixed-
point instrumentation results.

• dti_fixpt_args.mat — MAT-file containing a structure for the input
arguments, a structure for the output arguments and the name of the fixed-point
file.

If errors or warnings occur during validation, they show on the Output tab. See
“Validating Types” on page 15-100.

6 In the Output Files list, select dti_fixpt.m. The app displays the generated fixed-
point code.

7 Use the Simulation Data Inspector to plot the floating-point and fixed-point results.

a Click the Settings arrow .
b Expand the Plotting and Reporting settings and set Plot with Simulation

Data Inspector to Yes.

15-29

15 Fixed-Point Conversion

c Click the Test arrow . Select Log inputs and outputs for comparison
plots. Click Test.

The app runs the test file that you used to define input types to test the fixed-
point MATLAB code. Optionally, you can add test files and select to run more
than one test file to test numerics. The software runs both a floating-point and
a fixed-point simulation and then calculates the errors for the output variable y.
Because you selected to log inputs and outputs for comparison plots and to use
the Simulation Data Inspector for these plots, the Simulation Data Inspector
opens.

15-30

 Propose Fixed-Point Data Types Based on Derived Ranges

d You can use the Simulation Data Inspector to view floating-point and fixed-point
run information and compare results. For example, to compare the floating-point
and fixed-point values for the output y, on the Compare tab, select y. Select
Runs and then click Compare.

The Simulation Data Inspector displays a plot of the baseline floating-point run
against the fixed-point run and the difference between them.

8 On the Verification Output tab, the app provides a link to a type proposal report.

15-31

15 Fixed-Point Conversion

To open the report, click the dti_fixpt_report.html link.

15-32

 Propose Fixed-Point Data Types Based on Derived Ranges

9 Click Next to go to the Generate Code step.

Generate Fixed-Point C Code

1 In the Generate dialog box, set Build source to Fixed-Point and Build type to
Source Code.

2 Set Language to C.
3 Click Generate to generate a library using the default project settings.

MATLAB Coder builds the project and generates a C static library and supporting
files in the default subfolder, codegen/lib/dti_fixpt.

4 The app displays the generated code for dti_fixpt.c. In the generated C code,
variables are assigned fixed-point data types.

5 Click Next to go to the Finish Workflow page.

On the Finish Workflow page, the app displays a project summary and links to
generated output files.

15-33

15 Fixed-Point Conversion

Specify Type Proposal Options

To view type proposal options, in the MATLAB Coder app, on the Convert to Fixed

Point page, click the Settings arrow .

The following options are available.

Basic Type Proposal Settings Values Description

Propose fraction lengths for
specified word length

Use the specified word
length for data type
proposals and propose the
minimum fraction lengths to
avoid overflows.

Fixed-point type proposal
mode

Propose word lengths for
specified fraction length
(default)

Use the specified fraction
length for data type
proposals and propose the
minimum word lengths to
avoid overflows.

Default word length 16 (default) Default word length to
use when Fixed-point
type proposal mode is
set to Propose fraction
lengths for specified

word lengths

Default fraction length 4 (default) Default fraction length to
use when Fixed-point type
proposal mode is set to
Propose word lengths

for specified fraction

lengths

Advanced Type Proposal Settings Values Description

ignore simulation
ranges

Propose data types based on
derived ranges.

When proposing types

Note: Manually-entered static ranges
always take precedence over simulation
ranges.

ignore derived
ranges

Propose data types based on
simulation ranges.

15-34

 Specify Type Proposal Options

Advanced Type Proposal Settings Values Description

use all collected data
(default)

Propose data types based on both
simulation and derived ranges.

Yes Propose data type with the smallest
word length that can represent the
range and is suitable for C code
generation (8,16,32, 64 …). For
example, for a variable with range
[0..7], propose a word length of 8
rather than 3.

Propose target container types

No (default) Propose data types with the
minimum word length needed to
represent the value.

No Do not use integer scaling for
variables that were whole numbers
during simulation.

Optimize whole numbers

Yes (default) Use integer scaling for variables
that were whole numbers during
simulation.

Automatic (default) Proposes signed and unsigned
data types depending on the range
information for each variable.

Signed Propose signed data types.

Signedness

Unsigned Propose unsigned data types.

15-35

15 Fixed-Point Conversion

Advanced Type Proposal Settings Values Description

Safety margin for sim min/max (%) 0 (default) Specify safety factor for simulation
minimum and maximum values.

The simulation minimum and
maximum values are adjusted
by the percentage designated by
this parameter, allowing you to
specify a range different from that
obtained from the simulation run.
For example, a value of 55 specifies
that you want a range at least
55 percent larger. A value of -15
specifies that a range up to 15
percent smaller is acceptable.

fimath Settings Values Description

Ceiling
Convergent
Floor (default)
Nearest
Round

Rounding method

Zero
SaturateOverflow action
Wrap (default)
FullPrecision (default)
KeepLSB
KeepMSB

Product mode

SpecifyPrecision
FullPrecision (default)
KeepLSB
KeepMSB

Sum mode

SpecifyPrecision

Specify the fimath
properties for the generated
fixed-point data types.

The default fixed-point
math properties use the
Floor rounding and Wrap
overflow because they are
the default actions in C.
These settings generate
the most efficient code but
might cause problems with
overflow.

After code generation, if
required, modify these
settings to optimize the
generated code, or example,
avoid overflow or eliminate
bias, and then rerun the
verification.

15-36

 Specify Type Proposal Options

fimath Settings Values Description

For more information on
fimath properties, see
“fimath Object Properties”.

Generated File Settings Value Description

Generated fixed-point file
name suffix

_fixpt (default) Specify the suffix to add to
the generated fixed-point
file names. For example, by
default, if you generate a
static library for a project
named test, the generated
files are in the subfolder
codegen\lib\test_fixpt.
The generated static library
is named test.lib, but
the generated C code files
use the suffix, for example,
test_fixpt.c.

Plotting and Reporting
Settings

Values Description

Custom plot function Empty string Specify the name of a custom
plot function to use for
comparison plots.

No (default)Plot with Simulation Data
Inspector Yes

Specify whether to use the
Simulation Data Inspector
for comparison plots.

No (default)Highlight potential data
type issues Yes

Specify whether to highlight
potential data types in the
generated html report. If
this option is turned on, the
report highlights single-
precision, double-precision,
and expensive fixed-point
operation usage in your
MATLAB code.

15-37

15 Fixed-Point Conversion

Detect Overflows
This example shows how to detect overflows using the MATLAB Coder app. At the
numerical testing stage in the conversion process, you choose to simulate the fixed-point
code using scaled doubles. The app then reports which expressions in the generated code
produce values that overflow the fixed-point data type.

Prerequisites

This example requires the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB) See

http://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\overflow.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the overflow.m and overflow_test.m files to your local working folder.

Type Name Description

Function code overflow.m Entry-point MATLAB function
Test file overflow_test.m MATLAB script that tests

overflow.m

The overflow Function

function y = overflow(b,x,reset)

 if nargin<3, reset = true; end

 persistent z p

 if isempty(z) || reset

 p = 0;

15-38

 Detect Overflows

 z = zeros(size(b));

 end

 [y,z,p] = fir_filter(b,x,z,p);

end

function [y,z,p] = fir_filter(b,x,z,p)

 y = zeros(size(x));

 nx = length(x);

 nb = length(b);

 for n = 1:nx

 p=p+1; if p>nb, p=1; end

 z(p) = x(n);

 acc = 0;

 k = p;

 for j=1:nb

 acc = acc + b(j)*z(k);

 k=k-1; if k<1, k=nb; end

 end

 y(n) = acc;

 end

end

The overflow_test Function

You use this test file to define input types for b, x, and reset, and, later, to verify the
fixed-point version of the algorithm.

function overflow_test

 % The filter coefficients were computed using the FIR1 function from

 % Signal Processing Toolbox.

 % b = fir1(11,0.25);

 b = [-0.004465461051254

 -0.004324228005260

 +0.012676739550326

 +0.074351188907780

 +0.172173206073645

 +0.249588554524763

 +0.249588554524763

 +0.172173206073645

 +0.074351188907780

 +0.012676739550326

 -0.004324228005260

 -0.004465461051254]';

 % Input signal

 nx = 256;

15-39

15 Fixed-Point Conversion

 t = linspace(0,10*pi,nx)';

 % Impulse

 x_impulse = zeros(nx,1); x_impulse(1) = 1;

 % Max Gain

 % The maximum gain of a filter will occur when the inputs line up with the

 % signs of the filter's impulse response.

 x_max_gain = sign(b)';

 x_max_gain = repmat(x_max_gain,ceil(nx/length(b)),1);

 x_max_gain = x_max_gain(1:nx);

 % Sums of sines

 f0=0.1; f1=2;

 x_sines = sin(2*pi*t*f0) + 0.1*sin(2*pi*t*f1);

 % Chirp

 f_chirp = 1/16; % Target frequency

 x_chirp = sin(pi*f_chirp*t.^2); % Linear chirp

 x = [x_impulse, x_max_gain, x_sines, x_chirp];

 titles = {'Impulse', 'Max gain', 'Sum of sines', 'Chirp'};

 y = zeros(size(x));

 for i=1:size(x,2)

 reset = true;

 y(:,i) = overflow(b,x(:,i),reset);

 end

 test_plot(1,titles,t,x,y)

end

function test_plot(fig,titles,t,x,y1)

 figure(fig)

 clf

 sub_plot = 1;

 font_size = 10;

 for i=1:size(x,2)

 subplot(4,1,sub_plot)

 sub_plot = sub_plot+1;

 plot(t,x(:,i),'c',t,y1(:,i),'k')

 axis('tight')

 xlabel('t','FontSize',font_size);

15-40

 Detect Overflows

 title(titles{i},'FontSize',font_size);

 ax = gca;

 ax.FontSize = 10;

 end

 figure(gcf)

end

Open the MATLAB Coder App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Enable Fixed-Point Conversion

Set Numeric Conversion to Convert to fixed point.

15-41

15 Fixed-Point Conversion

Select Source Files

1 To add the entry-point function overflow to the project, browse to the file
overflow.m, and then click Open. By default, the app saves information and
settings for this project in the current folder in a file named overflow.prj.

2 Click Next to go to the Define Input Types step.

The app screens overflow.m for code violations and code generation readiness
issues. The app does not find issues in overflow.m.

15-42

 Detect Overflows

Define Input Types

1 On the Define Input Types page, to add overflow_test as a test file, browse to
overflow_test.m, and then click Open.

2 Click Autodefine Input Types.

The test file runs. The app determines from the test file that the input type of b is
double(1x12), x is double(256x1), and reset is logical(1x1).

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates instrumented MEX. It runs the test
file overflow_test replacing calls to overflow with calls to the generated MEX
function. If the app finds issues, it provides warning and error messages. You can click a
message to highlight the problematic code in a pane where you can edit the code.

1 On the Check for Run-Time Issues page, the app populates the test file field with
overflow_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

15-43

15 Fixed-Point Conversion

Convert to Fixed Point

1 The app displays compiled information — type, size, and complexity — for variables
in your code. For more information, see “View and Modify Variable Information” on
page 15-77.

On the Function Replacements tab the app displays functions that are not
supported for fixed-point conversion. See “Running a Simulation” on page 15-86.

2 To view the fimath settings, click the Settings arrow . Set the fimath Product
mode and Sum mode to KeepLSB. These settings model the behavior of integer
operations in the C language.

15-44

 Detect Overflows

3 Click Analyze.

The test file, overflow_test, runs. The app displays simulation minimum and
maximum ranges on the Variables tab. Using the simulation range data, the
software proposes fixed-point types for each variable based on the default type
proposal settings, and displays them in the Proposed Type column.

4 To convert the floating-point algorithm to fixed point, click Convert.

The software validates the proposed types and generates a fixed-point version of the
entry-point function.

If errors and warnings occur during validation, the app displays them on the Output
tab. See “Validating Types” on page 15-100.

15-45

15 Fixed-Point Conversion

Test Numerics and Check for Overflows

1 Click the Test arrow . Verify that the test file is overflow_test.m. Select Use
scaled doubles to detect overflows, and then click Test.

The app runs the test file that you used to define input types to test the fixed-point
MATLAB code. Because you selected to detect overflows, it also runs the simulation
using scaled double versions of the proposed fixed-point types. Scaled doubles
store their data in double-precision floating-point, so they carry out arithmetic in
full range. Because they retain their fixed-point settings, they can report when a
computation goes out of the range of the fixed-point type.

The simulation runs. The app detects an overflow. The app reports the overflow on
the Overflow tab. To highlight the expression that overflowed, click the overflow.

2 Determine whether it was the sum or the multiplication that overflowed.

In the fimath settings, set Product mode to FullPrecision, and then repeat the
conversion and test the fixed-point code again.

The overflow still occurs, indicating that it is the addition in the expression that is
overflowing.

15-46

 Replace the exp Function with a Lookup Table

Replace the exp Function with a Lookup Table
This example shows how to replace the exp function with a lookup table approximation
in fixed-point code generated using the MATLAB Coder app.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB). See

http://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler”.

Create Algorithm and Test Files

1 Create a MATLAB function, my_fcn.m, that calls the exp function.

function y = my_fcn(x)

 y = exp(x);

end

2 Create a test file, my_fcn_test.m, that uses my_fcn.m.

close all

x = linspace(-10,10,1e3);

for itr = 1e3:-1:1

 y(itr) = my_fcn(x(itr));

end

plot(x, y);

Open the MATLAB Coder App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Enable Fixed-Point Conversion

Set Numeric Conversion to Convert to fixed point.

15-47

15 Fixed-Point Conversion

Select Source Files

1 To add the entry-point function my_fcn to the project, browse to the file my_fcn.m,
and then click Open. By default, the app saves information and settings for this
project in the current folder in a file named my_fcn.prj.

2 Click Next to go to the Define Input Types step.

The app screens my_fcn.m for code violations and code generation readiness issues.
The app opens the Review Code Generation Readiness page.

15-48

 Replace the exp Function with a Lookup Table

Review Code Generation Readiness

1 Click Review Issues. The app indicates that the exp function is not supported for
fixed-point conversion. In a later step, you specify a lookup table replacement for this
function.

2 Click Next to go to the Define Input Types step.

Define Input Types

1 Add my_fcn_test as a test file and then click Autodefine Input Types.

The test file runs. The app determines from the test file that x is a scalar double.
2 Click Next to go to the Check for Run-Time Issues step.

15-49

15 Fixed-Point Conversion

Check for Run-Time Issues

The Check for Run-Time Issues step generates an instrumented MEX function. It
runs the test file my_fcn_test replacing calls to my_fcn with calls to the generated
MEX function. If the app finds issues, it provides warning and error messages. You can
click a message to highlight the problematic code in a pane where you can edit the code.

1 On the Check for Run-Time Issues page, the app populates the test file field with
my_fcn_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

Replace exp Function with Lookup Table

1 Select the Function Replacements tab.

The app indicates that you must replace the exp function.

15-50

 Replace the exp Function with a Lookup Table

2 On the Function Replacements tab, right-click the exp function and select
Lookup Table.

15-51

15 Fixed-Point Conversion

The app moves the exp function to the list of functions that it will replace with a
Lookup Table. By default, the lookup table uses linear interpolation and 1000 points.
Design Min and Design Max are set to Auto which means that the app uses the
design minimum and maximum values that it detects by either running a simulation
or computing derived ranges.

3 Click the Simulate arrow , select Log data for histogram, and verify that the
test file is my_fcn_test.

15-52

 Replace the exp Function with a Lookup Table

4 Click Simulate.

The simulation runs. On the Variables tab, the app displays simulation minimum
and maximum ranges. Using the simulation range data, the software proposes
fixed-point types for each variable based on the default type proposal settings, and
displays them in the Proposed Type column. The app enables the Convert option.

5 Examine the proposed types and verify that they cover the full simulation range.
To view logged histogram data for a variable, click its Proposed Type field. The
histogram provides range information and the percentage of simulation range
covered by the proposed data type.

Convert to Fixed Point

1 Click Convert.

The app validates the proposed types, and generates a fixed-point version of the
entry-point function, my_fcn_fixpt.m.

15-53

15 Fixed-Point Conversion

2 In the Output Files list, select my_fcn_fixpt.m.

The conversion process generates a lookup table approximation, replacement_exp,
for the exp function.

The generated fixed-point function, my_fcn_fixpt.m, calls this approximation
instead of calling exp. The fixed-point conversion process infers the ranges for the
function and then uses an interpolated lookup table to replace the function. By
default, the lookup table uses linear interpolation, 1000 points, and the minimum
and maximum values detected by running the test file.

function y = my_fcn_fixpt(x)

 fm = get_fimath();

 y = fi(replacement_exp(x), 0, 16, 1, fm);

end

15-54

 Replace the exp Function with a Lookup Table

You can now test the generated fixed-point code and compare the results against the
original MATLAB function. If the behavior of the generated fixed-point code does
not match the behavior of the original code closely enough, modify the interpolation
method or number of points used in the lookup table. Then, regenerate the code.

15-55

15 Fixed-Point Conversion

Replace a Custom Function with a Lookup Table

This example shows how to replace a custom function with a lookup table approximation
function using the MATLAB Coder app.

Prerequisites

This example requires the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB). See

http://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler”.

Create Algorithm and Test Files

In a local, writable folder:

1 Create a MATLAB function, custom_fcn.m which is the function that you want to
replace.

function y = custom_fcn(x)

 y = 1./(1+exp(-x));

end

2 Create a wrapper function, call_custom_fcn.m, that calls custom_fcn.m.

function y = call_custom_fcn(x)

 y = custom_fcn(x);

end

3 Create a test file, custom_test.m, that uses call_custom_fcn.

close all

clear all

x = linspace(-10,10,1e3);

for itr = 1e3:-1:1

 y(itr) = call_custom_fcn(x(itr));

15-56

 Replace a Custom Function with a Lookup Table

end

plot(x, y);

Open the MATLAB Coder App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Enable Fixed-Point Conversion

Set Numeric Conversion to Convert to fixed point.

15-57

15 Fixed-Point Conversion

Select Source Files

1 To add the entry-point function call_custom_fcn to the project, browse to
the file call_custom_fcn.m, and then click Open. By default, the app saves
information and settings for this project in the current folder in a file named
call_custom_fcn.prj.

2 Click Next to go to the Define Input Types step.

The app screens call_custom_fcn.m for code violations and code generation
readiness issues. The app opens the Review Code Generation Readiness page.

Review Code Generation Readiness

1 Click Review Issues. The app indicates that the exp function is not supported for
fixed-point conversion. You can ignore this warning because you are going to replace
custom_fcn, which is the function that calls exp.

15-58

 Replace a Custom Function with a Lookup Table

2 Click Next to go to the Define Input Types step.

Define Input Types

1 Add custom_test as a test file and then click Autodefine Input Types.

The test file runs. The app determines from the test file that x is a scalar double.
2 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates instrumented MEX. It runs the test
file custom_test replacing calls to call_custom_fcn with calls to the generated MEX
function. If the app finds issues, it provides warning and error messages. You can click a
message to highlight the problematic code in a pane where you can edit the code.

15-59

15 Fixed-Point Conversion

1 On the Check for Run-Time Issues page, the app populates the test file field with
custom_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

Replace custom_fcn with Lookup Table

1 Select the Function Replacements tab.

The app indicates that you must replace the exp function.

2 Enter the name of the function to replace, custom_fcn, select Lookup Table, and

then click .

15-60

 Replace a Custom Function with a Lookup Table

The app adds custom_fcn to the list of functions that it will replace with a Lookup
Table. By default, the lookup table uses linear interpolation and 1000 points. The
app sets Design Min and Design Max to Auto which means that app uses the
design minimum and maximum values that it detects by either running a simulation
or computing derived ranges.

15-61

15 Fixed-Point Conversion

3 Click the Analyze arrow , select Log data for histogram, and verify that the
test file is call_custom_test.

4 Click Analyze.

The simulation runs. The app displays simulation minimum and maximum ranges
on the Variables tab. Using the simulation range data, the software proposes
fixed-point types for each variable based on the default type proposal settings, and
displays them in the Proposed Type column. The Convert option is now enabled.

5 Examine the proposed types and verify that they cover the full simulation range.
To view logged histogram data for a variable, click its Proposed Type field. The
histogram provides range information and the percentage of simulation range
covered by the proposed data type.

Convert to Fixed Point

1 Click Convert.

15-62

 Replace a Custom Function with a Lookup Table

The app validates the proposed types and generates a fixed-point version of the
entry-point function, call_custom_fcn_fixpt.m.

2 In the Output Files list, select call_custom_fcn_fixpt.m.

The conversion process generates a lookup table approximation,
replacement_custom_fcn, for the custom_fcn function. The fixed-point
conversion process infers the ranges for the function and then uses an interpolated
lookup table to replace the function. By default, the lookup table uses linear
interpolation, 1000 points, and the minimum and maximum values detected by
running the test file.

The generated fixed-point function, call_custom_fcn_fixpt.m, calls this
approximation instead of calling custom_fcn.

function y = call_custom_fcn_fixpt(x)

 fm = get_fimath();

15-63

15 Fixed-Point Conversion

 y = fi(replacement_custom_fcn(x), 0, 16, 16, fm);

end

You can now test the generated fixed-point code and compare the results against the
original MATLAB function. If the behavior of the generated fixed-point code does
not match the behavior of the original code closely enough, modify the interpolation
method or number of points used in the lookup table and then regenerate code.

15-64

 Enable Plotting Using the Simulation Data Inspector

Enable Plotting Using the Simulation Data Inspector

You can use the Simulation Data Inspector with the MATLAB Coder app to inspect and
compare floating-point and fixed-point logged input and output data.

1 On the Convert to Fixed Point page,

Click the Settings arrow .
2 Expand the Plotting and Reporting settings and set Plot with Simulation Data

Inspector to Yes.

3 Click the Test arrow . Select Log inputs and outputs for comparison plots,
and then click Test.

For an example, see “Propose Fixed-Point Data Types Based on Derived Ranges” on page
15-21“Propose Data Types Based on Derived Ranges”.

15-65

15 Fixed-Point Conversion

Visualize Differences Between Floating-Point and Fixed-Point
Results

This example shows how to configure the MATLAB Coder app to use a custom plot
function to compare the behavior of the generated fixed-point code against the behavior
of the original floating-point MATLAB code.

By default, when the Log inputs and outputs for comparison plots option is
enabled, the conversion process uses a time series based plotting function to show the
floating-point and fixed-point results and the difference between them. However, during
fixed-point conversion you might want to visualize the numerical differences in a view
that is more suitable for your application domain. This example shows how to customize
plotting and produce scatter plots at the test numerics step of the fixed-point conversion.

Prerequisites

This example requires the following products:

• MATLAB
• Fixed-Point Designer
• MATLAB Coder
• C compiler (for most platforms, a default C compiler is supplied with MATLAB). See

http://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\custom_plot.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the myFilter.m, myFilterTest.m, plotDiff.m, and filterData.mat files
to your local working folder.

Type Name Description

Function code myFilter.m Entry-point MATLAB function

15-66

 Visualize Differences Between Floating-Point and Fixed-Point Results

Type Name Description

Test file myFilterTest.m MATLAB script that tests
myFilter.m

Plotting function plotDiff.m Custom plot function
MAT-file filterData.mat Data to filter.

The myFilter Function

function [y, ho] = myFilter(in)

persistent b h;

if isempty(b)

 b = complex(zeros(1,16));

 h = complex(zeros(1,16));

 h(8) = 1;

end

b = [in, b(1:end-1)];

y = b*h.';

errf = 1-sqrt(real(y)*real(y) + imag(y)*imag(y));

update = 0.001*conj(b)*y*errf;

h = h + update;

h(8) = 1;

ho = h;

end

The myFilterTest File

% load data

data = load('filterData.mat');

d = data.symbols;

for idx = 1:4000

 y = myFilter(d(idx));

end

The plotDiff Function

% varInfo - structure with information about the variable. It has the following fields

% i) name

15-67

15 Fixed-Point Conversion

% ii) functionName

% floatVals - cell array of logged original values for the 'varInfo.name' variable

% fixedVals - cell array of logged values for the 'varInfo.name' variable after

% Fixed-Point Conversion.

function plotDiff(varInfo, floatVals, fixedVals)

 varName = varInfo.name;

 fcnName = varInfo.functionName;

 % convert from cell to matrix

 floatVals = cell2mat(floatVals);

 fixedVals = cell2mat(fixedVals);

 % escape the '_'s because plot titles treat these as subscripts

 escapedVarName = regexprep(varName,'_','_');

 escapedFcnName = regexprep(fcnName,'_','_');

 % flatten the values

 flatFloatVals = floatVals(1:end);

 flatFixedVals = fixedVals(1:end);

 % build Titles

 floatTitle = [escapedFcnName ' > ' 'float : ' escapedVarName];

 fixedTitle = [escapedFcnName ' > ' 'fixed : ' escapedVarName];

 data = load('filterData.mat');

 switch varName

 case 'y'

 x_vec = data.symbols;

 figure('Name', 'Comparison plot', 'NumberTitle', 'off');

 % plot floating point values

 y_vec = flatFloatVals;

 subplot(1, 2, 1);

 plotScatter(x_vec, y_vec, 100, floatTitle);

 % plot fixed point values

 y_vec = flatFixedVals;

 subplot(1, 2, 2);

 plotScatter(x_vec, y_vec, 100, fixedTitle);

 otherwise

 % Plot only output 'y' for this example, skip the rest

15-68

 Visualize Differences Between Floating-Point and Fixed-Point Results

 end

end

function plotScatter(x_vec, y_vec, n, figTitle)

 % plot the last n samples

 x_plot = x_vec(end-n+1:end);

 y_plot = y_vec(end-n+1:end);

 hold on

 scatter(real(x_plot),imag(x_plot), 'bo');

 hold on

 scatter(real(y_plot),imag(y_plot), 'rx');

 title(figTitle);

end

Open the MATLAB Coder App

1 Navigate to the folder that contains the files for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Enable Fixed-Point Conversion

Set Numeric Conversion to Convert to fixed point.

15-69

15 Fixed-Point Conversion

Select Source Files

1 To add the entry-point function myFilter to the project, browse to the file
myFilter.m, and then click Open.

By default, the app saves information and settings for this project in the current
folder in a file named myFilter.prj.

2 Click Next to go to the Define Input Types step.

The app screens myFilter.m for code violations and code generation readiness
issues. The app does not find issues in myFilter.m.

15-70

 Visualize Differences Between Floating-Point and Fixed-Point Results

Define Input Types

1 On the Define Input Types page, to add myFilterTest as a test file, browse to
myFilterTest.m, and then click Open.

2 Click Autodefine Input Types.

The app determines from the test file that the input type of in is
complex(double(1x1)).

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates instrumented MEX. myFilter. It
runs the test file myFilterTest replacing calls to myFilter with calls to the generated
MEX. If the app finds issues, it provides warning and error messages. You can click a
message to highlight the problematic code in a window where you can edit the code.

1 Browse to the test file myFiltertest.m.
2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

15-71

15 Fixed-Point Conversion

Convert to Fixed Point

1 The app displays compiled information for variables in your code. For more
information, see “View and Modify Variable Information” on page 15-77“View
and Modify Variable Information”.

2 To open the settings dialog box, click the Settings arrow .

a Verify that Default word length is set to 16.
b Under Advanced, set Signedness to Signed
c Under Plotting and Reporting, set Custom plot function to plotDiff.

3 Click the Analyze arrow . Verify that the test file is myFilterTest.
4 Click Analyze.

15-72

 Visualize Differences Between Floating-Point and Fixed-Point Results

The test file, myFilterTest, runs and the app displays simulation minimum
and maximum ranges on the Variables tab. Using the simulation range data, the
software proposes fixed-point types for each variable based on the default type
proposal settings, and displays them in the Proposed Type column.

5 To convert the floating-point algorithm to fixed point, click Convert.

The software validates the proposed types and generates a fixed-point version of the
entry-point function.

15-73

15 Fixed-Point Conversion

Test Numerics and View Comparison Plots

1 Click Test arrow , select Log inputs and outputs for comparison plots, and
then click Test.

The app runs the test file that you used to define input types to test the fixed-point
MATLAB code. Because you selected to log inputs and outputs for comparison plots
and to use the custom plotting function, plotDiff.m, for these plots, the app uses
this function to generate the comparison plot. The plot shows that the fixed-point
results do not closely match the floating-point results.

15-74

 Visualize Differences Between Floating-Point and Fixed-Point Results

2 In the settings, increase the DefaultWordLength to 24 and then convert to fixed
point again.

The app converts myFilter.m to fixed point and proposes fixed-point data types
using the new default word length.

3 Run the test numerics step again.

The increased word length improves the results. This time, the plot shows that the
fixed-point results match the floating-point results.

15-75

15 Fixed-Point Conversion

15-76

 View and Modify Variable Information

View and Modify Variable Information

View Variable Information

On the Convert to Fixed Point page of the MATLAB Coder app, you can view
information about the variables in the MATLAB functions. To view information about
the variables that you select in the Source Code pane, use the Variables tab or place
your cursor over a variable in the code window. For more information, see “Viewing
Variables” on page 15-95.

You can view the variable information:

• Variable

Variable name. Variables are classified and sorted as inputs, outputs, persistent, or
local variables.

• Type

The original size, type, and complexity of each variable.
• Sim Min

The minimum value assigned to the variable during simulation.
• Sim Max

The maximum value assigned to the variable during simulation.

To search for a variable in the MATLAB code window and on the Variables tab, use
Ctrl+F. The app highlights occurrences of the variable in the code.

Modify Variable Information

If you modify variable information, the app highlights the modified values using bold
text. You can modify the following fields:

• Static Min

You can enter a value for Static Min into the field or promote Sim Min information.
See “Promote Sim Min and Sim Max Values” on page 15-80.

15-77

15 Fixed-Point Conversion

Editing this field does not trigger static range analysis, but the app uses the edited
values in subsequent analyses.

• Static Max

You can enter a value for Static Max into the field or promote Sim Max information.
See “Promote Sim Min and Sim Max Values” on page 15-80.

Editing this field does not trigger static range analysis, but the app uses the edited
values in subsequent analyses.

• Whole Number

The app uses simulation data to determine whether the values assigned to a variable
during simulation were always integers. You can manually override this field.

Editing this field does not trigger static range analysis, but the app uses the edited
value in subsequent analyses.

• Proposed Type

You can modify the signedness, word length, and fraction length settings individually:

• On the Variables tab, modify the value in the ProposedType field.

• In the code window, select a variable, and then modify the ProposedType field.

15-78

 View and Modify Variable Information

If you selected to log data for a histogram, the histogram dynamically updates to
reflect the modifications to the proposed type. You can also modify the proposed type
in the histogram, see “Log Data for Histogram” on page 15-97.

Revert Changes

• To clear results and revert edited values, right-click the Variables tab and select
Reset entire table.

• To revert the type of a selected variable to the type computed by the app, right-click
the field and select Undo changes.

• To revert changes to variables, right-click the field and select Undo changes for
all variables.

15-79

15 Fixed-Point Conversion

• To clear a static range value, right-click an edited field and select Clear this
static range.

• To clear manually entered static range values, right-click anywhere on the Variables
tab and select Clear all manually entered static ranges.

Promote Sim Min and Sim Max Values

With the MATLAB Coder app, you can promote simulation minimum and maximum
values to static minimum and maximum values. This capability is useful if you have not
specified static ranges and you have simulated the model with inputs that cover the full
intended operating range.

To copy:

• A simulation range for a selected variable, select a variable, right-click, and then
select Copy sim range.

• Simulation ranges for top-level inputs, right-click the Static Min or Static Max
column, and then select Copy sim ranges for all top-level inputs.

• Simulation ranges for persistent variables, right-click the Static Min or Static Max
column, and then select Copy sim ranges for all persistent variables.

15-80

 Automated Fixed-Point Conversion

Automated Fixed-Point Conversion

In this section...

“Automated Fixed-Point Conversion Capabilities” on page 15-81
“Code Coverage” on page 15-82
“Proposing Data Types” on page 15-86
“Locking Proposed Data Types” on page 15-88
“Viewing Functions” on page 15-88
“Viewing Variables” on page 15-95
“Log Data for Histogram” on page 15-97
“Function Replacements” on page 15-99
“Validating Types” on page 15-100
“Testing Numerics” on page 15-100
“Detecting Overflows” on page 15-101

Automated Fixed-Point Conversion Capabilities

You can convert floating-point MATLAB code to fixed-point code using the MATLAB
Coder app or at the command line using the codegen function -float2fixed option.
You can choose to propose data types based on simulation range data, derived (also
known as static) range data, or both.

You can manually enter static ranges. These manually entered ranges take precedence
over simulation ranges and the app uses them when proposing data types. In addition,
you can modify and lock the proposed type so that the app cannot change it. For more
information, see “Locking Proposed Data Types” on page 15-88.

For a list of supported MATLAB features and functions, see “MATLAB Language
Features Supported for Automated Fixed-Point Conversion”.

During fixed-point conversion, you can:

• Verify that your test files cover the full intended operating range of your algorithm
using code coverage results.

• Propose fraction lengths based on default word lengths.

15-81

15 Fixed-Point Conversion

• Propose word lengths based on default fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
• Validate that you can build your project with the proposed data types.
• Test numerics by running the test file with the fixed-point types applied.
• View a histogram of bits that each variable uses.
• Detect overflows.

Code Coverage

By default, the app shows code coverage results. Your test files must exercise the
algorithm over its full operating range so that the simulation ranges are accurate. The
quality of the proposed fixed-point data types depends on how well the test files cover the
operating range of the algorithm with the accuracy that you want.

Reviewing code coverage results helps you to verify that your test files are exercising
the algorithm adequately. If the code coverage is inadequate, modify the test files or add
more test files to increase coverage. If you simulate multiple test files in one run, the app
displays cumulative coverage. However, if you specify multiple test files, but run them
one at a time, the app displays the coverage of the file that ran last.

The app displays a color-coded coverage bar to the left of the code.

15-82

 Automated Fixed-Point Conversion

This table describes the color coding.

Coverage Bar
Color

Indicates

Green One of the following situations:

15-83

15 Fixed-Point Conversion

Coverage Bar
Color

Indicates

• The entry-point function executes multiple times and the code
executes more than one time.

• The entry-point function executes one time and the code executes
one time.

Different shades of green indicate different ranges of line execution
counts. The darkest shade of green indicates the highest range.

Orange The entry-point function executes multiple times, but the code
executes one time.

Red Code does not execute.

When you place your cursor over the coverage bar, the color highlighting extends over
the code. For each section of code, the app displays the number of times that the section
executes.

15-84

 Automated Fixed-Point Conversion

To verify that your test files are testing your algorithm over the intended operating
range, review the code coverage results.

Coverage Bar
Color

Action

Green If you expect sections of code to execute more frequently than the
coverage shows, either modify the MATLAB code or the test files.

Orange This behavior is expected for initialization code, for example, the
initialization of persistent variables. If you expect the code to execute
more than one time, either modify the MATLAB code or the test files.

Red If the code that does not execute is an error condition, this behavior
is acceptable. If you expect the code to execute, either modify the

15-85

15 Fixed-Point Conversion

Coverage Bar
Color

Action

MATLAB code or the test files. If the code is written conservatively
and has upper and lower boundary limits, and you cannot modify
the test files to reach this code, add static minimum and maximum
values. See “Computing Derived Ranges” on page 15-87.

Code coverage is on by default. Turn it off only after you have verified that you have
adequate test file coverage. Turning off code coverage can speed up simulation. To turn
off code coverage, on the Convert to Fixed Point page:

1 Click the Analyze arrow .
2 Clear the Show code coverage check box.

Proposing Data Types

The app proposes fixed-point data types based on computed ranges and the word length
or fraction length setting. The computed ranges are based on simulation range data,
derived range data (also known as static ranges), or both. If you run a simulation and
compute derived ranges, the app merges the simulation and derived ranges.

Note: You cannot propose data types based on derived ranges for MATLAB classes.

You can manually enter static ranges. These manually entered ranges take precedence
over simulation ranges and the app uses them when proposing data types. You
can modify and lock the proposed type so that the tool cannot change it. For more
information, see “Locking Proposed Data Types” on page 15-88.

Running a Simulation

During fixed-point conversion, the app generates an instrumented MEX function for
your entry-point MATLAB file. If the build completes without errors, the app displays
compiled information (type, size, complexity) for functions and variables in your code.
To navigate to local functions, click the Functions tab. If build errors occur, the app
provides error messages that link to the line of code that caused the build issues. You
must address these errors before running a simulation. Use the link to navigate to
the offending line of code in the MATLAB editor and modify the code to fix the issue.
If your code uses functions that are not supported for fixed-point conversion, the app

15-86

 Automated Fixed-Point Conversion

displays them on the Function Replacements tab. See “Function Replacements” on
page 15-99.

Before running a simulation, specify the test file or files that you want to run. When you
run a simulation, the app runs the test file, calling the instrumented MEX function. If
you modify the MATLAB design code, the app automatically generates an updated MEX
function before running a test file.

If the test file runs successfully, the simulation minimum and maximum values and the
proposed types are displayed on the Variables tab. If you manually enter static ranges
for a variable, the manually entered ranges take precedence over the simulation ranges.
If you manually modify the proposed types by typing or using the histogram, the data
types are locked so that the app cannot modify them.

If the test file fails, the errors are displayed on the Output tab.

Test files must exercise your algorithm over its full operating range. The quality of the
proposed fixed-point data types depends on how well the test file covers the operating
range of the algorithm with the accuracy that you want. You can add test files and select
to run more than one test file during the simulation. If you run multiple test files, the
app merges the simulation results.

Optionally, you can select to log data for histograms. After running a simulation, you
can view the histogram for each variable. For more information, see “Log Data for
Histogram” on page 15-97.

Computing Derived Ranges

The advantage of proposing data types based on derived ranges is that you do not have to
provide test files that exercise your algorithm over its full operating range. Running such
test files often takes a very long time.

To compute derived ranges and propose data types based on these ranges, provide
static minimum and maximum values or proposed data types for all input variables.
To improve the analysis, enter as much static range information as possible for other
variables. You can manually enter ranges or promote simulation ranges to use as static
ranges. Manually entered static ranges always take precedence over simulation ranges.

If you know what data type your hardware target uses, set the proposed data types to
match this type. Manually entered data types are locked so that the app cannot modify
them. The app uses these data types to calculate the input minimum and maximum

15-87

15 Fixed-Point Conversion

values and to derive ranges for other variables. For more information, see “Locking
Proposed Data Types” on page 15-88.

When you select Compute Derived Ranges, the app runs a derived range analysis to
compute static ranges for variables in your MATLAB algorithm. When the analysis is
complete, the static ranges are displayed on the Variables tab. If the run produces +/-
Inf derived ranges, consider defining ranges for all persistent variables.

Optionally, you can select Quick derived range analysis. With this option, the app
performs faster static analysis. The computed ranges might be larger than necessary.
Select this option in cases where the static analysis takes more time than you can afford.

If the derived range analysis for your project is taking a long time, you can optionally set
a timeout. When the timeout is reached, the app aborts the analysis.

Locking Proposed Data Types

You can lock proposed data types against changes by the app using one of the following
methods:

• Manually setting a proposed data type in the app.
• Right-clicking a type proposed by the tool and selecting Lock computed value.

The app displays locked data types in bold so that they are easy to identify. You can
unlock a type using one of the following methods:

• Manually overwriting it.
• Right-clicking it and selecting Undo changes. This action unlocks only the selected

type.
• Right-clicking and selecting Undo changes for all variables. This action

unlocks all locked proposed types.

Viewing Functions

During the Convert to Fixed Point step of the fixed-point conversion process, you can
view a list of functions in your project in the left pane. This list also includes function
specializations and class methods. When you select a function from the list, the MATLAB
code for that function or class method is displayed in the code window and the variables
that they use are displayed on the Variables tab.

15-88

 Automated Fixed-Point Conversion

After conversion, the left pane also displays a list of output files including the fixed-
point version of the original algorithm. If your function is not specialized, the app
retains the original function name in the fixed-point file name and appends the fixed-
point suffix. For example, here the fixed-point version of ex_2ndOrder_filter.m is
ex_2ndOrder_filter_fixpt.m.

Classes

The app displays information for the class and each of its methods. For example, consider
a class, Counter, that has a static method, MAX_VALUE, and a method, next.

If you select the class, the app displays the class and its properties on the Variables tab.

15-89

15 Fixed-Point Conversion

If you select a method, the app displays only the variables that the method uses.

15-90

 Automated Fixed-Point Conversion

Specializations

If a function is specialized, the app lists each specialization and numbers them
sequentially. For example, consider a function, dut, that calls subfunctions, foo and
bar, multiple times with different input types.

function y = dut(u, v)

tt1 = foo(u);

tt2 = foo([u v]);

tt3 = foo(complex(u,v));

ss1 = bar(u);

ss2 = bar([u v]);

ss3 = bar(complex(u,v));

y = (tt1 + ss1) + sum(tt2 + ss2) + real(tt3) + real(ss3);

15-91

15 Fixed-Point Conversion

end

function y = foo(u)

 y = u * 2;

end

function y = bar(u)

 y = u * 4;

end

If you select the top-level function, the app displays all the variables on the Variables
tab.

If you select the tree view, the app also displays the line numbers for the call to each
specialization.

15-92

 Automated Fixed-Point Conversion

If you select a specialization, the app displays only the variables that the specialization
uses.

15-93

15 Fixed-Point Conversion

In the generated fixed-point code, the number of each fixed-point specialization matches
the number in the Source Code list, which makes it easy to trace between the floating-
point and fixed-point versions of your code. For example, the generated fixed-point
function for foo > 1 is named foo_s1.

15-94

 Automated Fixed-Point Conversion

Viewing Variables

The Variables tab provides the following information for each variable in the function
selected in the Navigation pane:

• Type — The original data type of the variable in the MATLAB algorithm.
• Sim Min and Sim Max — The minimum and maximum values assigned to the

variable during simulation.

You can edit the simulation minimum and maximum values. Edited fields are shown
in bold. Editing these fields does not trigger static range analysis, but the tool uses
the edited values in subsequent analyses. You can revert to the types proposed by the
app.

• Static Min and Static Max — The static minimum and maximum values.

15-95

15 Fixed-Point Conversion

To compute derived ranges and propose data types based on these ranges, provide
static minimum and maximum values for all input variables. To improve the analysis,
enter as much static range information as possible for other variables.

When you compute derived ranges, the app runs a static analysis to compute static
ranges for variables in your code. When the analysis is complete, the static ranges are
displayed. You can edit the computed results. Edited fields are shown in bold. Editing
these fields does not trigger static range analysis, but the tool uses the edited values
in subsequent analyses. You can revert to the types proposed by the app.

• Whole Number — Whether all values assigned to the variable during simulation are
integers.

The app determines whether a variable is always a whole number. You can modify
this field. Edited fields are shown in bold. Editing these fields does not trigger static
range analysis, but the app uses the edited values in subsequent analyses. You can
revert to the types proposed by the app.

• The proposed fixed-point data type for the specified word (or fraction)
length. Proposed data types use the numerictype notation. For example,
numerictype(1,16,12) denotes a signed fixed-point type with a word length of 16
and a fraction length of 12. numerictype(0,16,12) denotes an unsigned fixed-point
type with a word length of 16 and a fraction length of 12.

Because the app does not apply data types to expressions, it does not display proposed
types for them. Instead, it displays their original data types.

You can also view and edit variable information in the code pane by placing your cursor
over a variable name.

You can use Ctrl+F to search for variables in the MATLAB code and on the Variables
tab. The app highlights occurrences in the code and displays only the variable with the
specified name on the Variables tab.

Viewing Information for MATLAB Classes

The app displays:

• Code for MATLAB classes and code coverage for class methods in the code window.
Use the Source Code list on the Convert to Fixed Point page to select which class
or class method to view. If you select a class method, the app highlights the method in
the code window.

15-96

 Automated Fixed-Point Conversion

• Information about MATLAB classes on the Variables tab.

Log Data for Histogram

To log data for histograms:

• On the Convert to Fixed Point page, click the Analyze arrow .

15-97

15 Fixed-Point Conversion

• Select Log data for histogram.

• Click Analyze Ranges.

After simulation, to view the histogram for a variable, on the Variables tab, click the
Proposed Type field for that variable.

The histogram provides the range of the proposed data type and the percentage of
simulation values that the proposed data type covers. The bit weights are displayed along
the X-axis, and the percentage of occurrences along the Y-axis. Each bin in the histogram
corresponds to a bit in the binary word. For example, this histogram displays the range
for a variable of type numerictype(1,16,14).

You can view the effect of changing the proposed data types by:

• Dragging the edges of the bounding box in the histogram window to change the
proposed data type.

15-98

 Automated Fixed-Point Conversion

• Selecting or clearing Signed.

To revert to the types proposed by the automatic conversion, in the histogram window,

click .

Function Replacements

If your MATLAB code uses functions that do not have fixed-point support, the app
lists these functions on the Function Replacements tab. You can choose to replace
unsupported functions with a custom function replacement or with a lookup table.

You can add and remove function replacements from this list. If you enter a function
replacement for a function, the replacement function is used when you build the

15-99

15 Fixed-Point Conversion

project. If you do not enter a replacement, the app uses the type specified in the original
MATLAB code for the function.

Note: Using this table, you can replace the names of the functions but you cannot replace
argument patterns.

If code generation readiness screening is disabled, the list of unsupported functions on
the Function Replacements tab can be incomplete or incorrect. In this case, add the
functions manually. See “Code Generation Readiness Screening in the MATLAB Coder
App” on page 18-35.

Validating Types

Converting the code to fixed point validates the build using the proposed fixed-point data
types. If the validation is successful, you are ready to test the numerical behavior of the
fixed-point MATLAB algorithm.

If the errors or warnings occur during validation, they are displayed on the Output tab.
If errors or warning occur:

• On the Variables tab, inspect the proposed types and manually modified types to
verify that they are valid.

• On the Function Replacements tab, verify that you have provided function
replacements for unsupported functions.

Testing Numerics

After converting code to fixed point and validating the proposed fixed-point data types,
click Test to verify the behavior of the fixed-point MATLAB algorithm. By default, if
you added a test file to define inputs or run a simulation, the app uses this test file to
test numerics. Optionally, you can add test files and select to run more than one test file.
The app compares the numerical behavior of the generated fixed-point MATLAB code
with the original floating-point MATLAB code. If you select to log inputs and outputs for
comparison plots, the app generates an additional plot for each scalar output. This plot
shows the floating-point and fixed-point results and the difference between them. For
nonscalar outputs, only the error information is shown.

After fixed-point simulation, if the numerical results do not meet the accuracy that you
want, modify fixed-point data type settings and repeat the type validation and numerical

15-100

 Automated Fixed-Point Conversion

testing steps. You might have to iterate through these steps multiple times to achieve the
results that you want.

Detecting Overflows

When testing numerics, selecting Use scaled doubles to detect overflows enables
overflow detection. When this option is selected, the conversion app runs the simulation
using scaled double versions of the proposed fixed-point types. Because scaled doubles
store their data in double-precision floating-point, they carry out arithmetic in full range.
They also retain their fixed-point settings, so they are able to report when a computation
goes out of the range of the fixed-point type. .

If the app detects overflows, on its Overflow tab, it provides:

• A list of variables and expressions that overflowed
• Information on how much each variable overflowed
• A link to the variables or expressions in the code window

If your original algorithm uses scaled doubles, the app also provides overflow information
for these expressions.

See Also

“Detect Overflows” on page 15-38

15-101

15 Fixed-Point Conversion

Convert Fixed-Point Conversion Project to MATLAB Scripts

This example shows how to convert a MATLAB Coder project to MATLAB scripts when
the project includes automated fixed-point conversion. You can use the -tocode option of
the coder command to create a pair of scripts for fixed-point conversion and fixed-point
code generation. You can use the scripts to repeat the project workflow in a command-
line workflow. Before you convert the project to the scripts, you must complete the Test
step of the fixed-point conversion process.

Prerequisites

This example uses the following files:

• Project file ex_2ndOrder_filter.prj
• Entry-point file ex_2ndOrder_filter.m
• Test bench file ex_2ndOrder_filter_test.m
• Generated fixed-point MATLAB file ex_2ndOrder_filter_fixpt.m

To obtain these files, complete the example “Propose Fixed-Point Data Types Based on
Simulation Ranges” on page 15-7, including these steps:

1 Complete the Test step of the fixed-point conversion process.
2 Configure the project to build a C/C++ static library.

Generate the Scripts

1 Change to the folder that contains the project file ex_2ndOrder_filter.prj.
2 Use the -tocode option of the coder command to convert the project to the scripts.

Use the -script option to specify the file name for the scripts.

coder -tocode ex_2ndOrder_filter -script ex_2ndOrder_filter_script.m

The coder command generates two scripts in the current folder:

ex_2ndOrder_filter_script.m contains the MATLAB commands to:

• Create a code configuration object that has the same settings as the project.
• Run the codegen command to convert the fixed-point MATLAB function

ex_2ndOrder_filter_fixpt to a fixed-point C function.

15-102

 Convert Fixed-Point Conversion Project to MATLAB Scripts

The fixedPointConverter command generates a script in the current folder.
ex_2ndOrder_filter_script_fixpt.m contains the MATLAB commands to:

• Create a floating-point to fixed-point conversion configuration object that has the
same fixed-point conversion settings as the project.

• Run the codegen command to convert the MATLAB function
ex_2ndOrder_filter to the fixed-point MATLAB function
ex_2ndOrder_filter_fixpt.

The suffix in the script file name is the generated fixed-point file name suffix
specified by the project file. In this example, the suffix is the default value
_fixpt.

The coder command overwrites existing files that have the same names as the
generated scripts. If you omit the -script option, the coder command writes the
scripts to the Command Window.

Run Script That Generates Fixed-Point C Code

To run the script that generates fixed-point C code from fixed-point MATLAB code, the
fixed-point MATLAB function specified in the script must be available.

1 Make sure that the fixed-point MATLAB function ex_2ndOrder_filter_fixpt.m
is on the search path.

 addpath c:\coder\ex_2ndOrder_filter\codegen\ex_2ndOrder_filter\fixpt

2 Run the script:

 ex_2ndOrder_filter_script

The code generator creates a C static library with the name
ex_2ndOrder_filter_fixpt in the folder codegen\lib
\ex_2ndOrder_filter_fixpt. The variables cfg and ARGS appear in the base
workspace.

Run Script That Generates Fixed-Point MATLAB Code

If you do not have the fixed-point MATLAB function, or if you want to regenerate it,
use the script that generates the fixed-point MATLAB function from the floating-point
MATLAB function.

15-103

15 Fixed-Point Conversion

1 Make sure that the current folder contains the entry-point function
ex_2ndOrder_filter.m and the test bench file ex_2ndOrder_filter_test.m.

2 Run the script.

 ex_2ndOrder_filter_script_fixpt

The code generator creates ex_2ndOrder_filter_fixpt.m in the folder codegen
\ex_2ndOrder_filter\fixpt. The variables cfg and ARGS appear in the base
workspace.

See Also
coder.FixptConfig | codegen | coder

Related Examples
• “Convert MATLAB Code to Fixed-Point C Code” on page 15-5
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 15-7
• “Convert MATLAB Coder Project to MATLAB Script” on page 21-42

15-104

 Generated Fixed-Point Code

Generated Fixed-Point Code

In this section...

“Location of Generated Fixed-Point Files” on page 15-105
“Minimizing fi-casts to Improve Code Readability” on page 15-106
“Avoiding Overflows in the Generated Fixed-Point Code” on page 15-106
“Controlling Bit Growth” on page 15-107
“Avoiding Loss of Range or Precision” on page 15-107
“Handling Non-Constant mpower Exponents” on page 15-109

Location of Generated Fixed-Point Files

By default, the fixed-point conversion process generates files in a folder named
codegen/fcn_name/fixpt in your local working folder. fcn_name is the name of the
MATLAB function that you are converting to fixed point.

File name Description

fcn_name_fixpt.m Generated fixed-point MATLAB code.

To integrate this fixed-point code into a
larger application, consider generating a
MEX-function for the function and calling
this MEX-function in place of the original
MATLAB code.

fcn_name_fixpt_exVal.mat MAT-file containing:

• A structure for the input arguments.
• The name of the fixed-point file.

fcn_name_fixpt_report.html Link to the type proposal report that
displays the generated fixed-point code and
the proposed type information.

fcn_name_report.html Link to the type proposal report that
displays the original MATLAB code and the
proposed type information.

15-105

15 Fixed-Point Conversion

File name Description

fcn_name_wrapper_fixpt.m File that converts the floating-point data
values supplied by the test file to the fixed-
point types determined for the inputs
during the conversion step. These fixed-
point values are fed into the converted
fixed-point function, fcn_name_fixpt.

Minimizing fi-casts to Improve Code Readability

The conversion process tries to reduce the number of fi-casts by analyzing the floating-
point code. If an arithmetic operation is comprised of only compile-time constants, the
conversion process does not cast the operands to fixed point individually. Instead, it casts
the entire expression to fixed point.

For example, here is the fixed-point code generated for the constant expression x = 1/
sqrt(2) when the selected word length is 14.

Original MATLAB Code Generated Fixed-Point Code

x = 1/sqrt(2); x = fi(1/sqrt(2), 0, 14, 14, fm);

fm is the local fimath.

Avoiding Overflows in the Generated Fixed-Point Code

The conversion process avoids overflows by:

• Using full-precision arithmetic unless you specify otherwise.
• Avoiding arithmetic operations that involve double and fi data types. Otherwise, if

the word length of the fi data type is not able to represent the value in the double
constant expression, overflows occur.

• Avoiding overflows when adding and subtracting non fixed-point variables and fixed-
point variables.

The fixed-point conversion process casts non-fi expressions to the corresponding fi
type.

For example, consider the following MATLAB algorithm.

15-106

 Generated Fixed-Point Code

% A = 5;

% B = ones(300, 1)

function y = fi_plus_non_fi(A, B)

 % '1024' is non-fi, cast it

 y = A + 1024;

 % 'size(B, 1)*length(A)' is a non-fi, cast it

 y = A + size(B, 1)*length(A);

end

The generated fixed-point code is:

%#codegen

% A = 5;

% B = ones(300, 1)

function y = fi_plus_non_fi_fixpt(A, B)

 % '1024' is non-fi, cast it

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...

 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...

 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi(A + fi(1024, 0, 11, 0, fm), 0, 11, 0, fm);

 % 'size(B, 1)*length(A)' is a non-fi, cast it

 y(:) = A + fi(size(B, fi(1, 0, 1, 0, fm))*length(A), 0, 9, 0, fm);

end

Controlling Bit Growth

The conversion process controls bit growth by using subscripted assignments, that
is, assignments that use the colon (:) operator, in the generated code. When you use
subscripted assignments, MATLAB overwrites the value of the left-hand side argument
but retains the existing data type and array size. Using subscripted assignment keeps
fixed-point variables fixed point rather than inadvertently turning them into doubles.
Maintaining the fixed-point type reduces the number of type declarations in the
generated code. Subscripted assignment also prevents bit growth which is useful when
you want to maintain a particular data type for the output.

Avoiding Loss of Range or Precision

Avoiding Loss of Range or Precision in Unsigned Subtraction Operations

When the result of the subtraction is negative, the conversion process promotes the left
operand to a signed type.

15-107

15 Fixed-Point Conversion

For example, consider the following MATLAB algorithm.

% A = 1;

% B = 5

function [y,z] = unsigned_subtraction(A,B)

 y = A - B;

 C = -20;

 z = C - B;

end

In the original code, both A and B are unsigned and the result of A-B can be negative. In
the generated fixed-point code, A is promoted to signed. In the original code, C is signed,
so does not require promotion in the generated code.

%#codegen

% A = 1;

% B = 5

function [y,z] = unsigned_subtraction_fixpt(A,B)

fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...

 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...

 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

y = fi(fi_signed(A) - B, 1, 3, 0, fm);

C = fi(-20, 1, 6, 0, fm);

z = fi(C - B, 1, 6, 0, fm);

end

function y = fi_signed(a)

coder.inline('always');

if isfi(a) && ~(issigned(a))

 nt = numerictype(a);

 new_nt = numerictype(1, nt.WordLength + 1, nt.FractionLength);

 y = fi(a, new_nt, fimath(a));

else

 y = a;

end

end

Avoiding Loss of Range When Concatenating Arrays of Fixed-Point Numbers

If you concatenate matrices using vertcat and horzcat, the conversion process uses
the largest numerictype among the expressions of a row and casts the leftmost element to
that type. This type is then used for the concatenated matrix to avoid loss of range.

15-108

 Generated Fixed-Point Code

For example, consider the following MATLAB algorithm.

% A = 1, B = 100, C = 1000

function [y, z] = lb_node(A, B, C)

 %% single rows

 y = [A B C];

 %% multiple rows

 z = [A 5; A B; A C];

end

In the generated fixed-point code:

• For the expression y = [A B C], the leftmost element, A, is cast to the type of C
because C has the largest type in the row.

• For the expression [A 5; A B; A C]:

• In the first row, A is cast to the type of C because C has the largest type of the
whole expression.

• In the second row, A is cast to the type of B because B has the larger type in the
row.

• In the third row, A is cast to the type of C because C has the larger type in the row.

%#codegen

% A = 1, B = 100, C = 1000

function [y, z] = lb_node_fixpt(A, B, C)

 %% single rows

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...

 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128, ...

 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi([fi(A, 0, 10, 0, fm) B C], 0, 10, 0, fm);

 %% multiple rows

 z = fi([fi(A, 0, 10, 0, fm) 5; fi(A, 0, 7, 0, fm) B;...

 fi(A, 0, 10, 0, fm) C], 0, 10, 0, fm);

end

Handling Non-Constant mpower Exponents

If the function that you are converting has a scalar input, and the mpower exponent
input is not constant, the conversion process sets the fimath ProductMode to

15-109

15 Fixed-Point Conversion

SpecifyPrecision in the generated code. With this setting , the output data type can
be determined at compile time.

For example, consider the following MATLAB algorithm.

% a = 1

% b = 3

function y = exp_operator(a, b)

 % exponent is a constant so no need to specify precision

 y = a^3;

 % exponent is not a constant, use 'SpecifyPrecision' for 'ProductMode'

 y = b^a;

end

In the generated fixed-point code, for the expression y = a^3 , the exponent is a
constant, so there is no need to specify precision. For the expression, y = b^a, the
exponent is not constant, so the ProductMode is set to SpecifyPrecision.

%#codegen

% a = 1

% b = 3

function y = exp_operator_fixpt(a, b)

 % exponent is a constant so no need to specify precision

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...

 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...

 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi(a^3, 0, 2, 0, fm);

 % exponent is not a constant, use 'SpecifyPrecision' for 'ProductMode'

 y(:) = fi(b, 'ProductMode', 'SpecifyPrecision',...

 'ProductWordLength', 2, 'ProductFractionLength', 0)^a;

end

15-110

 Fixed-Point Code for MATLAB Classes

Fixed-Point Code for MATLAB Classes

In this section...

“Automated Conversion Support for MATLAB Classes” on page 15-111
“Unsupported Constructs” on page 15-111
“Coding Style Best Practices” on page 15-112

Automated Conversion Support for MATLAB Classes

The automated fixed-point conversion process:

• Proposes fixed-point data types based on simulation ranges for MATLAB classes. It
does not propose data types based on derived ranges for MATLAB classes.

After simulation, the MATLAB Coder app:

• Function list contains class constructors, methods, and specializations.
• Code window displays the objects used in each function.
• Provides code coverage for methods.

For more information, see “Viewing Information for MATLAB Classes” on page 15-96.
• Supports class methods, properties, and specializations. For each specialization of a

class, class_name, the conversion generates a separate class_name_fixpt.m file.
For every instantiation of a class, the generated fixed-point code contains a call to the
constructor of the appropriate specialization.

• Supports classes that have get and set methods such as get.PropertyName,
set.PropertyName. These methods are called when properties are read or assigned.
The set methods can be specialized. Sometimes, in the generated fixed-point code,
assignment statements are transformed to function calls.

Unsupported Constructs

The automated conversion process does not support:

• Class inheritance.
• Packages.
• Constructors that use nargin and varargin.

15-111

15 Fixed-Point Conversion

Coding Style Best Practices

When you write MATLAB code that uses MATLAB classes:

• Initialize properties in the class constructor.
• Replace constant properties with static methods.

For example, consider the counter class.

classdef Counter < handle

 properties

 Value = 0;

 end

 properties(Constant)

 MAX_VALUE = 128

 end

 methods

 function out = next(this)

 out = this.Count;

 if this.Value == this.MAX_VALUE

 this.Value = 0;

 else

 this.Value = this.Value + 1;

 end

 end

 end

end

To use the automated fixed-point conversion process, rewrite the class to have a static
class that initializes the constant property MAX_VALUE and a constructor that initializes
the property Value.

classdef Counter < handle

 properties

 Value;

 end

 methods(Static)

 function t = MAX_VALUE()

 t = 128;

 end

 end

15-112

 Fixed-Point Code for MATLAB Classes

 methods

 function this = Counter()

 this.Value = 0;

 end

 function out = next(this)

 out = this.Value;

 if this.Value == this.MAX_VALUE

 this.Value = 0;

 else

 this.Value = this.Value + 1;

 end

 end

 end

end

15-113

15 Fixed-Point Conversion

Automated Fixed-Point Conversion Best Practices

In this section...

“Create a Test File” on page 15-114
“Prepare Your Algorithm for Code Acceleration or Code Generation” on page 15-115
“Check for Fixed-Point Support for Functions Used in Your Algorithm” on page
15-116
“Manage Data Types and Control Bit Growth” on page 15-116
“Convert to Fixed Point” on page 15-117
“Use the Histogram to Fine-Tune Data Type Settings” on page 15-118
“Optimize Your Algorithm” on page 15-119
“Avoid Explicit Double and Single Casts” on page 15-121

Create a Test File

A best practice for structuring your code is to separate your core algorithm from other
code that you use to test and verify the results. Create a test file to call your original
MATLAB algorithm and fixed-point versions of the algorithm. For example, as shown in
the following table, you might set up some input data to feed into your algorithm, and
then, after you process that data, create some plots to verify the results. Since you need
to convert only the algorithmic portion to fixed point, it is more efficient to structure your
code so that you have a test file, in which you create your inputs, call your algorithm, and
plot the results, and one (or more) algorithmic files, in which you do the core processing.

Original code Best Practice Modified code

% TEST INPUT

x = randn(100,1);

% ALGORITHM

y = zeros(size(x));

y(1) = x(1);

for n=2:length(x)

 y(n)=y(n-1) + x(n);

end

% VERIFY RESULTS

yExpected=cumsum(x);

Issue

Generation of test input
and verification of results
are intermingled with the
algorithm code.

Fix

Create a test file that is
separate from your algorithm.

Test file

% TEST INPUT

x = randn(100,1);

% ALGORITHM

y = cumulative_sum(x);

% VERIFY RESULTS

yExpected = cumsum(x);

plot(y-yExpected)

title('Error')

15-114

 Automated Fixed-Point Conversion Best Practices

Original code Best Practice Modified code
plot(y-yExpected)

title('Error')
Put the algorithm in its own
function.

Algorithm in its own function

function y = cumulative_sum(x)

 y = zeros(size(x));

 y(1) = x(1);

 for n=2:length(x)

 y(n) = y(n-1) + x(n);

 end

end

You can use the test file to:

• Verify that your floating-point algorithm behaves as you expect before you convert it
to fixed point. The floating-point algorithm behavior is the baseline against which you
compare the behavior of the fixed-point versions of your algorithm.

• Propose fixed-point data types.
• Compare the behavior of the fixed-point versions of your algorithm to the floating-

point baseline.
• Help you determine initial values for static ranges.

By default, the MATLAB Coder app shows code coverage results. Your test files should
exercise the algorithm over its full operating range so that the simulation ranges are
accurate. For example, for a filter, realistic inputs are impulses, sums of sinusoids, and
chirp signals. With these inputs, using linear theory, you can verify that the outputs are
correct. Signals that produce maximum output are useful for verifying that your system
does not overflow. The quality of the proposed fixed-point data types depends on how
well the test files cover the operating range of the algorithm with the accuracy that you
want. Reviewing code coverage results help you verify that your test file is exercising
the algorithm adequately. Review code flagged with a red code coverage bar because this
code is not executed. If the code coverage is inadequate, modify the test file or add more
test files to increase coverage. See “Code Coverage” on page 15-82.

Prepare Your Algorithm for Code Acceleration or Code Generation

The automated conversion process instruments your code and provides data type
proposals to help you convert your algorithm to fixed point.

MATLAB algorithms that you want to convert to fixed point automatically must comply
with code generation requirements and rules. To view the subset of the MATLAB

15-115

15 Fixed-Point Conversion

language that is supported for code generation, see “Functions and Objects Supported for
C/C++ Code Generation — Alphabetical List” on page 4-2.

To help you identify unsupported functions or constructs in your MATLAB code, add
the %#codegen pragma to the top of your MATLAB file. The MATLAB Code Analyzer
flags functions and constructs that are not available in the subset of the MATLAB
language supported for code generation. This advice appears in real time as you edit
your code in the MATLAB editor. For more information, see “Check Code with the Code
Analyzer” on page 19-6. The software provides a link to a report that identifies calls
to functions and the use of data types that are not supported for code generation. For
more information, see “Check Code by Using the Code Generation Readiness Tool” on
page 19-8.

Check for Fixed-Point Support for Functions Used in Your Algorithm

The app flags unsupported function calls found in your algorithm on the Function
Replacements tab. For example, if you use the fft function, which is not supported for
fixed point, the tool adds an entry to the table on this tab and indicates that you need to
specify a replacement function to use for fixed-point operations.

You can specify additional replacement functions. For example, functions like sin,
cos,and sqrt might support fixed point, but for better efficiency, you might want to
consider an alternative implementation like a lookup table or CORDIC-based algorithm.
The app provides an option to generate lookup table approximations for continuous
and stateless single-input, single-output functions in your original MATLAB code. See
“Replacing Functions Using Lookup Table Approximations” on page 15-122.

Manage Data Types and Control Bit Growth

The automated fixed-point conversion process automatically manages data types and
controls bit growth. It controls bit growth by using subscripted assignments, that

15-116

 Automated Fixed-Point Conversion Best Practices

is, assignments that use the colon (:) operator, in the generated code. When you use
subscripted assignments, MATLAB overwrites the value of the left-hand side argument
but retains the existing data type and array size. In addition to preventing bit growth,
subscripted assignment reduces the number of casts in the generated fixed-point code
and makes the code more readable.

Convert to Fixed Point

What Are Your Goals for Converting to Fixed Point?

Before you start the conversion, consider your goals for converting to fixed point. Are
you implementing your algorithm in C or HDL? What are your target constraints? The
answers to these questions determine many fixed-point properties such as the available
word length, fraction length, and math modes, as well as available math libraries.

To set up these properties, use the Advanced settings.

For more information, see “Specify Type Proposal Options” on page 15-34.

Run With Fixed-Point Types and Compare Results

Create a test file to validate that the floating-point algorithm works as expected
before converting it to fixed point. You can use the same test file to propose fixed-point
data types, and to compare fixed-point results to the floating-point baseline after the
conversion. For more information, see “Running a Simulation” on page 15-86 and “Log
Data for Histogram” on page 15-97 .

15-117

15 Fixed-Point Conversion

Use the Histogram to Fine-Tune Data Type Settings

To fine-tune fixed-point type settings, use the histogram. To log data for histograms, in

the app, click the Analyze arrow and select Log data for histogram.

After simulation and static analysis:

• To view the histogram for a variable, on the Variables tab, click the Proposed Type
field for that variable.

You can view the effect of changing the proposed data types by dragging the edges
of the bounding box in the histogram window to change the proposed data type and
selecting or clearing the Signed option.

15-118

 Automated Fixed-Point Conversion Best Practices

• If the values overflow and the range cannot fit the proposed type, the table shows
proposed types in red.

When the tool applies data types, it generates an html report that provides overflow
information and highlights overflows in red. Review the proposed data types.

Optimize Your Algorithm

Use fimath to Get Optimal Types for C or HDL

fimath properties define the rules for performing arithmetic operations on fi
objects, including math, rounding, and overflow properties. You can use the fimath
ProductMode and SumMode properties to retain optimal data types for C or HDL. HDL
can have arbitrary word length types in the generated HDL code whereas C requires
container types (uint8, uint16, uint32). Use the Advanced settings, see “Specify
Type Proposal Options” on page 15-34.

C

The KeepLSB setting for ProductMode and SumMode models the behavior of integer
operations in the C language, while KeepMSB models the behavior of many DSP devices.
Different rounding methods require different amounts of overhead code. Setting
the RoundingMethod property to Floor, which is equivalent to two's complement
truncation, provides the most efficient rounding implementation. Similarly, the standard
method for handling overflows is to wrap using modulo arithmetic. Other overflow
handling methods create costly logic. Whenever possible, set OverflowAction to Wrap.

MATLAB Code Best Practice Generated C Code

Code being compiled

function y = adder(a,b)

 y = a + b;

end

Note: In the app, set
Default word length to
16.

Issue

With the default word length set to
16 and the default fimath settings,
additional code is generated to
implement saturation overflow, nearest
rounding, and full-precision arithmetic.

int adder(short a, short b)

{

 int y;

 int i0;

 int i1;

 int i2;

 int i3;

 i0 = a;

 i1 = b;

 if ((i0 & 65536) != 0) {

 i2 = i0 | -65536;

 } else {

 i2 = i0 & 65535;

 }

15-119

15 Fixed-Point Conversion

MATLAB Code Best Practice Generated C Code

 if ((i1 & 65536) != 0) {

 i3 = i1 | -65536;

 } else {

 i3 = i1 & 65535;

 }

 i0 = i2 + i3;

 if ((i0 & 65536) != 0) {

 y = i0 | -65536;

 } else {

 y = i0 & 65535;

 }

 return y;

}

Fix

To make the generated C code more
efficient, choose fixed-point math
settings that match your processor
types.

To customize fixed-point type proposals,
use the app Settings. Select fimath and
then set:
Rounding method Floor
Overflow action Wrap
Product mode KeepLSB
Sum mode KeepLSB
Product word
length

32

Sum word length 32

int adder(short a, short b)

{

 return a + b;

}

HDL

For HDL code generation, set:

• ProductMode and SumMode to FullPrecision

15-120

 Automated Fixed-Point Conversion Best Practices

• Overflow action to Wrap
• Rounding method to Floor

Replace Built-in Functions with More Efficient Fixed-Point Implementations

Some MATLAB built-in functions can be made more efficient for fixed-point
implementation. For example, you can replace a built-in function with a Lookup table
implementation, or a CORDIC implementation, which requires only iterative shift-add
operations. For more information, see “Function Replacements” on page 15-99.

Reimplement Division Operations Where Possible

Often, division is not fully supported by hardware and can result in slow processing.
When your algorithm requires a division, consider replacing it with one of the following
options:

• Use bit shifting when the denominator is a power of two. For example, bitsra(x,3)
instead of x/8.

• Multiply by the inverse when the denominator is constant. For example, x*0.2
instead of x/5.

• If the divisor is not constant, use a temporary variable for the division. Doing so
results in a more efficient data type proposal and, if overflows occur, makes it easier
to see which expression is overflowing.

Eliminate Floating-Point Variables

For more efficient code, the automated fixed-point conversion process eliminates floating-
point variables. The one exception to this is loop indices because they usually become
integer types. It is good practice to inspect the fixed-point code after conversion to verify
that there are no floating-point variables in the generated fixed-point code.

Avoid Explicit Double and Single Casts

For the automated workflow, do not use explicit double or single casts in your MATLAB
algorithm to insulate functions that do not support fixed-point data types. The automated
conversion tool does not support these casts.

Instead of using casts, supply a replacement function. For more information, see
“Function Replacements” on page 15-99.

15-121

15 Fixed-Point Conversion

Replacing Functions Using Lookup Table Approximations

The MATLAB Coder software provides an option to generate lookup table
approximations for continuous and stateless single-input, single-output functions in your
original MATLAB code. These functions must be on the MATLAB path.

You can use this capability to handle functions that are not supported for fixed point
and to replace your own custom functions. The fixed-point conversion process infers
the ranges for the function and then uses an interpolated lookup table to replace the
function. You can control the interpolation method and number of points in the lookup
table. By adjusting these settings, you can tune the behavior of replacement function to
match the behavior of the original function as closely as possible.

The fixed-point conversion process generates one lookup table approximation per call site
of the function that needs replacement.

To use lookup table approximations in a MATLAB Coder project, see “Replace the exp
Function with a Lookup Table” on page 15-47 and “Replace a Custom Function with a
Lookup Table” on page 15-56.

To use lookup table approximations in the programmatic workflow, see
coder.approximation, “Replace the exp Function with a Lookup Table” on page
16-24, and “Replace a Custom Function with a Lookup Table” on page 16-26.

15-122

 MATLAB Language Features Supported for Automated Fixed-Point Conversion

MATLAB Language Features Supported for Automated Fixed-Point
Conversion

Fixed-Point Designer supports the following MATLAB language features in automated
fixed-point conversion:

• N-dimensional arrays
• Matrix operations, including deletion of rows and columns
• Variable-sized data (see “Generate Code for Variable-Size Data” on page 21-106).

Range computation for variable–sized data is supported via simulation mode only.
Variable-sized data is not supported for comparison plotting.

• Subscripting (see “Incompatibility with MATLAB in Matrix Indexing Operations for
Code Generation”)

• Complex numbers (see “Code Generation for Complex Data”)
• Numeric classes (see “Supported Variable Types”)
• Double-precision, single-precision, and integer math
• Fixed-point arithmetic (see “Code Acceleration and Code Generation from MATLAB”)
• Program control statements if, switch, for, while, and break
• Arithmetic, relational, and logical operators
• Local functions
• Global variables
• Persistent variables
• Structures, including arrays of structures. Range computation for structures is

supported via simulation mode only.
• Characters

The complete set of Unicode characters is not supported for code generation.
Characters are restricted to 8 bits of precision in generated code. Because many
mathematical operations require more than 8 bits of precision, it is recommended that
you do not perform arithmetic with characters if you intend to convert your MATLAB
algorithm to fixed point.

• MATLAB classes. Range computation for MATLAB classes is supported via
simulation mode only.

Automated conversion supports:

15-123

15 Fixed-Point Conversion

• Class properties
• Constructors
• Methods
• Specializations

It does not support class inheritance or packages. For more information, see “Fixed-
Point Code for MATLAB Classes”.

• Ability to call functions (see “Resolution of Function Calls for Code Generation” on
page 14-2)

• Subset of MATLAB toolbox functions (see “Functions Supported for Code Acceleration
or C Code Generation”).

• Subset of DSP System Toolbox System objects.

The DSP System Toolbox System objects supported for automated conversion are:

• dsp.ArrayVectorAdder
• dsp.BiquadFilter
• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRFilter (Direct Form and Direct Form Transposed only)
• dsp.FIRRateConverter
• dsp.LowerTriangularSolver
• dsp.LUFactor
• dsp.UpperTriangularSolver
• dsp.VariableFractionalDelay
• dsp.Window

15-124

 Inspecting Data Using the Simulation Data Inspector

Inspecting Data Using the Simulation Data Inspector

In this section...

“What Is the Simulation Data Inspector?” on page 15-125
“Import Logged Data” on page 15-125
“Export Logged Data” on page 15-125
“Group Signals” on page 15-126
“Run Options” on page 15-126
“Create Report” on page 15-126
“Comparison Options” on page 15-126
“Enabling Plotting Using the Simulation Data Inspector” on page 15-126
“Save and Load Simulation Data Inspector Sessions” on page 15-127

What Is the Simulation Data Inspector?

The Simulation Data Inspector allows you to view data logged during the fixed-point
conversion process. You can use it to inspect and compare the inputs and outputs to the
floating-point and fixed-point versions of your algorithm.

For fixed-point conversion, there is no programmatic interface for the Simulation Data
Inspector.

Import Logged Data

Before importing data into the Simulation Data Inspector, you must have previously
logged data to the base workspace or to a MAT-file.

Export Logged Data

The Simulation Data Inspector provides the capability to save data collected by the fixed-
point conversion process to a MAT-file that you can later reload. The format of the MAT-
file is different from the format of a MAT-file created from the base workspace.

15-125

15 Fixed-Point Conversion

Group Signals

You can customize the organization of your logged data in the Simulation Data Inspector
Runs pane. By default, data is first organized by run. You can then organize your data
by logged variable or no hierarchy.

Run Options

You can configure the Simulation Data Inspector to:

• Append New Runs

In the Run Options dialog box, the default is set to add new runs to the bottom of the
run list. To append new runs to the top of the list, select Add new runs at top.

• Specify a Run Naming Rule

To specify run naming rules, in the Simulation Data Inspector toolbar, click Run
Options.

Create Report

You can create a report of the runs or comparison plots. Specify the name and location
of the report file. By default, the Simulation Data Inspector overwrites existing files. To
preserve existing reports, select If report exists, increment file name to prevent
overwriting.

Comparison Options

To change how signals are matched when runs are compared, specify the Align by and
Then by parameters and then click OK.

Enabling Plotting Using the Simulation Data Inspector

To enable the Simulation Data Inspector in the Fixed-Point Conversion tool, see “Enable
Plotting Using the Simulation Data Inspector” on page 15-65.

To enable the Simulation Data Inspector in the programmatic workflow, see “Enable
Plotting Using the Simulation Data Inspector” on page 16-28.

15-126

 Inspecting Data Using the Simulation Data Inspector

Save and Load Simulation Data Inspector Sessions

If you have data in the Simulation Data Inspector and you want to archive or share the
data to view in the Simulation Data Inspector later, save the Simulation Data Inspector
session. When you save a Simulation Data Inspector session, the MAT-file contains:

• All runs, data, and properties from the Runs and Comparisons panes.
• Check box selection state for data in the Runs pane.

Save a Session to a MAT-File

1 On the Visualize tab, click Save.
2 Browse to where you want to save the MAT-file to, name the file, and click Save.

Load a Saved Simulation Data Inspector Simulation

1 On the Visualize tab, click Open.
2 Browse, select the MAT-file saved from the Simulation Data Inspector, and click

Open.
3 If data in the session is plotted on multiple subplots, on the Format tab, click

Subplots and select the subplot layout.

15-127

15 Fixed-Point Conversion

Custom Plot Functions
The Fixed-Point Conversion tool provides a default time series based plotting function.
The conversion process uses this function at the test numerics step to show the floating-
point and fixed-point results and the difference between them. However, during fixed-
point conversion you might want to visualize the numerical differences in a view that is
more suitable for your application domain. For example, plots that show eye diagrams
and bit error differences are more suitable in the communications domain and histogram
difference plots are more suitable in image processing designs.

You can choose to use a custom plot function at the test numerics step. The Fixed-Point
Conversion tool facilitates custom plotting by providing access to the raw logged input
and output data before and after fixed-point conversion. You supply a custom plotting
function to visualize the differences between the floating-point and fixed-point results. If
you specify a custom plot function, the fixed-point conversion process calls the function
for each input and output variable, passes in the name of the variable and the function
that uses it, and the results of the floating-point and fixed-point simulations.

Your function should accept three inputs:

• A structure that holds the name of the variable and the function that uses it.

Use this information to:

• Customize plot headings and axes.
• Choose which variables to plot.
• Generate different error metrics for different output variables.

• A cell array to hold the logged floating-point values for the variable.

This cell array contains values observed during floating-point simulation of the
algorithm during the test numerics phase. You might need to reformat this raw data.

• A cell array to hold the logged values for the variable after fixed-point conversion.

This cell array contains values observed during fixed-point simulation of the
converted design.

For example, function customComparisonPlot(varInfo, floatVarVals,
fixedPtVarVals).

To use a custom plot function, in the Fixed-Point Conversion tool, select Advanced, and
then set Custom plot function to the name of your plot function.

15-128

 Custom Plot Functions

In the programmatic workflow, set the coder.FixptConfig configuration object
PlotFunction property to the name of your plot function. See “Visualize Differences
Between Floating-Point and Fixed-Point Results” on page 16-29.

15-129

15 Fixed-Point Conversion

Data Type Issues in Generated Code

Within the fixed-point conversion HTML report, you have the option to highlight
MATLAB code that results in double, single, or expensive fixed-point operations.
Consider enabling these checks when trying to achieve a strict single, or fixed-point
design.

These checks are disabled by default.

Enable the Highlight Option in the MATLAB Coder App

1 On the Convert to Fixed Point page, to open the Settings dialog box, click the

Settings arrow .
2 Under Plotting and Reporting, set Highlight potential data type issues to

Yes.

When conversion is complete, open the fixed-point conversion HTML report to view the
highlighting. Click View report in the Type Validation Output tab.

Enable the Highlight Option at the Command Line

1 Create a fixed-point code configuration object:

cfg = coder.config('fixpt');

2 Set the HighlightPotentialDataTypeIssues property of the configuration object
to true.

cfg.HighlightPotentialDataTypeIssues = true;

Stowaway Doubles

When trying to achieve a strict-single or fixed-point design, manual inspection of code
can be time-consuming and error prone. This check highlights all expressions that result
in a double operation.

For a strict-single precision design, specify a standard math library that supports single-
precision implementations. To change the library for a project, during the Generate Code
step, in the project settings dialog box, on the Custom Code tab, set the Standard
math library to C99 (ISO).

15-130

 Data Type Issues in Generated Code

Stowaway Singles

This check highlights all expressions that result in a single operation.

Expensive Fixed-Point Operations

The expensive fixed-point operations check identifies optimization opportunities for
fixed-point code. It highlights expressions in the MATLAB code that require cumbersome
multiplication or division, expensive rounding, expensive comparison, or multiword
operations. For more information on optimizing generated fixed-point code, see “Tips for
Making Generated Code More Efficient”.

Cumbersome Operations

Cumbersome operations most often occur due to insufficient range of output. Avoid
inputs to a multiply or divide operation that has word lengths larger than the base
integer type of your processor. Operations with larger word lengths can be handled in
software, but this approach requires much more code and is much slower.

Expensive Rounding

Traditional handwritten code, especially for control applications, almost always uses
"no effort" rounding. For example, for unsigned integers and two's complement signed
integers, shifting right and dropping the bits is equivalent to rounding to floor. To get
results comparable to, or better than, what you expect from traditional handwritten code,
use the floor rounding method. This check identifies expensive rounding operations in
multiplication and division.

Expensive Comparison Operations

Comparison operations generate extra code when a casting operation is required to do
the comparison. For example, when comparing an unsigned integer to a signed integer,
one of the inputs must first be cast to the signedness of the other before the comparison
operation can be performed. Consider optimizing the data types of the input arguments
so that a cast is not required in the generated code.

Multiword Operations

Multiword operations can be inefficient on hardware. When an operation has an input or
output data type larger than the largest word size of your processor, the generated code
contains multiword operations. You can avoid multiword operations in the generated

15-131

15 Fixed-Point Conversion

code by specifying local fimath properties for variables. You can also manually specify
input and output word lengths of operations that generate multiword code.

15-132

16

Automated Fixed-Point Conversion
Using Programmatic Workflow

• “Convert MATLAB Code to Fixed-Point C Code” on page 16-2
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 16-5
• “Propose Fixed-Point Data Types Based on Derived Ranges” on page 16-11
• “Detect Overflows” on page 16-20
• “Replace the exp Function with a Lookup Table” on page 16-24
• “Replace a Custom Function with a Lookup Table” on page 16-26
• “Enable Plotting Using the Simulation Data Inspector” on page 16-28
• “Visualize Differences Between Floating-Point and Fixed-Point Results” on page

16-29

16 Automated Fixed-Point Conversion Using Programmatic Workflow

Convert MATLAB Code to Fixed-Point C Code
This example shows how to generate fixed-point C code from floating-point MATLAB
code using the programmatic workflow.

Set Up the Fixed-Point Configuration Object

Create a fixed-point configuration object and configure the test file name. For example:

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'fun_with_matlab_test';

Configure the Fixed-Point Configuration Object for Type Proposal

The fixed-point conversion software can propose types based on simulation ranges,
derived ranges, or both.

• For type proposal using only simulation ranges, enable the collection and reporting of
simulation range data. By default, derived range analysis is disabled.

fixptcfg.ComputeSimulationRanges = true;

• For type proposal using only derived ranges:

1 Specify the design range for input parameters. For example:

fixptcfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0);

2 Enable derived range analysis. Disable collection and reporting of simulation
range data.

fixptcfg.ComputeDerivedRanges = true;

fixptcfg.ComputeSimulationRanges = false;

Enable Numerics Testing

Select to run the test file to verify the generated fixed-point MATLAB code.

fixptcfg.TestNumerics = true;

Enable Plotting

Log inputs and outputs for comparison plotting. Select to plot using a custom function or
Simulation Data Inspector. For example, to plot using Simulation Data Inspector:

fixptcfg.LogIOForComparisonPlotting = true;

fixptcfg.PlotWithSimulationDataInspector = true;

16-2

 Convert MATLAB Code to Fixed-Point C Code

Configure Additional Fixed-Point Configuration Object Properties

Configure additional fixed-point configuration object properties as necessary. For
example, define the default fixed-point word length:

fixptcfg.DefaultWordLength = 16;

Set Up the C Code Generation Configuration Object

Create a code configuration object for generation of a C static library, dynamic library, or
executable. Enable the code generation report. For example:

cfg = coder.config('lib');

cfg.GenerateReport = true;

Generate Fixed-Point C Code

Use the codegen function to convert the floating-point MATLAB function to fixed-point
C code. For example:

codegen -float2fixed fixptcfg -config cfg fun_with_matlab

View the Type Proposal Report

Click the link to the type proposal report for the entry-point function.

View the Comparison Plots

If you selected to log inputs and outputs for comparison plots, the conversion process
generates comparison plots.

• If you selected to use Simulation Data Inspector for these plots, the Simulation Data
Inspector opens. Use Simulation Data Inspector to view and compare the floating-
point and fixed-point run information.

• If you selected to use a custom plotting function for these plots, the conversion process
uses the custom function to generate the plots.

View the Generated Fixed-Point MATLAB and Fixed-Point C Code

Click the View Report link that follows the type proposal report. To view the fixed-point
MATLAB code, click the MATLAB code tab. To view the fixed-point C code, click the C
code tab.

See Also
coder.FixptConfig

16-3

16 Automated Fixed-Point Conversion Using Programmatic Workflow

Related Examples
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 16-5
• “Propose Fixed-Point Data Types Based on Derived Ranges” on page 16-11
• “Enable Plotting Using the Simulation Data Inspector” on page 16-28

More About
• “Automated Fixed-Point Conversion” on page 15-81

16-4

 Propose Fixed-Point Data Types Based on Simulation Ranges

Propose Fixed-Point Data Types Based on Simulation Ranges

This example shows how to propose fixed-point data types based on simulation range
data using the codegen function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB)

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to
your local working folder.

Type Name Description

Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test.m MATLAB script that tests

ex_2ndOrder_filter.m

The ex_2ndOrder_filter Function

function y = ex_2ndOrder_filter(x) %#codegen

 persistent z

 if isempty(z)

 z = zeros(2,1);

16-5

16 Automated Fixed-Point Conversion Using Programmatic Workflow

 end

 % [b,a] = butter(2, 0.25)

 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];

 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));

 for i = 1:length(x)

 y(i) = b(1)*x(i) + z(1);

 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);

 z(2) = b(3)*x(i) - a(3) * y(i);

 end

end

The ex_2ndOrder_filter_test Script

The test script runs the ex_2ndOrder_filter function with three input signals: chirp,
step, and impulse to cover the full intended operating range of the system. The script
then plots the outputs.

% ex_2ndOrder_filter_test

%

% Define representative inputs

N = 256; % Number of points

t = linspace(0,1,N); % Time vector from 0 to 1 second

f1 = N/2; % Target frequency of chirp set to Nyquist

x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second

x_step = ones(1,N); % Step

x_impulse = zeros(1,N); % Impulse

x_impulse(1) = 1;

% Run the function under test

x = [x_chirp;x_step;x_impulse];

y = zeros(size(x));

for i = 1:size(x,1)

 y(i,:) = ex_2ndOrder_filter(x(i,:));

end

% Plot the results

titles = {'Chirp','Step','Impulse'}

clf

for i = 1:size(x,1)

 subplot(size(x,1),1,i)

 plot(t,x(i,:),t,y(i,:))

 title(titles{i})

16-6

 Propose Fixed-Point Data Types Based on Simulation Ranges

 legend('Input','Output')

end

xlabel('Time (s)')

figure(gcf)

disp('Test complete.')

Set Up the Fixed-Point Configuration Object

Create a fixed-point configuration object and configure the test file name.

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'ex_2ndOrder_filter_test';

Set Up the C Code Generation Configuration Object

Create a code configuration object to generate a C static library. Enable the code
generation report.

cfg = coder.config('lib');

cfg.GenerateReport = true;

Collect Simulation Ranges and Generate Fixed-Point Code

Use the codegen function to convert the floating-point MATLAB function,
ex_2ndOrder_filter, to fixed-point C code. Set the default word length for the fixed-
point data types to 16.

fixptcfg.ComputeSimulationRanges = true;

fixptcfg.DefaultWordLength = 16;

% Derive ranges and generate fixed-point code

codegen -float2fixed fixptcfg -config cfg ex_2ndOrder_filter

codegen analyzes the floating-point code. Because you did not specify the input types for
the ex_2ndOrder_filter function, the conversion process infers types by simulating
the test file. The conversion process then derives ranges for variables in the algorithm.
It uses these derived ranges to propose fixed-point types for these variables. When the
conversion is complete, it generates a type proposal report.

View Range Information

Click the link to the type proposal report for the ex_2ndOrder_filter function,
ex_2ndOrder_filter_report.html.

16-7

16 Automated Fixed-Point Conversion Using Programmatic Workflow

The report opens in a web browser.

View Generated Fixed-Point MATLAB Code

codegen generates a fixed-point version of the ex_2ndOrder_filter.m
function, ex_2ndOrder_filter_fixpt.m, and a wrapper function that calls
ex_2ndOrder_filter_fixpt. These files are generated in the codegen
\ex_2ndOrder_filter\fixpt folder in your local working folder.

function y = ex_2ndOrder_filter_fixpt(x) %#codegen

 fm = get_fimath();

 persistent z

 if isempty(z)

 z = fi(zeros(2,1), 1, 16, 15, fm);

16-8

 Propose Fixed-Point Data Types Based on Simulation Ranges

 end

 % [b,a] = butter(2, 0.25)

 b = fi([0.0976310729378175, 0.195262145875635,...

 0.0976310729378175], 0, 16, 18, fm);

 a = fi([1, -0.942809041582063,...

 0.3333333333333333], 1, 16, 14, fm);

 y = fi(zeros(size(x)), 1, 16, 14, fm);

 for i=1:length(x)

 y(i) = b(1)*x(i) + z(1);

 z(1) = fi_signed(b(2)*x(i) + z(2)) - a(2) * y(i);

 z(2) = fi_signed(b(3)*x(i)) - a(3) * y(i);

 end

end

function y = fi_signed(a)

 coder.inline('always');

 if isfi(a) && ~(issigned(a))

 nt = numerictype(a);

 new_nt = numerictype(1, nt.WordLength + 1, nt.FractionLength);

 y = fi(a, new_nt, fimath(a));

 else

 y = a;

 end

end

function fm = get_fimath()

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode',...

 'FullPrecision', 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision',...

 'MaxSumWordLength', 128);

end

View Generated Fixed-Point C Code

To view the code generation report for the C code generation, click the View Report link
that follows the type proposal report.

16-9

16 Automated Fixed-Point Conversion Using Programmatic Workflow

The code generation report opens and displays the generated code for
ex_2ndOrder_filter_fixpt.c.

See Also
coder.FixptConfig | codegen

Related Examples
• “Convert MATLAB Code to Fixed-Point C Code” on page 15-5
• “Propose Fixed-Point Data Types Based on Derived Ranges” on page 16-11

16-10

 Propose Fixed-Point Data Types Based on Derived Ranges

Propose Fixed-Point Data Types Based on Derived Ranges

This example shows how to propose fixed-point data types based on static ranges using
the codegen function. The advantage of proposing data types based on derived ranges
is that you do not have to provide test files that exercise your algorithm over its full
operating range. Running such test files often takes a very long time so you can save
time by deriving ranges instead.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB)

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/

You can use mex -setup to change the default compiler. See “Change Default
Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\dti.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the dti.m and dti_test.m files to your local working folder.

Type Name Description

Function code dti.m Entry-point MATLAB function
Test file dti_test.m MATLAB script that tests

dti.m

The dti Function

The dti function implements a Discrete Time Integrator in MATLAB.

16-11

16 Automated Fixed-Point Conversion Using Programmatic Workflow

function [y, clip_status] = dti(u_in) %#codegen

% Discrete Time Integrator in MATLAB

%

% Forward Euler method, also known as Forward Rectangular, or left-hand

% approximation. The resulting expression for the output of the block at

% step 'n' is y(n) = y(n-1) + K * u(n-1)

%

init_val = 1;

gain_val = 1;

limit_upper = 500;

limit_lower = -500;

% variable to hold state between consecutive calls to this block

persistent u_state

if isempty(u_state)

 u_state = init_val+1;

end

% Compute Output

if (u_state > limit_upper)

 y = limit_upper;

 clip_status = -2;

elseif (u_state >= limit_upper)

 y = limit_upper;

 clip_status = -1;

elseif (u_state < limit_lower)

 y = limit_lower;

 clip_status = 2;

elseif (u_state <= limit_lower)

 y = limit_lower;

 clip_status = 1;

else

 y = u_state;

 clip_status = 0;

end

% Update State

tprod = gain_val * u_in;

u_state = y + tprod;

function b = subFunction(a)

b = a*a;

16-12

 Propose Fixed-Point Data Types Based on Derived Ranges

The dti_test Function

The test script runs the dti function with a sine wave input. The script then plots the
input and output signals.

% dti_test

% cleanup

clear dti

% input signal

x_in = sin(2.*pi.*(0:0.001:2)).';

pause(10)

len = length(x_in);

y_out = zeros(1,len);

is_clipped_out = zeros(1,len);

for ii=1:len

 data = x_in(ii);

 % call to the dti function

 init_val = 0;

 gain_val = 1;

 upper_limit = 500;

 lower_limit = -500;

 % call to the design that does DTI

 [y_out(ii), is_clipped_out(ii)] = dti(data);

end

figure('Name', [mfilename, '_plot'])

subplot(2,1,1)

plot(1:len,x_in)

xlabel('Time')

ylabel('Amplitude')

title('Input Signal (Sin)')

subplot(2,1,2)

plot(1:len,y_out)

xlabel('Time')

ylabel('Amplitude')

title('Output Signal (DTI)')

16-13

16 Automated Fixed-Point Conversion Using Programmatic Workflow

disp('Test complete.')

Set Up the Fixed-Point Configuration Object

Create a fixed-point configuration object and configure the test file name.

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'dti_test';

Specify Design Ranges

Specify design range information for the dti function input parameter u_in.

fixptcfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)

Enable Plotting Using the Simulation Data Inspector

Select to run the test file to verify the generated fixed-point MATLAB code. Log inputs
and outputs for comparison plotting and select to use the Simulation Data Inspector to
plot the results.

fixptcfg.TestNumerics = true;

fixptcfg.LogIOForComparisonPlotting = true;

fixptcfg.PlotWithSimulationDataInspector = true;

Set Up the C Code Generation Configuration Object

Create a code configuration object to generate a C static library. Enable the code
generation report.

cfg = coder.config('lib');

cfg.GenerateReport = true;

Derive Ranges and Generate Fixed-Point Code

Use the codegen function to convert the floating-point MATLAB function, dti, to fixed-
point C code. Set the default word length for the fixed-point data types to 16.

fixptcfg.ComputeDerivedRanges = true;

fixptcfg.ComputeSimulationRanges = false;

fixptcfg.DefaultWordLength = 16;

% Derive ranges and generate fixed-point code

16-14

 Propose Fixed-Point Data Types Based on Derived Ranges

codegen -float2fixed fixptcfg -config cfg dti

codegen analyzes the floating-point code. Because you did not specify the input types
for the dti function, the conversion process infers types by simulating the test file.
The conversion process then derives ranges for variables in the algorithm. It uses these
derived ranges to propose fixed-point types for these variables. When the conversion is
complete, it generates a type proposal report.

View Derived Range Information

Click the link to the type proposal report for the dti function, dti_report.html.

The report opens in a web browser.

16-15

16 Automated Fixed-Point Conversion Using Programmatic Workflow

View Generated Fixed-Point MATLAB Code

codegen generates a fixed-point version of the dti function, dti_fxpt.m, and a
wrapper function that calls dti_fxpt. These files are generated in the codegen\dti
\fixpt folder in your local working folder.

function [y, clip_status] = dti_fixpt(u_in) %#codegen

% Discrete Time Integrator in MATLAB

%

% Forward Euler method, also known as Forward Rectangular, or left-hand

% approximation. The resulting expression for the output of the block at

% step 'n' is y(n) = y(n-1) + K * u(n-1)

%

fm = get_fimath();

init_val = fi(1, 0, 1, 0, fm);

gain_val = fi(1, 0, 1, 0, fm);

limit_upper = fi(500, 0, 9, 0, fm);

limit_lower = fi(-500, 1, 10, 0, fm);

% variable to hold state between consecutive calls to this block

persistent u_state;

if isempty(u_state)

 u_state = fi(init_val+fi(1, 0, 1, 0, fm), 1, 16, 6, fm);

end

% Compute Output

if (u_state > limit_upper)

 y = fi(limit_upper, 1, 16, 6, fm);

 clip_status = fi(-2, 1, 16, 13, fm);

elseif (u_state >= limit_upper)

 y = fi(limit_upper, 1, 16, 6, fm);

 clip_status = fi(-1, 1, 16, 13, fm);

elseif (u_state < limit_lower)

 y = fi(limit_lower, 1, 16, 6, fm);

 clip_status = fi(2, 1, 16, 13, fm);

elseif (u_state <= limit_lower)

 y = fi(limit_lower, 1, 16, 6, fm);

 clip_status = fi(1, 1, 16, 13, fm);

else

 y = fi(u_state, 1, 16, 6, fm);

 clip_status = fi(0, 1, 16, 13, fm);

end

16-16

 Propose Fixed-Point Data Types Based on Derived Ranges

% Update State

tprod = fi(gain_val * u_in, 1, 16, 14, fm);

u_state(:) = y + tprod;

end

function fm = get_fimath()

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode',...

 'FullPrecision', 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision',...

 'MaxSumWordLength', 128);

end

Compare Floating-Point and Fixed-Point Runs

Because you selected to log inputs and outputs for comparison plots and to use the
Simulation Data Inspector for these plots, the Simulation Data Inspector opens.

You can use the Simulation Data Inspector to view floating-point and fixed-point run
information and compare results. For example, to compare the floating-point and fixed-
point values for the output y, on the Compare tab, select y, and then click Compare
Runs.

The Simulation Data Inspector displays a plot of the baseline floating-point run against
the fixed-point run and the difference between them.

16-17

16 Automated Fixed-Point Conversion Using Programmatic Workflow

View Generated Fixed-Point C Code

To view the code generation report for the C code generation, click the View Report link
that follows the type proposal report.

16-18

 Propose Fixed-Point Data Types Based on Derived Ranges

The code generation report opens and displays the generated code for dti_fixpt.c.

See Also
coder.FixptConfig | codegen

Related Examples
• “Convert MATLAB Code to Fixed-Point C Code” on page 15-5
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 16-5

16-19

16 Automated Fixed-Point Conversion Using Programmatic Workflow

Detect Overflows

This example shows how to detect overflows at the command line. At the numerical
testing stage in the conversion process, the tool simulates the fixed-point code using
scaled doubles. It then reports which expressions in the generated code produce values
that would overflow the fixed-point data type.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer

In a local, writable folder, create a function, overflow.

function y = overflow(b,x,reset)

 if nargin<3, reset = true; end

 persistent z p

 if isempty(z) || reset

 p = 0;

 z = zeros(size(b));

 end

 [y,z,p] = fir_filter(b,x,z,p);

end

function [y,z,p] = fir_filter(b,x,z,p)

 y = zeros(size(x));

 nx = length(x);

 nb = length(b);

 for n = 1:nx

 p=p+1; if p>nb, p=1; end

 z(p) = x(n);

 acc = 0;

 k = p;

 for j=1:nb

 acc = acc + b(j)*z(k);

 k=k-1; if k<1, k=nb; end

 end

 y(n) = acc;

 end

end

16-20

 Detect Overflows

Create a test file, overflow_test.m to exercise the overflow algorithm.

function overflow_test

 % The filter coefficients were computed using the FIR1 function from

 % Signal Processing Toolbox.

 % b = fir1(11,0.25);

 b = [-0.004465461051254

 -0.004324228005260

 +0.012676739550326

 +0.074351188907780

 +0.172173206073645

 +0.249588554524763

 +0.249588554524763

 +0.172173206073645

 +0.074351188907780

 +0.012676739550326

 -0.004324228005260

 -0.004465461051254]';

 % Input signal

 nx = 256;

 t = linspace(0,10*pi,nx)';

 % Impulse

 x_impulse = zeros(nx,1); x_impulse(1) = 1;

 % Max Gain

 % The maximum gain of a filter will occur when the inputs line up with the

 % signs of the filter's impulse response.

 x_max_gain = sign(b)';

 x_max_gain = repmat(x_max_gain,ceil(nx/length(b)),1);

 x_max_gain = x_max_gain(1:nx);

 % Sums of sines

 f0=0.1; f1=2;

 x_sines = sin(2*pi*t*f0) + 0.1*sin(2*pi*t*f1);

 % Chirp

 f_chirp = 1/16; % Target frequency

 x_chirp = sin(pi*f_chirp*t.^2); % Linear chirp

 x = [x_impulse, x_max_gain, x_sines, x_chirp];

 titles = {'Impulse', 'Max gain', 'Sum of sines', 'Chirp'};

16-21

16 Automated Fixed-Point Conversion Using Programmatic Workflow

 y = zeros(size(x));

 for i=1:size(x,2)

 reset = true;

 y(:,i) = overflow(b,x(:,i),reset);

 end

 test_plot(1,titles,t,x,y)

end

function test_plot(fig,titles,t,x,y1)

 figure(fig)

 clf

 sub_plot = 1;

 font_size = 10;

 for i=1:size(x,2)

 subplot(4,1,sub_plot)

 sub_plot = sub_plot+1;

 plot(t,x(:,i),'c',t,y1(:,i),'k')

 axis('tight')

 xlabel('t','FontSize',font_size);

 title(titles{i},'FontSize',font_size);

 ax = gca;

 ax.FontSize = 10;

 end

 figure(gcf)

end

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is
overflow_test.

fixptcfg.TestBenchName = 'overflow_test';

Set the default word length to 16.

fixptcfg.DefaultWordLength = 16;

Enable overflow detection.

fixptcfg.TestNumerics = true;

fixptcfg.DetectFixptOverflows = true;

16-22

 Detect Overflows

Set the fimath Product mode and Sum mode to KeepLSB. These settings models the
behavior of integer operations in the C language.

fixptcfg.fimath = ...

['fimath(''RoundingMethod'',''Floor'',''OverflowAction'',' ...

'''Wrap'',''ProductMode'',''KeepLSB'',''SumMode'',''KeepLSB'')'];

Create a code generation configuration object to generate a standalone C static library.

cfg = coder.config('lib');

Convert the floating-point MATLAB function, overflow, to fixed-point C code. You do
not need to specify input types for the codegen command because it infers the types
from the test file.

codegen -float2fixed fixptcfg -config cfg overflow

The numerics testing phase reports an overflow.
Overflow error in expression 'acc + b(j)*z(k)'. Percentage of Current Range = 104%.

Determine if the addition or the multiplication in this expression overflowed. Set the
fimath ProductMode to FullPrecision so that the multiplication will not overflow,
and then run the codegen command again.

fixptcfg.fimath = ['fimath(''RoundingMethod'',''Floor'',''OverflowAction'',' ...

 '''Wrap'',''ProductMode'',''FullPrecision'',''SumMode'',''KeepLSB'')'];

codegen -float2fixed fixptcfg -config cfg overflow

The numerics testing phase still reports an overflow, indicating that it is the addition in
the expression that is overflowing.

16-23

16 Automated Fixed-Point Conversion Using Programmatic Workflow

Replace the exp Function with a Lookup Table

This example shows how to replace the exp function with a lookup table approximation
in the generated fixed-point code using the codegen function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB).

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/ .

You can use mex -setup to change the default compiler. See “Change Default
Compiler”.

Create Algorithm and Test Files

1 Create a MATLAB function, my_fcn.m, that calls the exp function.

function y = my_fcn(x)

 y = exp(x);

end

2 Create a test file, my_fcn_test.m, that uses my_fcn.m.

close all

x = linspace(-10,10,1e3);

for itr = 1e3:-1:1

 y(itr) = my_fcn(x(itr));

end

plot(x, y);

Configure Approximation

Create a function replacement configuration object to approximate the exp function,
using the default settings of linear interpolation and 1000 points in the lookup table.

q = coder.approximation('exp');

16-24

 Replace the exp Function with a Lookup Table

Set Up Configuration Object

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable
numerics testing. Associate the function replacement configuration object with the fixed-
point configuration object.

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'my_fcn_test';

fixptcfg.TestNumerics = true;

fixptcfg.DefaultWordLength = 16;

fixptcfg.addApproximation(q);

Convert to Fixed Point

Generate fixed-point MATLAB code.

codegen -float2fixed fixptcfg my_fcn

View Generated Fixed-Point Code

To view the generated fixed-point code, click the link to my_fcn_fixpt.

The generated code contains a lookup table approximation, replacement_exp, for the
exp function. The fixed-point conversion process infers the ranges for the function and
then uses an interpolated lookup table to replace the function. By default, the lookup
table uses linear interpolation, 1000 points, and the minimum and maximum values
detected by running the test file.

The generated fixed-point function, my_fcn_fixpt, calls this approximation instead of
calling exp.

function y = my_fcn_fixpt(x)

 fm = get_fimath();

 y = fi(replacement_exp(x), 0, 16, 1, fm);

end

You can now test the generated fixed-point code and compare the results against the
original MATLAB function. If the behavior of the generated fixed-point code does not
match the behavior of the original code closely enough, modify the interpolation method
or number of points used in the lookup table and then regenerate code.

16-25

16 Automated Fixed-Point Conversion Using Programmatic Workflow

Replace a Custom Function with a Lookup Table

This example shows how to replace a custom function with a lookup table approximation
function using the codegen function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB)

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/

You can use mex -setup to change the default compiler. See “Change Default
Compiler”.

Create a MATLAB function, custom_fcn.m. This is the function that you want to
replace.

function y = custom_fcn(x)

 y = 1./(1+exp(-x));

end

Create a wrapper function that calls custom_fcn.m.

function y = call_custom_fcn(x)

 y = custom_fcn(x);

end

Create a test file, custom_test.m, that uses call_custom_fcn.m.

close all

x = linspace(-10,10,1e3);

for itr = 1e3:-1:1

 y(itr) = call_custom_fcn(x(itr));

end

plot(x, y);

16-26

 Replace a Custom Function with a Lookup Table

Create a function replacement configuration object to approximate custom_fcn. Specify
the function handle of the custom function and set the number of points to use in the
lookup table to 50.

q = coder.approximation('Function','custom_fcn',...

 'CandidateFunction',@custom_fcn, 'NumberOfPoints',50);

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable
numerics testing. Associate the function replacement configuration object with the fixed-
point configuration object.

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'custom_test';

fixptcfg.TestNumerics = true;

fixptcfg.addApproximation(q);

Generate fixed-point MATLAB code.

codegen -float2fixed fixptcfg call_custom_fcn

codegen generates fixed-point MATLAB code in call_custom_fcn_fixpt.m.

To view the generated fixed-point code, click the link to call_custom_fcn_fixpt.

The generated code contains a lookup table approximation, replacement_custom_fcn,
for the custom_fcn function. The fixed-point conversion process infers the ranges for
the function and then uses an interpolated lookup table to replace the function. The
lookup table uses 50 points as specified. By default, it uses linear interpolation and the
minimum and maximum values detected by running the test file.

The generated fixed-point function, call_custom_fcn_fixpt, calls this approximation
instead of calling custom_fcn.

function y = call_custom_fcn_fixpt(x)

 fm = get_fimath();

 y = fi(replacement_custom_fcn(x), 0, 14, 14, fm);

end

You can now test the generated fixed-point code and compare the results against the
original MATLAB function. If the behavior of the generated fixed-point code does not
match the behavior of the original code closely enough, modify the interpolation method
or number of points used in the lookup table and then regenerate code.

16-27

16 Automated Fixed-Point Conversion Using Programmatic Workflow

Enable Plotting Using the Simulation Data Inspector

You can use the Simulation Data Inspector to inspect and compare floating-point and
fixed-point input and output data logged using the codegen function. At the MATLAB
command line:

1 Create a fixed-point configuration object and configure the test file name.

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'dti_test';

2 Select to run the test file to verify the generated fixed-point MATLAB code. Log
inputs and outputs for comparison plotting and select to use the Simulation Data
Inspector to plot the results.

fixptcfg.TestNumerics = true;

fixptcfg.LogIOForComparisonPlotting = true;

fixptcfg.PlotWithSimulationDataInspector = true;

3 Generate fixed-point MATLAB code using codegen.

codegen -float2fixed fixptcfg -config cfg dti

For an example, see “Propose Fixed-Point Data Types Based on Derived Ranges” on page
16-11.

16-28

 Visualize Differences Between Floating-Point and Fixed-Point Results

Visualize Differences Between Floating-Point and Fixed-Point
Results

This example shows how to configure the codegen function to use a custom plot function
to compare the behavior of the generated fixed-point code against the behavior of the
original floating-point MATLAB code.

By default, when the LogIOForComparisonPlotting option is enabled, the conversion
process uses a time series based plotting function to show the floating-point and fixed-
point results and the difference between them. However, during fixed-point conversion
you might want to visualize the numerical differences in a view that is more suitable
for your application domain. This example shows how to customize plotting and produce
scatter plots at the test numerics step of the fixed-point conversion.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB)

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/

You can use mex -setup to change the default compiler. See “Change Default
Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\custom_plot.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the myFilter.m, myFilterTest.m, plotDiff.m, and filterData.mat files
to your local working folder.

16-29

16 Automated Fixed-Point Conversion Using Programmatic Workflow

Type Name Description

Function code myFilter.m Entry-point MATLAB function
Test file myFilterTest.m MATLAB script that tests

myFilter.m

Plotting function plotDiff.m Custom plot function
MAT-fiile filterData.mat Data to filter.

The myFilter Function

function [y, ho] = myFilter(in)

persistent b h;

if isempty(b)

 b = complex(zeros(1,16));

 h = complex(zeros(1,16));

 h(8) = 1;

end

b = [in, b(1:end-1)];

y = b*h.';

errf = 1-sqrt(real(y)*real(y) + imag(y)*imag(y));

update = 0.001*conj(b)*y*errf;

h = h + update;

h(8) = 1;

ho = h;

end

The myFilterTest File

% load data

data = load('filterData.mat');

d = data.symbols;

for idx = 1:4000

 y = myFilter(d(idx));

end

16-30

 Visualize Differences Between Floating-Point and Fixed-Point Results

The plotDiff Function

% varInfo - structure with information about the variable. It has the following fields

% i) name

% ii) functionName

% floatVals - cell array of logged original values for the 'varInfo.name' variable

% fixedVals - cell array of logged values for the 'varInfo.name' variable after

% Fixed-Point conversion.

function plotDiff(varInfo, floatVals, fixedVals)

 varName = varInfo.name;

 fcnName = varInfo.functionName;

 % convert from cell to matrix

 floatVals = cell2mat(floatVals);

 fixedVals = cell2mat(fixedVals);

 % escape the '_'s because plot titles treat these as subscripts

 escapedVarName = regexprep(varName,'_','_');

 escapedFcnName = regexprep(fcnName,'_','_');

 % flatten the values

 flatFloatVals = floatVals(1:end);

 flatFixedVals = fixedVals(1:end);

 % build Titles

 floatTitle = [escapedFcnName ' > ' 'float : ' escapedVarName];

 fixedTitle = [escapedFcnName ' > ' 'fixed : ' escapedVarName];

 data = load('filterData.mat');

 switch varName

 case 'y'

 x_vec = data.symbols;

 figure('Name', 'Comparison plot', 'NumberTitle', 'off');

 % plot floating point values

 y_vec = flatFloatVals;

 subplot(1, 2, 1);

 plotScatter(x_vec, y_vec, 100, floatTitle);

 % plot fixed point values

 y_vec = flatFixedVals;

 subplot(1, 2, 2);

16-31

16 Automated Fixed-Point Conversion Using Programmatic Workflow

 plotScatter(x_vec, y_vec, 100, fixedTitle);

 otherwise

 % Plot only output 'y' for this example, skip the rest

 end

end

function plotScatter(x_vec, y_vec, n, figTitle)

 % plot the last n samples

 x_plot = x_vec(end-n+1:end);

 y_plot = y_vec(end-n+1:end);

 hold on

 scatter(real(x_plot),imag(x_plot), 'bo');

 hold on

 scatter(real(y_plot),imag(y_plot), 'rx');

 title(figTitle);

end

Set Up Configuration Object

1 Create a coder.FixptConfig object.

fxptcfg = coder.config('fixpt');

2 Specify the test file name and custom plot function name. Enable logging and
numerics testing.

fxptcfg.TestBenchName = 'myFilterTest';

fxptcfg.PlotFunction = 'plotDiff';

fxptcfg.TestNumerics = true;

fxptcfg. LogIOForComparisonPlotting = true;

fxptcfg.DefaultWordLength = 16;

Convert to Fixed Point

Convert the floating-point MATLAB function, myFilter, to fixed-point MATLAB code.
You do not need to specify input types for the codegen command because it infers the
types from the test file.

codegen -args {complex(0, 0)} -float2fixed fxptcfg myFilter

16-32

 Visualize Differences Between Floating-Point and Fixed-Point Results

The conversion process generates fixed-point code using a default word length of 16 and
then runs a fixed-point simulation by running the myFilterTest.m function and calling
the fixed-point version of myFilter.m.

Because you selected to log inputs and outputs for comparison plots and to use the
custom plotting function, plotDiff.m, for these plots, the conversion process uses this
function to generate the comparison plot.

The plot shows that the fixed-point results do not closely match the floating-point results.

Increase the word length to 24 and then convert to fixed point again.

fxptcfg.DefaultWordLength = 24;

codegen -args {complex(0, 0)} -float2fixed fxptcfg myFilter

16-33

16 Automated Fixed-Point Conversion Using Programmatic Workflow

The increased word length improved the results. This time, the plot shows that the fixed-
point results match the floating-point results.

16-34

17

Single-Precision Conversion

• “Generate Single-Precision C Code at the Command Line” on page 17-2
• “Generate Single-Precision C Code Using the MATLAB Coder App” on page 17-8
• “Generate Single-Precision MATLAB Code” on page 17-14
• “Choose a Single-Precision Conversion Workflow” on page 17-23
• “Single-Precision Conversion Best Practices” on page 17-24
• “Warnings from Conversion to Single-Precision C/C++ Code” on page 17-28
• “Combining Integers and Double-Precision Numbers” on page 17-32
• “MATLAB Language Features Supported for Single-Precision Conversion” on page

17-33

17 Single-Precision Conversion

Generate Single-Precision C Code at the Command Line

In this section...

“Prerequisites” on page 17-2
“Create a Folder and Copy Relevant Files” on page 17-2
“Determine the Type of the Input Argument” on page 17-4
“Generate and Run Single-Precision MEX to Verify Numerical Behavior” on page
17-5
“Generate Single-Precision C Code” on page 17-5
“View the Generated Single-Precision C Code” on page 17-6
“View Potential Data Type Issues” on page 17-6

This example shows how to generate single-precision C code from double-precision
MATLAB code at the command line.

Prerequisites

To complete this example, install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB).

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/.

To change the default compiler, you can use mex -setup. See “Change Default
Compiler”.

Create a Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

17-2

 Generate Single-Precision C Code at the Command Line

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to
your local working folder.

Type Name Description

Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test.m MATLAB script that tests

ex_2ndOrder_filter.m

The ex_2ndOrder_filter Function

function y = ex_2ndOrder_filter(x) %#codegen

 persistent z

 if isempty(z)

 z = zeros(2,1);

 end

 % [b,a] = butter(2, 0.25)

 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];

 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));

 for i = 1:length(x)

 y(i) = b(1)*x(i) + z(1);

 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);

 z(2) = b(3)*x(i) - a(3) * y(i);

 end

end

The ex_2ndOrder_filter_test Script

It is a best practice to create a separate test script for preprocessing and
postprocessing such as:

• Setting up input values.
• Calling the function under test.
• Outputting the test results.

17-3

17 Single-Precision Conversion

To cover the full intended operating range of the system, the test script runs the
ex_2ndOrder_filter function with three input signals: chirp, step, and impulse.
The script then plots the outputs.

% ex_2ndOrder_filter_test

%

% Define representative inputs

N = 256; % Number of points

t = linspace(0,1,N); % Time vector from 0 to 1 second

f1 = N/2; % Target frequency of chirp set to Nyquist

x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second

x_step = ones(1,N); % Step

x_impulse = zeros(1,N); % Impulse

x_impulse(1) = 1;

% Run the function under test

x = [x_chirp;x_step;x_impulse];

y = zeros(size(x));

for i = 1:size(x,1)

 y(i,:) = ex_2ndOrder_filter(x(i,:));

end

% Plot the results

titles = {'Chirp','Step','Impulse'}

clf

for i = 1:size(x,1)

 subplot(size(x,1),1,i)

 plot(t,x(i,:),t,y(i,:))

 title(titles{i})

 legend('Input','Output')

end

xlabel('Time (s)')

figure(gcf)

disp('Test complete.')

Determine the Type of the Input Argument

To determine the type of the input argument x, use coder.getArgTypes to run the test
file ex_2ndOrder_filter_test.m

types = coder.getArgTypes('ex_2ndOrder_filter_test', 'ex_2ndOrder_filter');

17-4

 Generate Single-Precision C Code at the Command Line

The test file runs and displays the outputs of the filter for each of the input signals.
coder.getArgTypes determines that the input type of x is 1x256 double.

Generate and Run Single-Precision MEX to Verify Numerical Behavior

1 Before you generate single-precision C code, generate a single-precision MEX
function that you can use to verify the behavior of the generated single-precision
code. To indicate that you want the single-precision MEX code, use the -singleC
option.

codegen -singleC ex_2ndOrder_filter -args types -report

During MEX generation, the code generator detects single-precision conversion
issues. Before you generate C/C++ code, fix these issues. This example does not have
single-precision conversion issues.

The generated MEX accepts single-precision and double-precision input. You can
use the same test file to run the double-precision MATLAB function and the single-
precision MEX function. You do not have to modify the test file to call the single-
precision MEX function.

2 Run the test file ex_2ndOrder_filter_test.m. This file calls the double-precision
MATLAB function ex_2ndOrder_filter.m.

ex_2ndOrder_filter_test

3 The test file runs and displays the outputs of the filter for each of the input signals.
4 Run the test file ex_2ndOrder_filter_test, replacing calls to the double-

precision ex_2ndOrder_filter function with calls to the single-precision
ex_2ndOrder_filter_mex function.

coder.runTest('ex_2ndOrder_filter_test', 'ex_2ndOrder_filter')

5 The test file runs and displays the outputs of the filter for each of the input signals.
The single-precision MEX function produces the same results as the double-precision
MATLAB function.

Generate Single-Precision C Code

1 Create a code configuration object for generation of a C static library, dynamic
library, or executable. To avoid use of double-precision implementations of math
functions, specify 'C99' for the standard math library.

17-5

17 Single-Precision Conversion

cfg = coder.config('lib');

cfg.TargetLangStandard = 'C99 (ISO)'

2 To generate single-precision C code, call codegen with the -singleC option. Enable
generation of the code generation report.

codegen -config cfg -singleC ex_2ndOrder_filter -args {types{1}} -report

View the Generated Single-Precision C Code

To view the code generation report for the C code generation, click the View Report
link.

The code generation report displays the generated code for ex_2ndOrder_filter.c.

• Double-precision variables have type float in the C code.
• The index i is an integer.

View Potential Data Type Issues

When you generate single-precision code, codegen enables highlighting of potential data
type issues in the code generation report. If codegen cannot remove a double-precision
operation, the report highlights the MATLAB expression that results in the operation.

Click the MATLAB code tab. Under Highlight, the report shows that no double-
precision operations remain.

See Also
codegen | coder.config | coder.getArgTypes | coder.runTest

Related Examples
• “Generate Single-Precision C Code Using the MATLAB Coder App” on page

17-8
• “Generate Single-Precision MATLAB Code” on page 17-14

More About
• “Single-Precision Conversion Best Practices” on page 17-24

17-6

 Generate Single-Precision C Code at the Command Line

• “Warnings from Conversion to Single-Precision C/C++ Code” on page 17-28

17-7

17 Single-Precision Conversion

Generate Single-Precision C Code Using the MATLAB Coder App

In this section...

“Prerequisites” on page 17-8
“Create a Folder and Copy Relevant Files” on page 17-8
“Open the MATLAB Coder App” on page 17-10
“Enable Single-Precision Conversion” on page 17-11
“Select the Source Files” on page 17-11
“Define Input Types” on page 17-12
“Check for Run-Time Issues” on page 17-12
“Generate Single-Precision C Code” on page 17-12
“View the Generated C Code” on page 17-13
“View Potential Data Type Issues” on page 17-13

This example shows how to generate single-precision C code from double-precision
MATLAB code by using the MATLAB Coder app.

Prerequisites

To complete this example, install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB).

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/.

To change the default compiler, you can use mex -setup. See “Change Default
Compiler”.

Create a Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\ex_2ndOrder_filter.

17-8

 Generate Single-Precision C Code Using the MATLAB Coder App

2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB
command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to
your local working folder.

Type Name Description

Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test.m MATLAB script that tests

ex_2ndOrder_filter.m

The ex_2ndOrder_filter Function

function y = ex_2ndOrder_filter(x) %#codegen

 persistent z

 if isempty(z)

 z = zeros(2,1);

 end

 % [b,a] = butter(2, 0.25)

 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];

 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));

 for i = 1:length(x)

 y(i) = b(1)*x(i) + z(1);

 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);

 z(2) = b(3)*x(i) - a(3) * y(i);

 end

end

The ex_2ndOrder_filter_test Script

It is a best practice to create a separate test script for preprocessing and
postprocessing such as:

• Setting up input values.
• Calling the function under test.
• Outputting the test results.

17-9

17 Single-Precision Conversion

To cover the full intended operating range of the system, the test script runs the
ex_2ndOrder_filter function with three input signals: chirp, step, and impulse.
The script then plots the outputs.

% ex_2ndOrder_filter_test

%

% Define representative inputs

N = 256; % Number of points

t = linspace(0,1,N); % Time vector from 0 to 1 second

f1 = N/2; % Target frequency of chirp set to Nyquist

x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second

x_step = ones(1,N); % Step

x_impulse = zeros(1,N); % Impulse

x_impulse(1) = 1;

% Run the function under test

x = [x_chirp;x_step;x_impulse];

y = zeros(size(x));

for i = 1:size(x,1)

 y(i,:) = ex_2ndOrder_filter(x(i,:));

end

% Plot the results

titles = {'Chirp','Step','Impulse'}

clf

for i = 1:size(x,1)

 subplot(size(x,1),1,i)

 plot(t,x(i,:),t,y(i,:))

 title(titles{i})

 legend('Input','Output')

end

xlabel('Time (s)')

figure(gcf)

disp('Test complete.')

Open the MATLAB Coder App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

17-10

 Generate Single-Precision C Code Using the MATLAB Coder App

Enable Single-Precision Conversion

Set Numeric Conversion to Convert to single precision.

Select the Source Files

1 To add the entry-point function ex_2ndOrder_filter to the project, browse
to the file ex_2ndOrder_filter.m, and then click Open. By default, the app
saves information and settings for this project in the current folder in a file named
ex_2ndOrder_filter.prj.

2 Click Next to go to the Define Input Types step.

17-11

17 Single-Precision Conversion

The app screens ex_2ndOrder_filter.m for code violations and code generation
readiness issues. The app does not find issues in ex_2ndOrder_filter.m.

Define Input Types

1 On the Define Input Types page, to add ex_2ndOrder_filter_test as a test
file, browse to ex_2ndOrder_filter_test. Click Open.

2 Click Autodefine Input Types.

The test file runs and displays the outputs of the filter for each of the input signals.
The app determines that the input type of x is double(1x256).

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

To detect and fix single-precision conversion issues, perform the Check for Run-Time
Issues step.

1 On the Check for Run-Time Issues page, the app populates the test file field with
ex_2ndOrder_filter_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app generates a single-precision MEX function from ex_2ndOrder_filter.
It runs the test file ex_2ndOrder_filter_test replacing calls to
ex_2ndOrder_filter with calls to the generated MEX function. If the app finds
issues, it provides warning and error messages. Click a message to highlight the
problematic code in a window where you can edit the code. In this example, the app
does not detect issues.

3 Click Next to go to the Generate Code page.

Generate Single-Precision C Code

1 In the Generate dialog box, set Build type to Static Library.
2 Set Language to C.
3 To avoid use of double-precision standard math functions, set the standard

math library to C99 (ISO). Click More Settings. Then, click Custom Code. Set
Standard math library to C99 (ISO).

17-12

 Generate Single-Precision C Code Using the MATLAB Coder App

4 For other settings, use the default values.
5 To generate the code, click Generate.

MATLAB Coder builds the project and generates a C static library and supporting
files in the default subfolder, codegen/lib/ex_2ndOrder_filter.

View the Generated C Code

The app displays the generated code for ex_2ndOrder_filter.c.

• Double-precision variables have type float in the C code.
• The index i is an integer.

View Potential Data Type Issues

When you generate single-precision code, the app enables highlighting of potential data
type issues in the code generation report. If the app cannot remove a double-precision
operation, the report highlights the MATLAB expression that results in the operation.

To open the code generation report, click the View Report link. Click the MATLAB
code tab. Under Highlight, the report shows that no double-precision operations
remain.

Related Examples
• “Generate Single-Precision C Code at the Command Line” on page 17-2

More About
• “Single-Precision Conversion Best Practices” on page 17-24
• “Warnings from Conversion to Single-Precision C/C++ Code” on page 17-28

17-13

17 Single-Precision Conversion

Generate Single-Precision MATLAB Code

This example shows how to generate single-precision MATLAB code from double-
precision MATLAB code. This example shows the single-precision conversion workflow
that you use when you want to see single-precision MATLAB code or use verification
options. Optionally, you can also generate single-precision C/C++ code.

Prerequisites

To complete this example, install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB).

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/.

To change the default compiler, you can use mex -setup. See “Change Default
Compiler”.

Create a Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to
your local working folder.

Type Name Description

Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test.m MATLAB script that tests

ex_2ndOrder_filter.m

17-14

 Generate Single-Precision MATLAB Code

The ex_2ndOrder_filter Function

function y = ex_2ndOrder_filter(x) %#codegen

 persistent z

 if isempty(z)

 z = zeros(2,1);

 end

 % [b,a] = butter(2, 0.25)

 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];

 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));

 for i = 1:length(x)

 y(i) = b(1)*x(i) + z(1);

 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);

 z(2) = b(3)*x(i) - a(3) * y(i);

 end

end

The ex_2ndOrder_filter_test Script

It is a best practice to create a separate test script for preprocessing and
postprocessing such as:

• Setting up input values.
• Calling the function under test.
• Outputting the test results.

To cover the full intended operating range of the system, the test script runs the
ex_2ndOrder_filter function with three input signals: chirp, step, and impulse.
The script then plots the outputs.

% ex_2ndOrder_filter_test

%

% Define representative inputs

N = 256; % Number of points

t = linspace(0,1,N); % Time vector from 0 to 1 second

f1 = N/2; % Target frequency of chirp set to Nyquist

x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second

x_step = ones(1,N); % Step

x_impulse = zeros(1,N); % Impulse

17-15

17 Single-Precision Conversion

x_impulse(1) = 1;

% Run the function under test

x = [x_chirp;x_step;x_impulse];

y = zeros(size(x));

for i = 1:size(x,1)

 y(i,:) = ex_2ndOrder_filter(x(i,:));

end

% Plot the results

titles = {'Chirp','Step','Impulse'}

clf

for i = 1:size(x,1)

 subplot(size(x,1),1,i)

 plot(t,x(i,:),t,y(i,:))

 title(titles{i})

 legend('Input','Output')

end

xlabel('Time (s)')

figure(gcf)

disp('Test complete.')

Set Up the Single-Precision Configuration Object

Create a single-precision configuration object. Specify the test file name. Verify the
single-precision code using the test file. Plot the error between the double-precision code
and single-precision code. Use the default values for the other properties.

scfg = coder.config('single');

scfg.TestBenchName = 'ex_2ndOrder_filter_test';

scfg.TestNumerics = true;

scfg.LogIOForComparisonPlotting = true;

Generate Single-Precision MATLAB Code

To convert the double-precision MATLAB function, ex_2ndOrder_filter, to single-
precision MATLAB code, use the codegen function with the -double2single option.

codegen -double2single scfg ex_2ndOrder_filter

codegen analyzes the double-precision code. The conversion process infers
types by running the test file because you did not specify the input types for the

17-16

 Generate Single-Precision MATLAB Code

ex_2ndOrder_filter function. The conversion process selects single-precision types for
the double-precision variables. It selects int32 for index variables. When the conversion
is complete, codegen generates a type proposal report.

View the Type Proposal Report

To see the types that the conversion process selected for the variables, open
the type proposal report for the ex_2ndOrder_filter function. Click the link
ex_2ndOrder_filter_report.html.

The report opens in a web browser. The conversion process converted:

• Double-precision variables to single.
• The index i to int32. The conversion process casts index and dimension variables to

int32.

17-17

17 Single-Precision Conversion

View Generated Single-Precision MATLAB Code

To view the report for the generation of the single-precision MATLAB code, in the
Command Window:

1 Scroll to the Generate Single-Precision Code step. Click the View report
link.

2 On the MATLAB code tab, under Functions, click
ex_2ndOrder_filter_single.

17-18

 Generate Single-Precision MATLAB Code

The code generation report displays the single-precision MATLAB code for
ex_2ndOrder_filter.

View Potential Data Type Issues

When you generate single-precision code, codegen enables highlighting of potential data
type issues in code generation reports. If codegen cannot remove a double-precision
operation, the report highlights the MATLAB expression that results in the operation.
Click the MATLAB code tab. Under Highlight, the report shows that no double-
precision operations remain.

Compare the Double-Precision and Single-Precision Variables

You can see the comparison plots for the input x and output y because you selected to log
inputs and outputs for comparison plots .

17-19

17 Single-Precision Conversion

17-20

 Generate Single-Precision MATLAB Code

Optionally Generate Single-Precision C Code

If you also want to generate single-precision C code, create a code configuration object for
C code generation. Use this configuration object with the -config option of the codegen
function. For example:

17-21

17 Single-Precision Conversion

1 Create a code configuration object for generation of a C static library. Specify 'C99'
for the standard math library.

cfg = coder.config('lib');

cfg.TargetLangStandard = 'C99 (ISO)';

2 Generate the C code. Enable generation of the code generation report.

codegen -double2single scfg -config cfg ex_2ndOrder_filter -report

3 To view the code generation report for the C code generation, click the View Report
link.

The code generation report displays the generated code for
ex_2ndOrder_filter.c.

• Double-precision variables have type float in the C code.
• The index i is an integer.

When you generate single-precision code, codegen enables highlighting of potential
data type issues in the code generation report. If codegen cannot remove a double-
precision operation, the report highlights the MATLAB expression that results in the
operation.

Click the MATLAB code tab. Under Highlight, the report shows that no double-
precision operations remain.

See Also
coder.SingleConfig | codegen | coder.config

Related Examples
• “Generate Single-Precision C Code Using the MATLAB Coder App” on page 17-8
• “Generate Single-Precision C Code at the Command Line” on page 17-2

More About
• “Single-Precision Conversion Best Practices” on page 17-24
• “Warnings from Conversion to Single-Precision C/C++ Code” on page 17-28

17-22

 Choose a Single-Precision Conversion Workflow

Choose a Single-Precision Conversion Workflow

The information in the following table helps you to decide which single-precision
workflow to use.

Goal Use

You want to generate single-precision C/
C++ code in the most direct way using the
codegen function.

codegen with -singleC option. See
“Generate Single-Precision C Code at the
Command Line” on page 17-2.

You want to generate single-precision C/
C++ code in the most direct way using the
MATLAB Coder app.

The MATLAB Coder app with Numeric
Conversion set to Convert to single
precision. See “Generate Single-
Precision C Code Using the MATLAB
Coder App” on page 17-8.

You want to generate only single-precision
MATLAB code. You want to see the single-
precision MATLAB code or use verification
options.

codegen with the -double2single option
and a coder.SingleConfig object. See
“Generate Single-Precision MATLAB Code”
on page 17-14.

You want to generate single-precision
MATLAB code, and then generate single-
precision C/C++ code from the single-
precision MATLAB code.

codegen with the -double2single
option and a coder.SingleConfig object.
Also, use the -config object with a code
configuration object for the output type
that you want. See “Generate Single-
Precision MATLAB Code” on page 17-14.

17-23

17 Single-Precision Conversion

Single-Precision Conversion Best Practices

In this section...

“Use Integers for Index Variables” on page 17-24
“Limit Use of assert Statements” on page 17-24
“Initialize MATLAB Class Properties in Constructor” on page 17-24
“Provide a Test File That Calls Your MATLAB Function” on page 17-24
“Prepare Your Code for Code Generation” on page 17-25
“Verify Double-Precision Code Before Single-Precision Conversion” on page 17-25
“Best Practices for Generation of Single-Precision C/C++ Code” on page 17-25
“Best Practices for Generation of Single-Precision MATLAB Code” on page 17-26

Use Integers for Index Variables

In MATLAB code that you want to convert to single precision, it is a best practice
to use integers for index variables. However, if the code does not use integers for
index variables, when possible single-precision conversion using codegen with -
double2single tries to detect the index variables and select int32 types for them.

Limit Use of assert Statements

• Do not use assert statements to define the properties of input arguments.
• Do not use assert statements to test the type of a variable. For example, do not use

assert(isa(a, 'double'))

Initialize MATLAB Class Properties in Constructor

Do not initialize MATLAB class properties in the properties block. Instead, use the
constructor to initialize the class properties.

Provide a Test File That Calls Your MATLAB Function

Separate your core algorithm from other code that you use to test and verify the results.
Create a test file that calls your double-precision MATLAB algorithm. You can use the
test file to:

17-24

 Single-Precision Conversion Best Practices

• Automatically define properties of the top-level function inputs.
• Verify that the double-precision algorithm behaves as you expect. The double-

precision behavior is the baseline against which you compare the behavior of the
single-precision versions of your algorithm.

• Compare the behavior of the single-precision version of your algorithm to the double-
precision baseline.

For best results, the test file must exercise the algorithm over its full operating range.

Prepare Your Code for Code Generation

MATLAB code that you want to convert to single precision must comply with code
generation requirements. See “MATLAB Programming for Code Generation”.

To help you identify unsupported functions or constructs in your MATLAB code, add
the %#codegen pragma to the top of your MATLAB file. When you edit your code in the
MATLAB editor, the MATLAB Code Analyzer flags functions and constructs that are
not supported for code generation. See “Check Code with the Code Analyzer” on page
19-6. When you use the MATLAB Coder app, the app screens your code for code
generation readiness. At the function line, you can use the Code Generation Readiness
Tool. See “Check Code by Using the Code Generation Readiness Tool” on page 19-8.

Verify Double-Precision Code Before Single-Precision Conversion

Before you begin the single-precision conversion process, verify that you can successfully
generate code from your double-precision MATLAB code. Generate and run a MEX
version of your double-precision MATLAB code so that you can:

• Detect and fix compilation issues.
• Verify that the generated single-precision code behaves the same as the double-

precision MATLAB code.

See “Why Test MEX Functions in MATLAB?” on page 20-2.

Best Practices for Generation of Single-Precision C/C++ Code

When you generate single-precision C/C++ code by using the MATLAB Coder app or
codegen with the -singleC option, follow these best practices:

17-25

17 Single-Precision Conversion

Set the Standard Math Library to C99

When you generate C/C++ libraries or executables, by default, the code generator uses
the C89 /C90 (ANSI) standard math library. When you generate single-precision C/C+
+ code using this library, the code generator warns you if a function in this library uses
double precision. To avoid this warning, set the standard math library to C99 (ISO). See
“Warnings from Conversion to Single-Precision C/C++ Code” on page 17-28.

Cast Large Double Constant to Integer

For a constant greater than 2^24, in your original double-precision MATLAB function,
cast the constant to an integer type that is large enough for the constant value. For
example:

a = int32(2^24 + 1);

Generate and Run Single-Precision MEX Before Generating Single-Precision C/C++ Code

Before you generate single-precision C code, generate and run a single-precision MEX
version of your MATLAB code. When you follow this practice, you can detect and fix
compiler issues. You can verify that the single-precision MEX function has the same
functionality as the MATLAB code.

If you use codegen with -singleC:

1 Generate the single-precision MEX.
2 Call coder.runTest to run your test file, replacing calls to the double-precision

MATLAB code with calls to the single-precision MEX code.

If you use the MATLAB Coder app, perform the Check for Run-Time Issues step with
single-precision conversion enabled.

Best Practices for Generation of Single-Precision MATLAB Code

When you use codegen with the -double2single option to generate single-precision
MATLAB code, follow these best practices:

Use the -args Option to Specify Input Properties

When you generate single-precision MATLAB code, if you specify a test file, you do
not have to specify argument properties with the -args option. In this case, the code

17-26

 Single-Precision Conversion Best Practices

generator runs the test file to determine the properties of the input types. However,
running the test file can slow the code generation. It is a best practice to determine the
input properties one time with coder.getArgTypes. Then, pass the properties to the -
args option. For example:

types = coder.getArgTypes('myfun_test', 'myfun');

scfg = coder.config('single');

codegen -double2single scfg -args types myfun -report

When you repeat the code generation in the same MATLAB session, this practice saves
you time.

Test Numerics and Log I/O Data

When you use the codegen function with the -double2single option to generate
single-precision MATLAB code, enable numerics testing and I/O data logging for
comparison plots. To use numerics testing, you must provide a test file that calls
your MATLAB function. To enable numerics testing and I/O data logging, create
a coder.SingleConfig object. Set the TestBenchName, TestNumerics, and
LogIOForComparisonPlotting properties. For example:

scfg = coder.config('single');

scfg.TestBenchName = 'mytest';

scfg.TestNumerics = true;

scfg.LogIOForComparisonPlotting = true;

More About
• “Warnings from Conversion to Single-Precision C/C++ Code” on page 17-28

17-27

17 Single-Precision Conversion

Warnings from Conversion to Single-Precision C/C++ Code

When you generate single-precision C/C++ code by using the MATLAB Coder app or
codegen with the -singleC option, you can receive the following warnings.

Function Uses Double-Precision in the C89/C90 Standard

If the standard math library is C89/C90, the conversion process warns you when a
function uses double-precision code in the C89/C90 standard.

Consider the function mysine.

function c = mysine(a)

c = sin(a);

end

Generate single-precision code for mysine.

x = -pi:0.01:pi;

codegen -singleC mysine -args {x} -config:lib -report

codegen warns that sin uses double-precision in the C89/C90 (ANSI) standard.

Warning: The function sin uses double-precision in the C89/C90 (ANSI) standard. For single-precision

code, consider using the C99 (ISO) standard or use your own function.

To open the code generation report, click the View Report link.

To see that double-precision operations remain in the converted code, click the MATLAB
code tab. Under Highlight, select the Double-precision operations check box. Under
Functions, click mysine.

In the code pane, the report highlights the sin call.

17-28

 Warnings from Conversion to Single-Precision C/C++ Code

To address this warning, specify use of the C99 (ISO) standard math library.

• At the command line:

cfg = coder.config('lib');

cfg.TargetLangStandard = 'C99 (ISO)'

• In the app, in the project build settings, on the Custom Code tab, set Standard
math library to C99 (ISO).

Built-In Function Is Implemented in Double-Precision

Some built-in MATLAB functions are implemented using double-precision operations.
The conversion process warns that the code generated for these functions contains
double-precision operations.

Consider the function geterf that calls the built-in function erf.

function y = geterf(x)

y = erf(x);

end

Generate single-precision code forgeterf.

codegen -singleC -config:lib -args {1} geterf -report

codegen warns that erf is implemented in double precision.

17-29

17 Single-Precision Conversion

Warning: The builtin function erf is implemented in double-precision. Code generated for this

function will contain doubles.

To open the code generation report, click the View Report link.

To see that double-precision operations remain in the converted code, click the MATLAB
code tab. Under Highlight, select the Double-precision operations check box. Under
Functions, click geterf.

In the code pane, the report highlights the erf call.

To address this warning, rewrite your code so that it does not use the function that is
implemented in double precision.

Built-In Function Returns Double-Precision

If a built-in MATLAB function returns a double-precision output, the conversion process
generates a warning.

Consider the function mysum that calls the built-in function sum.

function y = mysum(x)

y = sum(int32(x));

end

Generate single-precision code formysum.

17-30

 Warnings from Conversion to Single-Precision C/C++ Code

A = 1:10;

codegen -singleC -config:lib -args {A} mysum -report

codegen warns that mysum is implemented in double precision.
Warning: The output of builtin function sum is double-precision and has been cast to

single-precision. The code generated for the builtin function may still contain doubles.

To open the code generation report, click the View Report link.

To see that double-precision operations remain in the converted code, click the MATLAB
code tab. Under Highlight, select the Double-precision operations check box. Under
Functions, click mysum.

In the code pane, the report highlights the sum call.

To address this warning, specify that you want the function to return the 'native'
class.

(sum(int32(1), 'native')

Using this option causes the function to return the same type as the input.

More About
• “Single-Precision Conversion Best Practices” on page 17-24

17-31

17 Single-Precision Conversion

Combining Integers and Double-Precision Numbers

MATLAB supports the combination of integers of the same class and scalar double-
precision numbers. MATLAB does not support the combination of integers and single-
precision numbers. If you use the MATLAB Coder app or codegen with the -singleC
option to generate single-precision C/C++ code, your MATLAB code cannot combine
integers and double-precision numbers. Converting an expression that combines integers
and doubles results in an illegal MATLAB expression. To work around this limitation,
cast the numbers so that the types of the numbers match. Either cast the integer
numbers to double-precision or cast the double-precision numbers to the integer class.

For example, consider the function dut that returns the sum of a and b.

function c = dut(a,b)

c = a + b;

end

Generate single-precision code using codegen with the -singleC option. Specify that
the first argument is double and the second argument is int32.

 codegen -singleC -config:lib dut -args {0, int32(2)} -report

Code generation fails. The message suggests that you cast the operands so that they have
the same types.

Rewrite the code so that it cast a to the type of b.

function c = dut(a,b)

c = int32(a) + b;

end

17-32

 MATLAB Language Features Supported for Single-Precision Conversion

MATLAB Language Features Supported for Single-Precision
Conversion

In this section...

“MATLAB Language Features Supported for Single-Precision Conversion” on page
17-33
“MATLAB Language Features Not Supported for Single-Precision Conversion” on page
17-34

MATLAB Language Features Supported for Single-Precision Conversion

Single-precision conversion supports the following MATLAB language features:

• N-dimensional arrays.
• Matrix operations, including deletion of rows and columns.
• Variable-size data (see “Generate Code for Variable-Size Data” on page 21-106).

Comparison plotting does not support variable-size data.
• Subscripting (see “Incompatibility with MATLAB in Matrix Indexing Operations for

Code Generation” on page 7-32).
• Complex numbers (see “Code Generation for Complex Data” on page 6-4).
• Numeric classes (see “Supported Variable Types” on page 5-16).
• Program control statements if, switch, for, while, and break.
• Arithmetic, relational, and logical operators.
• Local functions.
• Global variables.
• Persistent variables.
• Structures.
• Characters.

Single-precision conversion does not support the complete set of Unicode characters.
Characters are restricted to 8 bits of precision in generated code. Many mathematical
operations require more than 8 bits of precision. If you intend to convert your
MATLAB algorithm to single precision, it is a best practice not to perform arithmetic
with characters.

17-33

17 Single-Precision Conversion

• MATLAB classes. Single-precision conversion supports:

• Class properties
• Constructors
• Methods
• Specializations

It does not support class inheritance or packages.
• Function calls (see “Resolution of Function Calls for Code Generation” on page 14-2)
• varargin and varargout are supported when you use codegen with -singleC.

They are not supported when you use codegen with -double2single.

MATLAB Language Features Not Supported for Single-Precision
Conversion

Single-precision conversion does not support the following features:

• Anonymous functions
• Cell arrays
• Function handles
• Java
• Nested functions
• Recursion
• Sparse matrices
• try/catch statements
• varargin and varargout are not supported when you use codegen with -

double2single. They are supported when you use codegen with -singleC

17-34

18

Setting Up a MATLAB Coder Project

• “Set Up a MATLAB Coder Project” on page 18-2
• “Specify Properties of Entry-Point Function Inputs Using the App” on page 18-3
• “Automatically Define Input Types by Using the App” on page 18-4
• “Make Dimensions Variable-Size When They Meet Size Threshold” on page 18-5
• “Define Input Parameter by Example by Using the App” on page 18-7
• “Define or Edit Input Parameter Type by Using the App” on page 18-14
• “Define Constant Input Parameters Using the App” on page 18-24
• “Define Inputs Programmatically in the MATLAB File” on page 18-25
• “Add Global Variables by Using the App” on page 18-26
• “Specify Global Variable Type and Initial Value Using the App” on page 18-27
• “Undo and Redo Changes to Type Definitions in the App” on page 18-31
• “Changing Output Type” on page 18-32
• “Code Generation Readiness Screening in the MATLAB Coder App” on page 18-35
• “Slow Operations in MATLAB Coder App” on page 18-37
• “Unable to Open a MATLAB Coder Project” on page 18-38

18 Setting Up a MATLAB Coder Project

Set Up a MATLAB Coder Project
1 To open the app, on the MATLAB Toolstrip Apps tab, under Code Generation,

click the MATLAB Coder app icon.
2 Create a project or open an existing project. See “Create a Project” on page 18-2

and “Open an Existing Project” on page 18-2.
3 If the app detects code generation readiness issues in your entry-point functions,

address these issues.
4 Define the properties of the entry-point function input types. See “Specify Properties

of Entry-Point Function Inputs Using the App” on page 18-3.
5 Check for run-time issues. Provide code or a test file that the app can use to test your

code. The app generates a MEX function. It runs your test code or test file, replacing
calls to your MATLAB function with calls to the MEX function. This step is optional.
However, it is a best practice to perform this step. You can detect and fix run-time
errors that are harder to diagnose in the generated C code.

6 Configure the build settings. Select the build type, language, and production
hardware. Optionally, modify other build settings. See “Configure Build Settings” on
page 21-26.

You can now generate code.

Create a Project

On the Select Source Files page, specify the MATLAB files from which you want to
generate code. An entry-point function is a function that you call from MATLAB. Do not
add files that have spaces in their names.

The app creates a project that has the name of the first entry-point function.

Open an Existing Project

1
On the app toolbar, click and select Open existing project.

2 Type or select the project.

The app closes other open projects.

If the project is a Fixed-Point Converter project, and you have a Fixed-Point Designer
license, the project opens in the Fixed-Point Converter app.

18-2

 Specify Properties of Entry-Point Function Inputs Using the App

Specify Properties of Entry-Point Function Inputs Using the App

Why Specify Input Properties?

Because C and C++ are statically typed languages, at compile time, MATLAB Coder
must determine the properties of all variables in the MATLAB files. To infer variable
properties in MATLAB files, MATLAB Coder must identify the properties of the inputs
to the primary function, also known as the top-level or entry-point function. Therefore,
if your primary function has inputs, you must specify the properties of these inputs to
MATLAB Coder. If your primary function has no input parameters, you do not need to
specify properties of inputs to local functions or external functions called by the primary
function.

Unless you use the tilde (~) character to specify unused function inputs, you must specify
the same number and order of inputs as the MATLAB function . If you use the tilde
character, the inputs default to real, scalar doubles.

See Also

• “Properties to Specify” on page 21-46

Specify an Input Definition Using the App

Specify an input definition using one of the following methods:

• Autodefine Input Types
• Define Type
• Define by Example
• Define Constant
• “Define Inputs Programmatically in the MATLAB File” on page 18-25

18-3

18 Setting Up a MATLAB Coder Project

Automatically Define Input Types by Using the App

If you specify a test file that calls the project entry-point functions, the MATLAB Coder
app can infer the input argument types by running the test file. If a test file calls an
entry-point function multiple times with different size inputs, the app takes the union of
the inputs. The app infers that the inputs are variable size, with an upper bound equal to
the size of the largest input.

Before using the app to automatically define function input argument types, you must
add at least one entry-point file to your project. You must also specify code that calls your
entry-point functions with the expected input types. It is a best practice to provide a test
file that calls your entry-point functions. The test file can be either a MATLAB function
or a script. The test file must call the entry-point function at least once.

To automatically define input types:

1 On the Define Input Types page, specify a test file. Alternatively, you can enter
code directly.

2 Click Autodefine Input Types.

The app runs the test file and infers the types for entry-point input arguments. The
app displays the inferred types.

Note: If you automatically define the input types, the entry-point functions must be in a
writable folder.

If your test file does not call an entry-point function with different size inputs, the
resulting type dimensions are fixed-size. After you define the input types, you can
specify and apply rules for making type dimensions variable-size when they meet a size
threshold. See “Make Dimensions Variable-Size When They Meet Size Threshold” on
page 18-5.

18-4

 Make Dimensions Variable-Size When They Meet Size Threshold

Make Dimensions Variable-Size When They Meet Size Threshold

After you define input types automatically or manually, you can make type dimensions
variable-size when they meet a size threshold.

1 From the tools menu, select Apply variable-sizing rules.

2 In the Variable-sizing rules dialog box, select the rules that you want to apply.

• To make a dimension variable-size with an upper bound, select the Make
dimension variable-size if the size is at least check box. Specify the
threshold. If the size of a dimension of an input type is equal to or greater than
this threshold, the app makes the dimension variable-size. The upper bound is
the original size of the dimension.

• To make a dimension variable-size with no upper bound, select the Make
dimension unbounded if the size is at least check box. Specify the threshold.
If the size of a dimension of an input is equal to or greater than this threshold,
the app makes this dimension unbounded.

3 To apply the rules to the current type definitions, click Apply. If you change type
definitions, the rules do not affect the new definitions unless you apply them.

18-5

18 Setting Up a MATLAB Coder Project

More About
• “Primary Function Input Specification” on page 21-46
• “What Is Variable-Size Data?” on page 7-2

18-6

 Define Input Parameter by Example by Using the App

Define Input Parameter by Example by Using the App
In this section...

“Define an Input Parameter by Example” on page 18-7
“Specify Input Parameters by Example” on page 18-8
“Specify a Structure Type Input Parameter by Example” on page 18-9
“Specify a Cell Array Type Input Parameter by Example” on page 18-9
“Specify an Enumerated Type Input Parameter by Example” on page 18-11
“Specify a Fixed-Point Input Parameter by Example” on page 18-12

Define an Input Parameter by Example

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.

18-7

18 Setting Up a MATLAB Coder Project

3 Select Define by Example.
4 In the field to the right of the parameter, enter a MATLAB expression. The variable

has the class, size, and complexity of the value of the expression.

Specify Input Parameters by Example

This example shows how to specify a 1-by-4 vector of unsigned 16-bit integers.

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter:

zeros(1,4,'uint16')

The input type is uint16(1x4).
5 Optionally, after you specify the input type, you can specify that the input is variable

size. For example, select the second dimension.

6 To specify that the second dimension is variable size with an upper bound of 4, select
:4. Alternatively, to specify that the second dimension is unbounded, select :Inf.

Alternatively, you can specify that the input is variable size by using the
coder.newtype function. Enter the following MATLAB expression:

coder.newtype('uint16',[1 4],[0 1])

Note: To specify that an input is a double-precision scalar, enter 0.

18-8

 Define Input Parameter by Example by Using the App

Specify a Structure Type Input Parameter by Example

This example shows how to specify a structure with two fields a and b. The input type of
a is scalar double. The input type of b is scalar char.

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter:

struct('a', 1, 'b', 'x')

The type of the input parameter is struct(1x1). The type of field a is
double(1x1). The type of field b is char(1x1)

5 For an array of structures, to specify the size of each dimension, click the dimension
and specify the size. For example, enter 4 for the first dimension.

6 To specify that the second dimension is variable size with an upper bound of 4, select
:4. Alternatively, to specify that the second dimension is unbounded select :Inf.

Alternatively, specify the size of the array of structures in the struct function call.
For example, struct('a', { 1 2}, 'b', {'x', 'y'}) specifies a 1x2 array of
structures with fields a and b. The type of field a is double(1x1). The type of field b is
char(1x1).

To modify the type definition, see “Specify a Structure Input Parameter” on page
18-16.

Specify a Cell Array Type Input Parameter by Example

This example shows how to specify a cell array input by example. When you define a
cell array by example, the app determines whether the cell array is homogeneous or
heterogeneous. See “Code Generation for Cell Arrays” on page 9-2. If you want to control
whether the cell array is homogeneous or heterogeneous, specify the cell array by type.
See “Specify a Cell Array Input Parameter” on page 18-19.

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.

18-9

18 Setting Up a MATLAB Coder Project

3 Select Define by Example.
4 In the field to the right of the parameter, enter an example cell array.

• If all cell array elements have the same properties, the cell array is homogeneous.
For example, enter:

{1 2 3}

The input is a 1x3 cell array. The type of each element is double(1x1).

The colon inside curly braces{:} indicates that all elements have the same
properties.

• If elements of the cell array have different classes, the cell array is
heterogeneous. For example, enter:

{'a', 1}

The input is a 1x2 cell array. For a heterogeneous cell array, the app lists each
element. The type of the first element is char(1x1). The type of the second
element is double(1x1).

• For some example cell arrays. the classification as homogeneous or heterogeneous
is ambiguous. For these cell arrays, the app uses heuristics to determine whether
the cell array is homogeneous or heterogeneous. For example, for the example cell
array, enter:

{1 [2 3]}

The elements have the same class, but different sizes. The app determines that
the input is a 1x2 heterogeneous cell array. The type of the first element is
double(1x1). The type of the second element is double(1x2).

18-10

 Define Input Parameter by Example by Using the App

However, the example cell array, {1 [2 3]}, can also be a homogeneous
cell array whose elements are 1x:2 double. If you want this cell array to be
homogeneous, do one of the following:

• Specify the cell array input by type. Specify that the input is a homogeneous
cell array. Specify that the elements are 1x:2 double. See “Specify a Cell Array
Input Parameter” on page 18-19.

• Right-click the variable. Select Homogeneous. Specify that the elements are
1x:2 double.

If you use coder.typeof to specify that the example cell array is variable size,
the app makes the cell array homogeneous. For example, for the example input,
enter:

coder.typeof({1 [2 3]}, [1 3], [0 1])

The app determines that the input is a 1x:3 homogeneous cell array whose
elements are 1x:2 double.

To modify the type definition, see “Specify a Cell Array Input Parameter” on page
18-19.

Specify an Enumerated Type Input Parameter by Example

This example shows how to specify that an input uses the enumerated type MyColors.

Suppose that MyColors.m is on the MATLAB path.

classdef MyColors < int32

 enumeration

 green(1),

 red(2),

 end

end

To specify that an input has the enumerated type MyColors:

18-11

18 Setting Up a MATLAB Coder Project

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.

3 Select Define by Example.
4 In the field to the right of the parameter, enter the following MATLAB expression:

MyColors.red

Specify a Fixed-Point Input Parameter by Example

To specify fixed-point inputs, Fixed-Point Designer software must be installed.

This example shows how to specify a signed fixed-point type with a word length of eight
bits, and a fraction length of three bits.

1 On the Define Input Types page, click Let me enter input or global types
directly.

18-12

 Define Input Parameter by Example by Using the App

2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter:

fi(10, 1, 8, 3)

The app sets the type of input u to fi(1x1). By default, if you do not specify a
local fimath, the app uses the default fimath. See “fimath for Sharing Arithmetic
Rules”.

Optionally, modify the fixed-point properties or the size of the input. See “Specify a
Fixed-Point Input Parameter by Type” on page 18-16 and “Define or Edit Input
Parameter Type by Using the App” on page 18-14.

18-13

18 Setting Up a MATLAB Coder Project

Define or Edit Input Parameter Type by Using the App

In this section...

“Define or Edit an Input Parameter Type” on page 18-14
“Specify an Enumerated Type Input Parameter by Type” on page 18-15
“Specify a Fixed-Point Input Parameter by Type” on page 18-16
“Specify a Structure Input Parameter” on page 18-16
“Specify a Cell Array Input Parameter” on page 18-19

Define or Edit an Input Parameter Type

The following procedure shows you how to define or edit double, single, int64, int32,
int16, int8, uint64, uint32, uint16, uint8, logical, and char types.

For more information about defining other types, see the following table.

Input Type Link

A structure (struct) “Specify a Structure Input Parameter” on
page 18-16

A cell array (cell (Homogeneous) or cell
(Heterogeneous))

“Specify a Cell Array Input Parameter” on
page 18-19

A fixed-point data type (embedded.fi) “Specify a Fixed-Point Input Parameter by
Type” on page 18-16

An input by example (Define by
Example)

“Define Input Parameter by Example by
Using the App” on page 18-7

A constant (Define Constant) “Define Constant Input Parameters Using
the App” on page 18-24

1 Click the field to the right of the input parameter name.
2 Optionally, for numeric types, to make the parameter a complex type, select the

Complex number check box.
3 Select the input type.

The app displays the selected type. It displays the size options.

18-14

 Define or Edit Input Parameter Type by Using the App

4 From the list, select whether your input is a scalar, a 1 x n vector, a m x 1 vector,
or a m x n matrix. By default, if you do not select a size option, the app defines
inputs as scalars.

5 Optionally, if your input is not scalar, enter sizes m and n. You can specify:

• Fixed size, for example, 10.
• Variable size, up to a specified limit, by using the : prefix. For example, to specify

that your input can vary in size up to 10, enter :10.
• Unbounded variable size by entering :Inf.

You can edit the size of each dimension.

Specify an Enumerated Type Input Parameter by Type

To specify that an input uses the enumerated type MyColors:

1 Suppose that the enumeration MyColors is on the MATLAB path.

classdef MyColors < int32

 enumeration

 green(1),

 red(2),

 end

end

2 On the Define Input Types page, click Let me enter input or global types
directly.

3 In the field to the right of the input parameter, enter MyColors.

18-15

18 Setting Up a MATLAB Coder Project

Specify a Fixed-Point Input Parameter by Type

To specify fixed-point inputs, Fixed-Point Designer software must be installed.

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select embedded.fi.
4 Select the size. If you do not specify the size, the size defaults to 1x1.
5 Specify the input parameter numerictype and fimath properties.

If you do not specify a local fimath, the app uses the default fimath. See “Default
fimath Usage to Share Arithmetic Rules”.

To modify the numerictype or fimath properties, open the properties dialog box.
To open the properties dialog box, click to the right of the fixed-point type definition.

Optionally, click .

Specify a Structure Input Parameter

When a primary input is a structure, the app treats each field as a separate input.
Therefore, you must specify properties for all fields of a primary structure input in the
order that they appear in the structure definition:

• For each field of an input structure, specify class, size, and complexity.
• For each field that is a fixed-point class, also specify numerictype, and fimath.

Specify Structures by Type

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select struct.

The app displays the selected type, struct. The app displays the size options.
4 Specify that your structure is a scalar, 1 x n vector, m x 1 vector, or m x n matrix.

By default, if you do not select a size option, the app defines inputs as scalars.
5 If your input is not scalar, enter sizes for each dimension. Click the dimension. Enter

the size. Select from the size options. For example, for size 10:

18-16

 Define or Edit Input Parameter Type by Using the App

• To specify fixed size, select 10.
• To specify variable size with an upper bound of 10, select :10.
• To specify unbounded variable size, select :Inf.

6 Optionally, specify properties for the structure in the generated code. See “Set
Structure Properties” on page 18-17.

7 Add fields to the structure. Specify the class, size, and complexity of the fields. See
“Add a Field to a Structure” on page 18-19.

Set Structure Properties

1
Click to the right of the structure definition. Optionally, click .

2 In the dialog box, specify properties for the structure in the generated code.

Property Description

C type definition name Name for the structure type in the
generated code.

Type definition is externally defined Default: No — type definition is not
externally defined.

If you select Yes to declare an externally
defined structure, the app does not
generate the definition of the structure
type. You must provide it in a custom
include file.

Dependency: C type definition
name enables this option.

C type definition header file Name of the header file that contains the
external definition of the structure, for
example, "mystruct.h". Specify the
path to the file using the Additional
include directories parameter on the
project settings dialog box Custom Code
tab.

By default, the generated code contains
#include statements for custom header

18-17

18 Setting Up a MATLAB Coder Project

Property Description

files after the standard header files. If a
standard header file refers to the custom
structure type, then the compilation
fails. If you specify the C type definition
header file, the app includes that header
file exactly at the point where it is
required.

Dependency: When Type definition
is externally defined is set to Yes,
this option is enabled.

Data alignment boundary The run-time memory alignment of
structures of this type in bytes.

If you have an Embedded Coder license
and use Code Replacement Libraries
(CRLs), the CRLs provide the ability
to align data objects passed into a
replacement function to a specified
boundary. You can take advantage of
target-specific function implementations
that require aligned data. By default, the
structure is not aligned on any specific
boundary so it is not matched by CRL
functions that require alignment.

Alignment must be either -1 or a power
of 2 that is no more than 128.

Default: 0

Dependency: When Type definition
is externally defined is set to Yes,
this option is enabled.

Rename a Field in a Structure

Select the name field of the structure that you want to rename. Enter the new name.

18-18

 Define or Edit Input Parameter Type by Using the App

Add a Field to a Structure

1 To the right of the structure, click
2 Enter the field name. Specify the class, size, and complexity of the field.

Insert a Field into a Structure

1 Select the structure field below which you want to add another field.
2 Right-click the structure field.
3 Select Insert Field Below.

The app adds the field after the field that you selected.
4 Enter the field name. Specify the class, size, and complexity of the field.

Remove a Field from a Structure

1 Right-click the field that you want to remove.
2 Select Remove Field.

Specify a Cell Array Input Parameter

For code generation, cell arrays are homogeneous or heterogeneous. See “Code
Generation for Cell Arrays” on page 9-2. A homogeneous cell array is represented as an
array in the generated code. All elements have the same properties. A heterogeneous cell
array is represented as a structure in the generated code. Elements can have different
properties.

Specify a Homogeneous Cell Array

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select cell (Homogeneous).

The app displays the selected type, cell. The app displays the size options.
4 From the list, select whether your input is a scalar, a 1 x n vector, a m x 1 vector,

or a m x n matrix. By default, if you do not select a size option, the app defines
inputs as scalars.

18-19

18 Setting Up a MATLAB Coder Project

5 If your input is not scalar, enter sizes for each dimension. Click the dimension. Enter
the size. Select from the size options. For example, for size 10:

• To specify fixed size, select 10.
• To specify variable size with an upper bound of 10, select :10.
• To specify unbounded variable size, select :Inf.

Below the cell array variable, a colon inside curly braces {:} indicates that the cell
array elements have the same properties (class, size, and complexity).

6 To specify the class, size, and complexity of the elements in the cell array, click the
field to the right of {:}.

Specify a Heterogeneous Cell Array

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select cell (Heterogeneous).

The app displays the selected type, cell. The app displays the size options.
4 Specify that your structure is a scalar, 1 x n vector, m x 1 vector, or m x n matrix.

By default, if you do not select a size option, the app defines inputs as scalars.
5 Optionally, if your input is not scalar, enter sizes m and n. A heterogeneous cell array

is fixed size.

The app lists the cell array elements. It uses indexing notation to specify each
element. For example, {1,2} indicates the element in row 1, column 2.

6 Specify the class, size, and complexity for each cell array element.
7 Optionally, add elements. See “Add an Element to a Heterogeneous Cell Array” on

page 18-23
8 Optionally, specify properties for the structure that represents the cell array in the

generated code. See “Set Structure Properties for a Heterogeneous Cell Array” on
page 18-20.

Set Structure Properties for a Heterogeneous Cell Array

A heterogeneous cell array is represented as a structure in the generated code. You can
specify the properties for the structure that represents the cell array.

18-20

 Define or Edit Input Parameter Type by Using the App

1 Click to the right of the cell array definition. Optionally click .
2 In the dialog box, specify properties for the structure in the generated code.

Property Description

C type definition name Name for the structure type in the
generated code.

Type definition is externally defined Default: No — type definition is not
externally defined.

If you select Yes to declare an externally
defined structure, the app does not
generate the definition of the structure
type. You must provide it in a custom
include file.

Dependency: C type definition
name enables this option.

C type definition header file Name of the header file that contains the
external definition of the structure, for
example, "mystruct.h". Specify the
path to the file using the Additional
include directories parameter on the
project settings dialog box Custom Code
tab.

By default, the generated code contains
#include statements for custom header
files after the standard header files. If a
standard header file refers to the custom
structure type, then the compilation
fails. If you specify the C type definition
header file, the app includes that header
file exactly at the point where it is
required.

Dependency: When Type definition
is externally defined is set to Yes,
this option is enabled.

18-21

18 Setting Up a MATLAB Coder Project

Property Description

Data alignment boundary The run-time memory alignment of
structures of this type in bytes.

If you have an Embedded Coder license
and use Code Replacement Libraries
(CRLs), the CRLs provide the ability
to align data objects passed into a
replacement function to a specified
boundary. You can take advantage of
target-specific function implementations
that require aligned data. By default, the
structure is not aligned on any specific
boundary so it is not matched by CRL
functions that require alignment.

Alignment must be either -1 or a power
of 2 that is no more than 128.

Default: 0

Dependency: When Type definition
is externally defined is set to Yes,
this option is enabled.

Change Classification as Homogeneous or Heterogeneous

To change the classification as homogeneous or heterogeneous, right-click the variable.
Select Homogeneous or Heterogeneous.

18-22

 Define or Edit Input Parameter Type by Using the App

The app clears the definitions of the elements.

Change the Size of the Cell Array

1 In the definition of the cell array, click a dimension. Specify the size.
2 For a homogeneous cell array, specify whether the dimension is variable size and

whether the dimension is bounded or unbounded. Alternatively, right-click the
variable. Select Bounded (fixed-size), Bounded (variable-size), or Unbounded

3 For a heterogeneous cell array, the app adds elements so that the cell array has the
specified size and shape.

Add an Element to a Heterogeneous Cell Array

1 In the definition of the cell array, click a dimension. Specify the size. For example,
enter 1 for the first dimension and 4 for the second dimension.

The app adds elements so that the cell array has the specified size and shape. For
example for a 1x4 heterogeneous cell array, the app lists four elements: {1,1},
{1,2}, {1,3}, and {1,4}.

2 Specify the properties of the new elements.

18-23

18 Setting Up a MATLAB Coder Project

Define Constant Input Parameters Using the App

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter name.
3 Select Define Constant.
4 In the field to the right of the parameter name, enter the value of the constant or a

MATLAB expression that represents the constant.

The app uses the value of the specified MATLAB expression as a compile-time
constant.

18-24

 Define Inputs Programmatically in the MATLAB File

Define Inputs Programmatically in the MATLAB File

You can use the MATLAB assert function to define properties of entry-point function
inputs in your MATLAB entry-point files.

To instruct the MATLAB Coder app to determine input types from the assert statements

in your code, on the app toolbar, click . Select Determine input types from code
preconditions. If you enable this option:

• The app labels all entry-point function inputs as Deferred. It determines the input
types at compile time.

• In this project, you cannot use other input specification methods to specify input
types.

See “Define Input Properties Programmatically in the MATLAB File” on page 21-67.

Note: If you enable fixed-point conversion (requires a Fixed-Point Designer license), the
app disables the Determine input types from code preconditions option.

18-25

18 Setting Up a MATLAB Coder Project

Add Global Variables by Using the App

To add global variables to the project:

1 On the Define Input Types page, automatically define input types or click Let me
enter input or global types directly.

The app displays a table of entry-point inputs.
2 To add a global variable, click Add global.

By default, the app names the first global variable in a project g, and subsequent
global variables g1, g2, and so on.

3 Under Global variables, enter a name for the global variable.
4 After adding a global variable, but before generating code, specify its type and initial

value. Otherwise, you must create a variable with the same name in the global
workspace. See “Specify Global Variable Type and Initial Value Using the App” on
page 18-27.

18-26

 Specify Global Variable Type and Initial Value Using the App

Specify Global Variable Type and Initial Value Using the App

In this section...

“Why Specify a Type Definition for Global Variables?” on page 18-27
“Specify a Global Variable Type” on page 18-27
“Define a Global Variable by Example” on page 18-27
“Define or Edit Global Variable Type” on page 18-28
“Define Global Variable Initial Value” on page 18-29
“Define Global Variable Constant Value” on page 18-30
“Remove Global Variables” on page 18-30

Why Specify a Type Definition for Global Variables?

If you use global variables in your MATLAB algorithm, before building the project,
you must add a global type definition and initial value for each global variable. If you
do not initialize the global data, the app looks for the variable in the MATLAB global
workspace. If the variable does not exist, the app generates an error.

For MEX functions, if you use global data, you must also specify whether to synchronize
this data between MATLAB and the MEX function.

Specify a Global Variable Type

1 Specify the type of each global variable using one of the following methods:

• Define by example
• Define type

2 Define an initial value for each global variable.

If you do not provide a type definition and initial value for a global variable, create
a variable with the same name and suitable class, size, complexity, and value in the
MATLAB workspace.

Define a Global Variable by Example

1 Click the field to the right of the global variable that you want to define.

18-27

18 Setting Up a MATLAB Coder Project

2 Select Define by Example.
3 In the field to the right of the global name, enter a MATLAB expression that has the

required class, size, and complexity. MATLAB Coder software uses the class, size,
and complexity of the value of this expression as the type for the global variable.

4 Optionally, change the size of the global variable. Click the dimension that you want
to change and enter the size, for example, 10.

You can specify:

• Fixed size. In this example, select 10.
• Variable size, up to a specified limit, by using the : prefix. In this example, to

specify that your input can vary in size up to 10, select :10.
• Unbounded variable size by selecting :Inf.

Define or Edit Global Variable Type

1 Click the field to the right of the global variable that you want to define.
2 Optionally, for numeric types, select Complex to make the parameter a complex

type. By default, inputs are real.
3 Select the type for the global variable. For example, double.

By default, the global variable is a scalar.
4 Optionally, change the size of the global variable. Click the dimension that you want

to change and enter the size, for example, 10.

18-28

 Specify Global Variable Type and Initial Value Using the App

You can specify:

• Fixed size. In this example, select 10.
• Variable size, up to a specified limit, by using the : prefix. In this example, to

specify that your input can vary in size up to 10, select :10.
• Unbounded variable size by selecting :Inf.

Define Global Variable Initial Value

• “Define Initial Value Before Defining Type” on page 18-29
• “Define Initial Value After Defining Type” on page 18-30

Define Initial Value Before Defining Type

1 Click the field to the right of the global variable.
2 Select Define Initial Value.
3 Enter a MATLAB expression. MATLAB Coder software uses the value of the

specified MATLAB expression as the value of the global variable. Because you
did not define the type of the global variable before you defined its initial value,
MATLAB Coder uses the initial value type as the global variable type.

The project shows that the global variable is initialized.

18-29

18 Setting Up a MATLAB Coder Project

If you change the type of a global variable after defining its initial value, you must
redefine the initial value.

Define Initial Value After Defining Type

• Click the type field of a predefined global variable.
• Select Define Initial Value.
• Enter a MATLAB expression. MATLAB Coder software uses the value of the specified

MATLAB expression as the value of the global variable.

The project shows that the global variable is initialized.

Define Global Variable Constant Value

1 Click the field to the right of the global variable.
2 Select Define Constant Value.
3 In the field to the right of the global variable, enter a MATLAB expression.

Remove Global Variables

1 Right-click the global variable.
2 From the menu, select Remove Global.

18-30

 Undo and Redo Changes to Type Definitions in the App

Undo and Redo Changes to Type Definitions in the App

To revert or restore changes to input argument or global variable type definitions, above
the input arguments table, click or .

Alternatively, use the keyboard shortcuts for Undo and Redo. The shortcuts are defined
in your MATLAB preferences. On a Windows platform, the default keyboard shortcuts
for Undo and Redo are Ctrl+Z and Ctrl+Y.

Each undo operation reverts the last change. Each redo operation restores the last
change.

Related Examples
• “Define Keyboard Shortcuts”

18-31

18 Setting Up a MATLAB Coder Project

Changing Output Type

In this section...

“Project Settings” on page 18-32
“Configuration Object Parameters” on page 18-33

MEX functions use a different set of configuration parameters than libraries and
executables use. When you switch the output type between MEX Function and Source
Code, Static Library, Dynamic Library, or C/C++ Executable, verify these
settings.

If you enable any of the following parameters when the output type is MEX Function,
and you want to use the same setting for C/C++ code generation as well, you must
enable it again for C/C++ Static Library, C/C++ Dynamic Library, and C/C++
Executable.

Project Settings

Project Settings Dialog Box Tab Parameter Name

Working folder
Build folder

Paths

Search paths
Speed Saturate on integer overflow

Enable variable-sizing
Dynamic memory allocation

Memory

Stack usage max
Generated file partitioning method
Include comments
MATLAB source code as comments

Code Appearance

Reserved names
Always create a code generation reportDebugging
Automatically launch a report if one is generated

Custom Code Source file

18-32

 Changing Output Type

Project Settings Dialog Box Tab Parameter Name

Header file
Initialize function
Terminate function
Additional include directories
Additional source files
Additional libraries
Post-code-generation command
Constant folding timeout
Language
Inline threshold
Inline threshold max
Inline stack limit
Use memcpy for vector assignment
Memcpy threshold (bytes)

Advanced

Use memset to initialize floats and doubles to 0.0

Configuration Object Parameters

• ConstantFoldingTimeout
• CustomHeaderCode
• CustomInclude
• CustomInitializer
• CustomLibrary
• CustomSource
• CustomSourceCode
• CustomTerminator
• DynamicMemoryAllocation
• EnableMemcpy
• EnableVariableSizing

18-33

18 Setting Up a MATLAB Coder Project

• FilePartitionMethod
• GenCodeOnly
• GenerateComments
• GenerateReport
• InitFltsAndDblsToZero
• InlineStackLimit
• InlineThreshold
• InlineThresholdMax
• LaunchReport
• MATLABSourceComments
• MemcpyThreshold
• PostCodeGenCommand
• ReservedNameArray
• SaturateOnIntegerOverflow
• StackUsageMax
• TargetLang

18-34

 Code Generation Readiness Screening in the MATLAB Coder App

Code Generation Readiness Screening in the MATLAB Coder App

By default, the MATLAB Coder app screens your MATLAB code for features and
functions that code generation does not support. After you enter entry-point functions
and click Next, if the app detects issues, it opens the Review Code Generation
Readiness page.

If you click Review Issues, you can use the app editor to fix issues before you generate
code.

If the code generation readiness screening causes slow operations in the app, consider
disabling the screening. To disable code generation readiness screening, on the app

toolbar, click and clear Check code generation readiness.

If you clear Check code generation readiness during or after screening, the app
retains the screening results for the current session. If you fix or introduce code
generation readiness issues in your code, the app does not update the screening results.
To clear screening results after you disable screening, or to update screening results after
you reenable screening, close and reopen the project.

For a fixed-point conversion project, code generation readiness screening identifies
functions that do not have fixed-point support. The app lists these functions on the
Function Replacements tab of the Convert to Fixed Point page where you can
specify function replacement with a custom function or a lookup table. If you disable
screening, do not rely on the app to identify functions that you must replace. Manually

18-35

18 Setting Up a MATLAB Coder Project

enter the names of functions on the Function Replacements tab. Fixed-point
conversion requires a Fixed-Point Designer license.

More About
• “Slow Operations in MATLAB Coder App” on page 18-37
• “Automated Fixed-Point Conversion” on page 15-81

18-36

 Slow Operations in MATLAB Coder App

Slow Operations in MATLAB Coder App

By default, the MATLAB Coder app screens your entry-point functions for code
generation readiness. For some large entry-point functions, or functions with many
calls, screening can take a long time. If the screening takes a long time, certain app or
MATLAB operations can be slower than expected or appear to be unresponsive.

To determine if slow operations are due to the code generation readiness screening,
disable the screening.

More About
• “Code Generation Readiness Screening in the MATLAB Coder App” on page 18-35

18-37

18 Setting Up a MATLAB Coder Project

Unable to Open a MATLAB Coder Project

When you open a project from a different release, if necessary, the MATLAB Coder
app updates the project file so that the format is compatible with the release that
you are using. Before the app updates the project file, it creates a backup file
with the name project_name.prj.bak. For example, the backup file name for
myproject.prj is myproject.prj.bak. If the backup file exists, the app inserts an
integer between the prj and bak extensions to make the file name unique. For example,
if myproject.prj.bak exists, the app creates the backup file myproject.prj.2.bak.

If the project file is from a release before R2015a, the app also displays a message about
the project file update and backup. To use the project in a release before R2015a, use the
backup project file instead of the updated project file.

To use a backup project file, remove the extensions that follow the prj extension. For
example, rename myproject.prj.2.bak to myproject.prj. If you use the backup
project file in the release that created it, the project is the same as the original project.
If you use the backup project file in a different release than the one that created it, you
can possibly lose some information. For example, if you open a project file in a release
that does not recognize a setting in the file, that setting is lost. For best results, open the
backup project file in the release in which you created it.

18-38

19

Preparing MATLAB Code for C/C++
Code Generation

• “Workflow for Preparing MATLAB Code for Code Generation” on page 19-2
• “Fixing Errors Detected at Design Time” on page 19-4
• “Using the Code Analyzer” on page 19-5
• “Check Code with the Code Analyzer” on page 19-6
• “Check Code by Using the Code Generation Readiness Tool” on page 19-8
• “Code Generation Readiness Tool” on page 19-9
• “Unable to Determine Code Generation Readiness” on page 19-15
• “Generate MEX Functions by Using the MATLAB Coder App” on page 19-16
• “Generate MEX Functions at the Command Line” on page 19-21
• “Fix Errors Detected at Code Generation Time” on page 19-23
• “Design Considerations When Writing MATLAB Code for Code Generation” on page

19-24
• “Running MEX Functions” on page 19-26
• “Debugging Strategies” on page 19-27
• “Collect and View Line Execution Counts for Your MATLAB Code” on page 19-28

19 Preparing MATLAB Code for C/C++ Code Generation

Workflow for Preparing MATLAB Code for Code Generation

19-2

 Workflow for Preparing MATLAB Code for Code Generation

See Also

• “Set Up a MATLAB Coder Project” on page 18-2
• “Fixing Errors Detected at Design Time” on page 19-4
• “Generate MEX Functions by Using the MATLAB Coder App” on page 19-16
• “Fix Errors Detected at Code Generation Time” on page 19-23
• “Workflow for Testing MEX Functions in MATLAB” on page 20-3
• “C/C++ Code Generation” on page 21-4
• “Accelerate MATLAB Algorithms” on page 26-13

19-3

19 Preparing MATLAB Code for C/C++ Code Generation

Fixing Errors Detected at Design Time

Use the code analyzer and the code generation readiness tool to detect issues at design
time. Before generating code, you must fix these issues.

See Also

• “Check Code with the Code Analyzer” on page 19-6
• “Check Code by Using the Code Generation Readiness Tool” on page 19-8
• “Design Considerations When Writing MATLAB Code for Code Generation” on page

19-24
• “Debugging Strategies” on page 19-27

19-4

 Using the Code Analyzer

Using the Code Analyzer

You use the code analyzer in the MATLAB Editor to check for code violations at design
time, minimizing compilation errors. The code analyzer continuously checks your code as
you enter it. It reports problems and recommends modifications.

To use the code analyzer to identify warnings and errors specific to MATLAB for code
generation, you must add the %#codegen directive (or pragma) to your MATLAB file.
A complete list of code generation analyzer messages is available in the MATLAB Code
Analyzer preferences. For more information, see “Running the Code Analyzer Report”.

Note: The code analyzer might not detect all MATLAB for code generation issues. After
eliminating the errors or warnings that the code analyzer detects, compile your code with
MATLAB Coder to determine if the code has other compliance issues.

19-5

19 Preparing MATLAB Code for C/C++ Code Generation

Check Code with the Code Analyzer

The code analyzer checks your code for problems and recommends modifications. You can
use the code analyzer to check your code interactively in the MATLAB Editor while you
work.

To verify that continuous code checking is enabled:

1 In MATLAB, select the Home tab and then click Preferences.
2 In the Preferences dialog box, select Code Analyzer.
3 In the Code Analyzer Preferences pane, verify that Enable integrated warning

and error messages is selected.

The code analyzer provides an indicator in the top right of the editor window. If the
indicator is green, the analyzer did not detect code generation issues.

If the indicator is red, the analyzer has detected errors in your code. If it is orange, it has
detected warning. When the indicator is red or orange, a red or orange marker appears
to the right of the code where the error occurs. Place your pointer over the marker for
information about the error. Click the underlined text in the error message for a more
detailed explanation and suggested actions to fix the error.

19-6

 Check Code with the Code Analyzer

Before generating code from your MATLAB code, you must fix the errors detected by the
code analyzer.

19-7

19 Preparing MATLAB Code for C/C++ Code Generation

Check Code by Using the Code Generation Readiness Tool

In this section...

“Run Code Generation Readiness Tool at the Command Line” on page 19-8
“Run Code Generation Readiness Tool from the Current Folder Browser” on page
19-8
“Run the Code Generation Readiness Tool Using the MATLAB Coder App” on page
19-8

Run Code Generation Readiness Tool at the Command Line

1 Navigate to the folder that contains the file that you want to check for code
generation readiness.

2 At the command prompt, enter:

coder.screener('filename')

The Code Generation Readiness tool opens for the file named filename. The tool
provides a code generation readiness score and lists issues that you must fix prior to
code generation.

Run Code Generation Readiness Tool from the Current Folder Browser

1 In the current folder browser, right-click the file that you want to check for code
generation readiness.

2 From the context menu, select Check Code Generation Readiness.

The Code Generation Readiness tool opens for the selected file. It provides a code
generation readiness score and lists issues that you must fix prior to code generation.

Run the Code Generation Readiness Tool Using the MATLAB Coder App

After you add entry-point files to your project, the MATLAB Coder app analyzes the
functions for coding issues and code generation readiness. If the app identifies issues, it
opens the Review Code Generation Readiness page. You can review and fix issues.

See “Code Generation Readiness Tool” on page 19-9.

19-8

 Code Generation Readiness Tool

Code Generation Readiness Tool

Information That the Code Generation Readiness Tool Provides

The code generation readiness tool screens MATLAB code for features and functions that
code generation does not support. The tool provides a report that lists the source files
that contain unsupported features and functions. The report also indicates the amount
of work required to make the MATLAB code suitable for code generation. It is possible
that the tool does not detect all code generation issues. Under certain circumstances, it is
possible that the tool can report false errors. Therefore, before you generate C code, verify
that your code is suitable for code generation by generating a MEX function.

19-9

19 Preparing MATLAB Code for C/C++ Code Generation

Summary Tab

The Summary tab provides a Code Generation Readiness Score, which ranges from
1 to 5. A score of 1 indicates that the tool detects issues that require extensive changes
to the MATLAB code to make it suitable for code generation. A score of 5 indicates that

19-10

 Code Generation Readiness Tool

the tool does not detect code generation issues; the code is ready to use with minimal or
no changes.

On this tab, the tool also displays information about:

• MATLAB syntax issues. These issues are reported in the MATLAB editor. To learn
more about the issues and how to fix them, use the Code Analyzer.

• Unsupported MATLAB function calls.
• Unsupported MATLAB language features, such as nested functions.
• Unsupported data types.

19-11

19 Preparing MATLAB Code for C/C++ Code Generation

Code Structure Tab

If the code that you are checking calls other MATLAB functions, or you are checking
multiple entry-point functions, the tool displays the Code Structure Tab.

This tab displays information about the relative size of each file and how suitable each
file is for code generation.

19-12

 Code Generation Readiness Tool

Code Distribution

The Code Distribution pane displays a pie chart that shows the relative sizes of the
files and how suitable each file is for code generation. During the planning phase of
a project, you can use this information for estimation and scheduling. If the report
indicates that multiple files are not suitable for code generation, consider fixing files that
require minor changes before addressing files with significant issues.

Call Tree

The Call Tree pane displays information about the nesting of function calls. For each
called function, the report provides a Code Generation Readiness score, which ranges
from 1 to 5. A score of 1 indicates that the tool detects issues that require extensive
changes to the MATLAB code to make it suitable for code generation. A score of 5
indicates that the tool does not detect code generation issues. The code is ready to use
with minimal or no changes. The report also lists the number of lines of code in each file.

Show MATLAB Functions

If you select Show MATLAB Functions, the report also lists the MATLAB functions
that your function calls. For each of these MATLAB functions, if code generation
supports the function, the report sets Code Generation Readiness to Yes.

19-13

19 Preparing MATLAB Code for C/C++ Code Generation

Related Examples
• “Check Code by Using the Code Generation Readiness Tool” on page 19-8

19-14

 Unable to Determine Code Generation Readiness

Unable to Determine Code Generation Readiness

Sometimes the code generation readiness tool cannot determine whether the entry-point
functions in your project are suitable for code generation. The most likely reason is that
the tool is unable to find the entry-point files. Verify that your current working folder is
set to the folder that contains your entry-point files. If it is not, either make this folder
your current working folder or add the folder containing these files to the MATLAB path.

19-15

19 Preparing MATLAB Code for C/C++ Code Generation

Generate MEX Functions by Using the MATLAB Coder App

In this section...

“Workflow for Generating MEX Functions Using the MATLAB Coder App” on page
19-16
“Generate a MEX Function Using the MATLAB Coder App” on page 19-16
“Configure Project Settings” on page 19-19
“Build a MATLAB Coder Project” on page 19-19
“See Also” on page 19-20

Workflow for Generating MEX Functions Using the MATLAB Coder App

Step Action Details

1 Set up the MATLAB Coder project. “Set Up a MATLAB Coder Project” on page
18-2

2 Specify the build configuration parameters.
Set Build type to MEX.

“Configure Project Settings” on page
19-19

3 Build the project. “Build a MATLAB Coder Project” on page
19-19

Generate a MEX Function Using the MATLAB Coder App

This example shows how to generate a MEX function from MATLAB code using the
MATLAB Coder app.

Create the Entry-Point Function

In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen

y = u + v;

Create the Test File

In the same local writable folder, create a MATLAB file, mcadd_test.m, that calls
mcadd with example inputs. The example inputs are scalars with type int16.

function y = mcadd_test

19-16

 Generate MEX Functions by Using the MATLAB Coder App

y = mcadd(int16(2), int16(3));

Open the MATLAB Coder App

On the MATLAB Toolstrip Apps tab, under Code Generation, click the MATLAB
Coder app icon.

The app opens the Select Source Files page.

Specify Source Files

1 On the Select Source Files page, type or select the name of the entry-point
function mcadd.

The app creates a project with the default name mcadd.prj.
2 Click Next to go to the Define Input Types step. The app analyzes the function for

coding issues and code generation readiness. If the app identifies issues, it opens the
Review Code Generation Readiness page where you can review and fix issues.
In this example, because the app does not detect issues, it opens the Define Input
Types page.

Define Input Types

Because C uses static typing, at compile time, MATLAB Coder must determine the
properties of all variables in the MATLAB files. You must specify the properties of all
entry-point function inputs. From the properties of the entry-point function inputs,
MATLAB Coder can infer the properties of all variables in the MATLAB files.

Specify the test file mcadd_test.m that MATLAB Coder uses to automatically define
types for u and v:

1 Enter or select the test file mcadd_test.m.
2 Click Autodefine Input Types.

The test file, mcadd_test.m, calls the entry-point function, mcadd, with the
example input types. MATLAB Coder infers that inputs u and v are int16(1x1).

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates a MEX file from your entry-point
functions, runs the MEX function, and reports issues. This step is optional. However, it

19-17

19 Preparing MATLAB Code for C/C++ Code Generation

is a best practice to perform this step. You can detect and fix run-time errors that are
harder to diagnose in the generated C code.

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues

arrow .

The app populates the test file field with mcadd_test, the test file that you used to
define the input types.

2 Click Check for Issues.

The app generates a MEX function. It runs the test file replacing calls to mcadd
with calls to the MEX function. If the app detects issues during the MEX function
generation or execution, it provides warning and error messages. Click these
messages to navigate to the problematic code and fix the issue. In this example, the
app does not detect issues.

3 Click Next to go to the Generate Code step.

Generate the MEX Function

1 To open the Generate dialog box, click the Generate arrow .
2 In the Generate dialog box, set Build type to MEX and Language to C. Use the

default values for the other project build configuration settings.
3 Click Generate.

The app indicates that code generation succeeded. It displays the source MATLAB
files and the generated output files on the left side of the page. On the Variables
tab, it displays information about the MATLAB source variables. On the Target
Build Log tab, it displays the build log, including compiler warnings and errors.

MATLAB Coder builds the project and, by default, generates a MEX function,
mcadd_mex, in the current folder. MATLAB Coder also generates other supporting
files in a subfolder called codegen/mex/mcadd. MATLAB Coder uses the name of
the MATLAB function as the root name for the generated files. It creates a platform-
specific extension for the MEX file. See “Naming Conventions” on page 21-82.

4 To view the code generation report, click View Report.
5 Click Next to open the Finish Workflow page.

19-18

 Generate MEX Functions by Using the MATLAB Coder App

Review the Finish Workflow Page

The Finish Workflow page indicates that code generation succeeded. It provides a
project summary and links to the generated output.

Configure Project Settings

To open the project settings dialog box:

1 To open the Generate dialog box, click the Generate arrow .
2 Click More Settings.

To change a project setting, click the tab that contains the setting that you want to
change. For example, to change the Saturate on integer overflow setting, click the
Speed tab.

MEX functions use a different set of configuration parameters than libraries and
executables. When you change the output type from MEX Function to Source Code
Static Library, Dynamic Library, or Executable, verify these settings. See
“Changing Output Type” on page 18-32.

See Also

• “Enable Code Generation Reports” on page 22-27
• “Using the MATLAB Coder App” on page 21-124
• “How to Disable Inlining Globally Using the MATLAB Coder App” on page 21-134
• “Include MATLAB Source Code as Comments by Using the MATLAB Coder App” on

page 22-2
• “Disabling Run-Time Checks Using the MATLAB Coder App” on page 26-16

Build a MATLAB Coder Project

To build a project using the specified settings, on the Generate Code page, click
Generate. As the MATLAB Coder app builds a project, it displays the build progress.
When the build is complete, the app provides details about the build on the Target
Build Log tab.

If the code generation report is enabled or build errors occur, the app generates a report.
The report provides detailed information about the most recent build, and provides a link
to the report.

19-19

19 Preparing MATLAB Code for C/C++ Code Generation

To view the report, click the View report link. The report provides links to your
MATLAB code and generated C/C++ files and compile-time type information for the
variables in your MATLAB code. If build errors occur, the report lists errors and
warnings.

See Also

• “Configure Build Settings” on page 21-26

Related Examples
• “Configure Build Settings” on page 21-26
• “C Code Generation Using the MATLAB Coder App”

19-20

 Generate MEX Functions at the Command Line

Generate MEX Functions at the Command Line

Command-line Workflow for Generating MEX Functions

Step Action Details

1 Install prerequisite products. “Installing Prerequisite Products”
2 Set up your file infrastructure. “Paths and File Infrastructure Setup” on

page 21-81
3 Fix errors detected by the code analyzer. “Fixing Errors Detected at Design Time” on

page 19-4
4 Specify build configuration parameters. “Specify Build Configuration Parameters” on

page 21-32
5 Specify properties of primary function inputs. “Primary Function Input Specification” on

page 21-46
6 Generate the MEX function using codegen

with suitable command-line options.
codegen

Generate a MEX Function at the Command Line

In this example, you use the codegen function to generate a MEX function from a
MATLAB file that adds two inputs. You use the codegen -args option to specify that
both inputs are int16.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen

y = u + v;

2 Generate a platform-specific MEX function in the current folder. At the command
line, specify that the two input parameters are int16 using the -args option. By
default, if you do not use the -args option, codegen treats inputs as real, scalar
doubles.

codegen mcadd -args {int16(0), int16(0)}

codegen generates a MEX function, mcadd_mex, in the current folder. codegen also
generates other supporting files in a subfolder called codegen/mex/mcadd.codegen
uses the name of the MATLAB function as the root name for the generated files

19-21

19 Preparing MATLAB Code for C/C++ Code Generation

and creates a platform-specific extension for the MEX file, as described in “Naming
Conventions” on page 21-82.

Related Examples
• “Primary Function Input Specification” on page 21-46
• “MEX Function Generation at the Command Line”

19-22

 Fix Errors Detected at Code Generation Time

Fix Errors Detected at Code Generation Time

When the code generator detects errors or warnings, it automatically generates an error
report. The error report describes the issues and provides links to the MATLAB code with
errors.

To fix the errors, modify your MATLAB code to use only those MATLAB features that are
supported for code generation. For more information, see “Programming Considerations
for Code Generation”. Choose a debugging strategy for detecting and correcting code
generation errors in your MATLAB code. For more information, see “Debugging
Strategies” on page 19-27.

When code generation is complete, the software generates a MEX function that you can
use to test your implementation in MATLAB.

If your MATLAB code calls functions on the MATLAB path, unless the code generator
determines that these functions should be extrinsic or you declare them to be extrinsic,
it attempts to compile these functions. See “Resolution of Function Calls for Code
Generation” on page 14-2. To get detailed diagnostics, add the %#codegen directive to
each external function that you want codegen to compile.

See Also

• “Code Generation Reports” on page 22-9
• “Why Test MEX Functions in MATLAB?” on page 20-2
• “When to Generate Code from MATLAB Algorithms” on page 2-2
• “Debugging Strategies” on page 19-27
• “Declaring MATLAB Functions as Extrinsic Functions” on page 14-12

19-23

19 Preparing MATLAB Code for C/C++ Code Generation

Design Considerations When Writing MATLAB Code for Code
Generation

When writing MATLAB code that you want to convert into efficient, standalone C/C++
code, you must consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before use,
MATLAB Coder requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You can define
inputs, outputs, and local variables in MATLAB functions to represent data that
varies in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory allocation.

With dynamic memory allocation, you potentially use less memory at the expense
of time to manage the memory. With static memory, you get best speed, but with
higher memory usage. Most MATLAB code takes advantage of the dynamic sizing
features in MATLAB, therefore dynamic memory allocation typically enables you
to generate code from existing MATLAB code without modifying it much. Dynamic
memory allocation also allows some programs to compile even when upper bounds
cannot be found.

Static allocation reduces the memory footprint of the generated code, and therefore is
suitable for applications where there is a limited amount of available memory, such as
embedded applications.

• Speed

Because embedded applications must run in real time, the code must be fast enough
to meet the required clock rate.

To improve the speed of the generated code:

• Choose a suitable C or /C++ compiler. The default compiler that MathWorks
supplies with MATLAB for Windows 64-bit platforms is not a good compiler for
performance.

19-24

 Design Considerations When Writing MATLAB Code for Code Generation

• Consider disabling run-time checks.

By default, the code generated for your MATLAB code contains memory integrity
checks and responsiveness checks. Generally, these checks result in more
generated code and slower MEX function execution. Disabling run-time checks
usually results in streamlined generated code and faster MEX function execution.
Disable these checks only if you have verified that array bounds and dimension
checking is unnecessary.

See Also

• “Programming Considerations for Code Generation”
• “Data Definition”
• “Variable-Size Data”
• “Bounded Versus Unbounded Variable-Size Data” on page 7-4
• “Control Dynamic Memory Allocation” on page 21-107
• “Control Run-Time Checks” on page 26-15

19-25

19 Preparing MATLAB Code for C/C++ Code Generation

Running MEX Functions

When you call a MEX function, pass it the same inputs that you use for the original
MATLAB algorithm. Do not pass coder.Constant or any of the coder.Type classes to
a MEX function. You can use these classes with only the codegen function.

To run a MEX function generated by MATLAB Coder, you must have licenses for all the
toolboxes that the MEX function requires. For example, if you generate a MEX function
from a MATLAB algorithm that uses a Computer Vision System Toolbox function or
System object, to run the MEX function, you must have a Computer Vision System
Toolbox license.

When you upgrade MATLAB, before running MEX functions with the new version,
rebuild the MEX functions.

Debugging MEX Functions

To debug your MEX functions, use the disp function to inspect the contents of your MEX
function variables. You cannot use save to debug MEX function variables because code
generation does not support it. Code generation does not support declaration of save as
extrinsic.

19-26

 Debugging Strategies

Debugging Strategies

Before you perform code verification, choose a debugging strategy for detecting and
correcting noncompliant code in your MATLAB applications, especially if they consist
of a large number of MATLAB files that call each other's functions. The following table
describes two general strategies, each of which has advantages and disadvantages.

Debugging
Strategy

What to Do Pros Cons

Bottom-up
verification

1 Verify that your lowest-
level (leaf) functions are
compliant.

2 Work your way up the
function hierarchy
incrementally to compile
and verify each function,
ending with the top-level
function.

• Efficient
• Unlikely to cause

errors
• Easy to isolate

code generation
syntax violations

Requires application tests that
work from the bottom up

Top-down
verification

1 Declare functions called
by the top-level function
to be extrinsic so that
MATLAB Coder does
not compile them. See
“Declaring MATLAB
Functions as Extrinsic
Functions” on page 14-12.

2 Verify that your top-level
function is compliant.

3 Work your way down
the function hierarchy
incrementally by
removing extrinsic
declarations one by one to
compile and verify each
function, ending with the
leaf functions.

You retain your top-
level tests

Introduces extraneous code
that you must remove after
code verification, including:

• Extrinsic declarations
• Additional assignment

statements as required
to convert opaque values
returned by extrinsic
functions to nonopaque
values (see “Working with
mxArrays” on page 14-17).

19-27

19 Preparing MATLAB Code for C/C++ Code Generation

Collect and View Line Execution Counts for Your MATLAB Code

When you perform the Check for Run-Time Issues step in the MATLAB Coder app,
you must provide a test that calls your entry-point functions with representative data.
The Check for Run-Time Issues step generates a MEX function from your MATLAB
functions and runs the test, replacing calls to the MATLAB functions with calls to the
MEX function. When running the MEX function, the app counts executions of the MEX
code that corresponds to a line of MATLAB code. These line execution counts help you
to see how well your test exercises your MATLAB code. You can identify dead code and
sections of code that require further testing.

To see the line execution counts, after the Check for Run-Time Issues step finishes the
test, click View MATLAB line execution counts.

In the app editor, the app displays a color-coded bar to the left of your MATLAB code.

19-28

 Collect and View Line Execution Counts for Your MATLAB Code

This table describes the color coding.

Color Indicates

Green One of the following situations:

• The entry-point function executes multiple times and the code
executes more than one time.

• The entry-point function executes one time and the code executes
one time.

Different shades of green indicate different ranges of line execution
counts. The darkest shade of green indicates the highest range.

19-29

19 Preparing MATLAB Code for C/C++ Code Generation

Color Indicates

Orange The entry-point function executes multiple times, but the code
executes one time.

Red Code does not execute.

When you place your cursor over the bar, the color highlighting extends over the code.
For each section of code, the app displays the number of times that the section executes.

Collection of line execution counts is on by default. Turn it off only after you have verified
that you have adequate test file coverage. Turning off line execution counts can speed
up the Check for Run-Time Issues step. To turn off collection of line executions

19-30

 Collect and View Line Execution Counts for Your MATLAB Code

counts, in the Check for Run-Time Issues dialog box, clear the Collect MATLAB line
execution counts check box.

Related Examples
• “Check for Run-Time Issues by Using the App” on page 20-6

More About
• “Why Test MEX Functions in MATLAB?” on page 20-2

19-31

20

Testing MEX Functions in MATLAB

• “Why Test MEX Functions in MATLAB?” on page 20-2
• “Workflow for Testing MEX Functions in MATLAB” on page 20-3
• “Running MEX Functions” on page 20-5
• “Check for Run-Time Issues by Using the App” on page 20-6
• “Verify MEX Functions in the MATLAB Coder App” on page 20-8
• “Verify MEX Functions at the Command Line” on page 20-9
• “Debug Run-Time Errors” on page 20-10
• “Using MEX Functions That MATLAB Coder Generates” on page 20-13

20 Testing MEX Functions in MATLAB

Why Test MEX Functions in MATLAB?

Before generating C/C++ code for your MATLAB code, it is a best practice to test the
MEX function to verify that it provides the same functionality as the original MATLAB
code. To do this testing, run the MEX function using the same inputs as you used to run
the original MATLAB code and compare the results. For more information about how
to test a MEX function using the MATLAB Coder app, see “Check for Run-Time Issues
by Using the App” on page 20-6 and “Verify MEX Functions in the MATLAB Coder
App” on page 20-8. For more information about how to test a MEX function at the
command line, see “Verify MEX Functions at the Command Line” on page 20-9.

Running the MEX function in MATLAB before generating code enables you to detect
and fix run-time errors that are much harder to diagnose in the generated code. If you
encounter run-time errors in your MATLAB functions, fix them before generating code.
See “Fix Errors Detected at Code Generation Time” on page 19-23 and “Debug Run-Time
Errors” on page 20-10.

When you run your MEX function in MATLAB, by default, the following run-time checks
execute:

• Memory integrity checks. These checks perform array bounds checking, dimension
checking, and detect violations of memory integrity in code generated for MATLAB
functions. If a violation is detected, MATLAB stops execution and provides a
diagnostic message.

• Responsiveness checks in code generated for MATLAB functions. These checks enable
periodic checks for Ctrl+C breaks in code generated for MATLAB functions, allowing
you to terminate execution with Ctrl+C.

For more information, see “Control Run-Time Checks” on page 26-15.

20-2

 Workflow for Testing MEX Functions in MATLAB

Workflow for Testing MEX Functions in MATLAB

See Also

• “Set Up a MATLAB Coder Project” on page 18-2
• “Workflow for Preparing MATLAB Code for Code Generation” on page 19-2

20-3

20 Testing MEX Functions in MATLAB

• “Why Test MEX Functions in MATLAB?” on page 20-2
• “Debug Run-Time Errors” on page 20-10
• “C/C++ Code Generation” on page 21-4
• “Accelerate MATLAB Algorithms” on page 26-13

20-4

 Running MEX Functions

Running MEX Functions

When you call a MEX function, pass it the same inputs that you use for the original
MATLAB algorithm. Do not pass coder.Constant or any of the coder.Type classes to
a MEX function. You can use these classes with only the codegen function.

To run a MEX function generated by MATLAB Coder, you must have licenses for all the
toolboxes that the MEX function requires. For example, if you generate a MEX function
from a MATLAB algorithm that uses a Computer Vision System Toolbox function or
System object, to run the MEX function, you must have a Computer Vision System
Toolbox license.

When you upgrade MATLAB, before running MEX functions with the new version,
rebuild the MEX functions.

Debugging MEX Functions

To debug your MEX functions, use the disp function to inspect the contents of your MEX
function variables. You cannot use save to debug MEX function variables because code
generation does not support it. Code generation does not support declaration of save as
extrinsic.

20-5

20 Testing MEX Functions in MATLAB

Check for Run-Time Issues by Using the App

Before you generate standalone C/C++ code for your MATLAB code, it is a best practice
to generate a MEX function from your entry-point functions. Running the MEX function
helps you to detect and fix run-time errors that are much harder to diagnose in the
generated code. It also helps you to verify that the MEX provides the same functionality
as the original MATLAB code.

In the MATLAB Coder app, to generate and run the MEX function for your MATLAB
code, perform the Check for Run-Time Issues step.

1 Write a function or script that calls your entry-point functions. You can use the same
test file (or files) that you use to automatically define input types in the Define
Input Types step.

2 Complete the Select Source Files and Define Input Types steps. On the Define
Input Types page, click Next to go to Check for Run-Time Issues step.

3 Specify the test file. In the previous step, if you automatically generated the input
types, the app populates the dialog box with that test file. Instead of a test file, you
can enter code that calls your entry-point functions. However, it is a best practice to
provide a test file.

4 Click Check for Issues. The app generates a MEX function from your MATLAB
function. It runs the test that you specified, substituting calls to your MATLAB
entry-point functions with calls to the generated MEX function. The app reports
MEX generation or build errors on the Build Errors tab. The app reports MEX run-
time errors on the Test Output tab.

5 If the app reports errors, to edit the MATLAB code, click View errors.
6 After you fix issues, to rerun the test, click Check for Issues.

When the app runs the MEX function, it counts executions of the MEX code that
corresponds to a line of MATLAB code. If the app does not detect issues, you can view
these line execution counts. The line execution counts help you to see how well your
test exercises your MATLAB code. You can identify dead code and sections of code that
require further testing. See “Collect and View Line Execution Counts for Your MATLAB
Code” on page 19-28.

By default, to speed up generation of the MEX function, the app tries to use just-in-
time (JIT) compilation. JIT compilation is incompatible with certain code generation
features and options such as custom code and use of the OpenMP library. If the app
cannot use JIT compilation, it generates a C/C++ MEX function instead. If your code uses
parfor and the Enable OpenMP library if possible setting is Yes, the app uses JIT

20-6

 Check for Run-Time Issues by Using the App

compilation and treats the parfor-loops as for-loops. If you want the Check for Run-
Time Issues step to run for-loops in parallel, disable JIT compilation:

1 On the Check for Run-Time Issues page, click Settings.
2 On the All Settings tab, set Use JIT compilation in Check for Run-Time

Issues to No.

Related Examples
• “C Code Generation Using the MATLAB Coder App”
• “Fix Errors Detected at Code Generation Time” on page 19-23
• “Collect and View Line Execution Counts for Your MATLAB Code” on page 19-28
• “Control Run-Time Checks” on page 26-15

More About
• “Why Test MEX Functions in MATLAB?” on page 20-2

20-7

20 Testing MEX Functions in MATLAB

Verify MEX Functions in the MATLAB Coder App

In the MATLAB Coder app, after you generate a MEX function, you can verify that the
generated MEX function has the same functionality as the original MATLAB entry-point
function. Provide a test file that calls the original MATLAB entry-point function. The test
file can be a function or a script. The test file must be in the same folder as the original
entry-point function.

1 On the Generate Code page, click Verify Code.
2 Type or select the test file name.
3 To run the test file without replacing calls to the original MATLAB function with

calls to the MEX function, for Run using, select MATLAB code. Click Run
Generated Code.

4 To run the test file, replacing calls to the original MATLAB function with calls to
the MEX function, for Run using, select Generated code. Click Run Generated
Code.

5 Compare the results of running the original MATLAB function with the results of
running the MEX function.

20-8

 Verify MEX Functions at the Command Line

Verify MEX Functions at the Command Line

If you have a test file that calls your original MATLAB function, use coder.runTest
to verify the MEX function at the command line. coder.runTest runs the test file
replacing calls to the original MATLAB function with calls to the generated MEX
function. If errors occur during the run with coder.runTest, call stack information
is available for debugging purposes. For more information, see the coder.runTest
function reference information and “Verifying the MEX Function” in the MATLAB Coder
“C Code Generation at the Command Line” tutorial.

20-9

20 Testing MEX Functions in MATLAB

Debug Run-Time Errors

In this section...

“Viewing Errors in the Run-Time Stack” on page 20-10
“Handling Run-Time Errors” on page 20-12

If you encounter run-time errors in your MATLAB functions, the run-time stack appears
in the MATLAB command window. Use the error message and stack information to
learn more about the source of the error, and then either fix the issue or add error-
handling code. For more information, see “Viewing Errors in the Run-Time Stack” on
page 20-10“Handling Run-Time Errors” on page 20-12.

Viewing Errors in the Run-Time Stack

About the Run-Time Stack

The run-time stack is enabled by default for MEX code generation from MATLAB. To
learn more about the source of the error, use the error message and the following stack
information:

• The name of the function that generated the error
• The line number of the attempted operation
• The sequence of function calls that led up to the execution of the function and the line

at which each of these function calls occurred

20-10

 Debug Run-Time Errors

Example Run-Time Stack Trace

This example shows the run-time stack trace for MEX function mlstack_mex:

mlstack_mex(-1)

Index exceeds matrix dimensions. Index

value -1 exceeds valid range [1-4] of

array x.

Error in mlstack>mayfail (line 31)

y = x(u);

Error in mlstack>subfcn1 (line 5)

switch (mayfail(u))

Error in mlstack (line 2)

y = subfcn1(u);

The stack trace provides the following information:

• The type of error.

??? Index exceeds matrix dimensions.

Index value -1 exceeds valid range [1-4] of array x.

• Where the error occurred.

Error in ==>mlstack>mayfail at 31

y = x(u);

• The function call sequence prior to the failure.

Error in ==> mlstack>subfcn1 at 5

switch (mayfail(u))

Error in ==> mlstack at 2

y = subfcn1(u);

When to Use the Run-Time Stack

To help you find the source of run-time errors, the run-time stack is useful during
debugging. However, when the stack is enabled, the generated code contains instructions
for maintaining the run-time stack, which might slow the run time. Consider disabling
the run-time stack for faster run time.

20-11

20 Testing MEX Functions in MATLAB

Disable the Run-Time Stack

You can disable the run-time stack by disabling the memory integrity checks as described
in “How to Disable Run-Time Checks” on page 26-16.

Caution Before disabling the memory integrity checks, verify that all array bounds and
dimension checking is unnecessary.

Handling Run-Time Errors

The code generator propagates error IDs. If you throw an error or warning in your
MATLAB code, use the try-catch statement in your test bench code to examine the
error information and attempt to recover, or clean up and abort. For example, for the
function in “Example Run-Time Stack Trace” on page 20-11, create a test script
containing:

try

 mlstack_mex(u)

catch

 % Add your error handling code here

end

For more information, see “The try/catch Statement”.

20-12

 Using MEX Functions That MATLAB Coder Generates

Using MEX Functions That MATLAB Coder Generates

When you specify MEX for the output (build) type, MATLAB Coder generates a binary
MATLAB executable (MEX) version of your MATLAB function. You can call the MEX
function from MATLAB. See “Call MEX File Functions”.

How you use the MEX function depends on your goal.

Goal See

Accelerate your MATLAB function. “MATLAB Algorithm Acceleration”
Test generated function for functionality
and run-time issues.

“Why Test MEX Functions in MATLAB?”
on page 20-2

Debug your MEX function. “Debug Run-Time Errors” on page 20-10

20-13

21

Generating C/C++ Code from
MATLAB Code

• “Code Generation Workflow” on page 21-3
• “C/C++ Code Generation” on page 21-4
• “Generating C/C++ Static Libraries from MATLAB Code” on page 21-5
• “Generating C/C++ Dynamically Linked Libraries from MATLAB Code” on page

21-9
• “Generating Standalone C/C++ Executables from MATLAB Code” on page 21-14
• “Configure Build Settings” on page 21-26
• “Specify Data Types Used in Generated Code” on page 21-38
• “Change the Standard Math Library” on page 21-39
• “Share Build Configuration Settings” on page 21-40
• “Convert MATLAB Coder Project to MATLAB Script” on page 21-42
• “Preserve Variable Names in Generated Code” on page 21-44
• “Primary Function Input Specification” on page 21-46
• “Specify Cell Array Inputs at the Command Line” on page 21-56
• “Control Constant Inputs in MEX Function Signatures” on page 21-63
• “Define Input Properties Programmatically in the MATLAB File” on page 21-67
• “Speed Up Compilation by Generating Only Code” on page 21-79
• “Disable Creation of the Code Generation Report” on page 21-80
• “Paths and File Infrastructure Setup” on page 21-81
• “Generate Code for Multiple Entry-Point Functions” on page 21-87
• “Generate Code for Global Data” on page 21-93
• “Specify Global Cell Arrays at the Command Line” on page 21-103
• “Generate Code for Enumerations” on page 21-105

21 Generating C/C++ Code from MATLAB Code

• “Generate Code for Variable-Size Data” on page 21-106
• “How MATLAB Coder Partitions Generated Code” on page 21-124
• “Requirements for Signed Integer Representation” on page 21-137
• “Customize the Post-Code-Generation Build Process” on page 21-138
• “Run-time Stack Overflow” on page 21-177
• “Pass Structure Arguments by Reference or by Value in Generated Code” on page

21-178
• “Generate Code for an LED Control Function That Uses Enumerated Types” on page

21-186

21-2

 Code Generation Workflow

Code Generation Workflow

See Also

• “Set Up a MATLAB Coder Project” on page 18-2
• “Workflow for Preparing MATLAB Code for Code Generation” on page 19-2
• “Workflow for Testing MEX Functions in MATLAB” on page 20-3
• “Configure Build Settings” on page 21-26
• “C/C++ Code Generation” on page 21-4

21-3

21 Generating C/C++ Code from MATLAB Code

C/C++ Code Generation

Using MATLAB Coder, you can generate platform-specific MEX functions, C/C++ static
and dynamic libraries, and C/C++ executable programs. If you specify C++, MATLAB
Coder wraps the C code into .cpp files so that you can use a C++ compiler and interface
with external C++ applications. It does not generate C++ classes.

To learn how to generate... See...

C/C++ static libraries from your MATLAB
code

“Generating C/C++ Static Libraries from
MATLAB Code” on page 21-5

C/C++ dynamic libraries from your
MATLAB code

“Generating C/C++ Dynamically Linked
Libraries from MATLAB Code” on page
21-9

C/C++ executables from your MATLAB
code

“Generating Standalone C/C++ Executables
from MATLAB Code” on page 21-14

MEX functions from your MATLAB code “Generate MEX Functions by Using the
MATLAB Coder App” on page 19-16

If errors occur, MATLAB Coder does not generate code, but produces an error report and
provides a link to this report. For more information, see “Code Generation Reports” on
page 22-9.

Specify Custom Files to Build

In addition to your MATLAB file, you can specify the following types of custom files to
include in the build for standalone C/C++ code generation.

File Extension Description

.c Custom C file

.cpp Custom C++ file

.h Custom header file

.o , .obj Custom object file

.a , .lib, .so, .dylib Library

.tmf Template makefile for custom MATLAB
Coder builds

21-4

 Generating C/C++ Static Libraries from MATLAB Code

Generating C/C++ Static Libraries from MATLAB Code

In this section...

“Generate a C Static Library Using the MATLAB Coder App” on page 21-5
“Generate a C Static Library at the Command Line” on page 21-7

Generate a C Static Library Using the MATLAB Coder App

This example shows how to generate a C static library from MATLAB code using the
MATLAB Coder app.

In this example, you create a MATLAB function that adds two numbers. You use the app
to create a MATLAB Coder project and generate a C static library for the MATLAB code.

Create the Entry-Point Function

In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen

y = u + v;

Create the Test File

In the same local writable folder, create a MATLAB file, mcadd_test.m, that calls
mcadd with example inputs. The example inputs are scalars with type int16.

function y = mcadd_test

y = mcadd(int16(2), int16(3));

Open the MATLAB Coder App

On the MATLAB Toolstrip Apps tab, under Code Generation, click the MATLAB
Coder app icon.

The app opens the Select Source Files page.

Specify Source Files

1 On the Select Source Files page, type or select the name of the entry-point
function mcadd.

21-5

21 Generating C/C++ Code from MATLAB Code

The app creates a project with the default name mcadd.prj in the current folder.
2 Click Next to go to the Define Input Types step. The app analyzes the function for

coding issues and code generation readiness. If the app identifies issues, it opens the
Review Code Generation Readiness page where you can review and fix issues.
In this example, because the app does not detect issues, it opens the Define Input
Types page.

Define Input Types

Because C uses static typing, at compile time, MATLAB Coder must determine the
properties of all variables in the MATLAB files. You must specify the properties of all
entry-point function inputs. From the properties of the entry-point function inputs,
MATLAB Coder can infer the properties of all variables in the MATLAB files.

Specify the test file mcadd_test.m that MATLAB Coder can use to automatically define
types for u and v:

1 Enter or select the test file mcadd_test.m.
2 Click Autodefine Input Types.

The test file, mcadd_test.m, calls the entry-point function, mcadd with the example
input types. MATLAB Coder infers that inputs u and v are int16(1x1).

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates a MEX file from your entry-point
functions, runs the MEX function, and reports issues. This step is optional. However, it
is a best practice to perform this step. You can detect and fix run-time errors that are
harder to diagnose in the generated C code.

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues

arrow .

The app populates the test file field with mcadd_test, the test file that you used to
define the input types.

2 Click Check for Issues.

The app generates a MEX function. It runs the test file replacing calls to mcadd
with calls to the MEX function. If the app detects issues during the MEX function

21-6

 Generating C/C++ Static Libraries from MATLAB Code

generation or execution, it provides warning and error messages. Click these
messages to navigate to the problematic code and fix the issue. In this example, the
app does not detect issues.

3 Click Next to go to the Generate Code step.

Generate C Code

1 To open the Generate dialog box, click the Generate arrow .
2 In the Generate dialog box, set Build type to Static Library (.lib) and

Language to C. Use the default values for the other project build configuration
settings.

3 Click Generate.

The app indicates that code generation succeeded. It displays the source MATLAB
files and generated output files on the left side of the page. On the Variables
tab, it displays information about the MATLAB source variables. On the Target
Build Log tab, it displays the build log, including compiler warnings and errors.
By default, in the code window, the app displays the C source code file, mcadd.c. To
view a different file, in the Source Code or Output Files pane, click the file name.

MATLAB Coder generates a standalone C static library mcadd in the codegen\lib
\mcadd folder. It generates the minimal set of #include statements for header files
required by the selected code replacement library.

4 To view the code generation report, click View Report.
5 Click Next to open the Finish Workflow page.

Review the Finish Workflow Page

The Finish Workflow page indicates that code generation succeeded. It provides a
project summary and links to generated output.

Generate a C Static Library at the Command Line

This example shows how to generate a C static library from MATLAB code at the
command line using the codegen function.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen

21-7

21 Generating C/C++ Code from MATLAB Code

y = u + v;

2 Using the config:lib option, generate C library files. Using the -args option,
specify that the first input is a 1-by-4 vector of unsigned 16-bit integers and that
the second input is a double-precision scalar.

codegen -config:lib mcadd -args {zeros(1,4,'uint16'),0}

MATLAB Coder generates a C static library with the default name, mcadd, and
supporting files in the default folder, codegen/lib/mcadd. It generates the
minimal set of #include statements for header files required by the selected code
replacement library.

21-8

 Generating C/C++ Dynamically Linked Libraries from MATLAB Code

Generating C/C++ Dynamically Linked Libraries from MATLAB
Code

In this section...

“Dynamic Libraries Generated by MATLAB Coder” on page 21-9
“Generate a C Dynamically Linked Library Using the MATLAB Coder App” on page
21-9
“Generate a C Dynamic Library at the Command Line” on page 21-12

Dynamic Libraries Generated by MATLAB Coder

By default, when MATLAB Coder generates a dynamic library (DLL):

• The DLL is suitable for the platform that you are working on.
• The DLL uses the release version of the C run-time library.
• The DLL linkage conforms to the target language, by default, C. If you set the target

language to C++, the linkage conforms to C++.
• When the target language is C, the generated header files explicitly declare the

exported functions to be extern "C" to simplify integration of the DLL into C++
applications.

• When an executable that uses the DLL runs, the DLL must be on the system path so
that the executable can access it.

If you generate a DLL that uses dynamically allocated variable-size data, MATLAB
Coder provides exported utility functions to interact with this data in the generated code.
For more information, see “Utility Functions for Creating emxArray Data Structures” on
page 7-20.

Generate a C Dynamically Linked Library Using the MATLAB Coder App

This example shows how to generate a C DLL from MATLAB code using the MATLAB
Coder app.

Create the Entry-Point Functions

Write two MATLAB functions, ep1 and ep2. ep1 takes one input, a single scalar. ep2
takes two inputs that are double scalars. In a local writable folder:

21-9

21 Generating C/C++ Code from MATLAB Code

1 Create a MATLAB file, ep1.m, that contains:

function y = ep1(u) %#codegen

y = u;

2 Create a MATLAB file, ep2.m, that contains:

function y = ep2(u, v) %#codegen

y = u + v;

Create the Test File

In the folder that contains ep1.m and ep2.m, create a MATLAB file, ep_test.m, that
calls ep1 and ep2 with example inputs.

function [y, y1] = ep_test

y = ep1(single(2));

y1 = ep2(double(3), double(4));

Open the MATLAB Coder App

On the MATLAB Toolstrip Apps tab, under Code Generation, click the MATLAB
Coder app icon.

The app opens the Select Source Files page.

Specify Source Files

1 On the Select Source Files page, type or select the name of the entry-point
function ep1.

The app creates a project with the default name ep1.prj in the current folder.
2 To add ep2 to the list of entry-point functions, click Add Entry-Point Function.

Type or select the name of the entry-point function ep2.
3 Click Next to go to the Define Input Types step. The app analyzes the functions

for coding issues and code generation readiness. If the app identifies issues, it opens
the Review Code Generation Readiness page where you can review and fix
issues. In this example, because the app does not detect issues, it opens the Define
Input Types page.

Define Input Types

Because C uses static typing, at compile time, MATLAB Coder must determine the
properties of all variables in the MATLAB files. You must specify the properties of all

21-10

 Generating C/C++ Dynamically Linked Libraries from MATLAB Code

entry-point function inputs. From the properties of the entry-point function inputs,
MATLAB Coder can infer the properties of all variables in the MATLAB files.

Specify a test file that MATLAB Coder can use to automatically define types:

1 Enter or select the test file ep_test.m.
2 Click Autodefine Input Types.

The test file, eps_test.m, calls the entry-point functions ep1 and ep2 with the
example input types. MATLAB Coder infers that for ep1, input u is single(1x1).
For ep2, u and v are double(1x1).

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates a MEX file from your entry-point
functions, runs the MEX function, and reports issues. This step is optional. However, it
is a best practice to perform this step. You can detect and fix run-time errors that are
harder to diagnose in the generated C code.

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues

arrow .

The app populates the test file field with ep_test, the test file that you used to
define the input types.

2 Click Check for Issues.

The app generates a MEX function named ep1_mex for ep1 and ep2. It runs the
test file ep_test replacing calls to ep1 and ep2 with calls to the MEX function. If
the app detects issues during the MEX function generation or execution, it provides
warning and error messages. Click these messages to navigate to the problematic
code and fix the issue. In this example, the app does not detect issues.

3 Click Next to go to the Generate Code step.

Generate C Code

1 To open the Generate dialog box, click the Generate arrow .
2 In the Generate dialog box, set Build type to Dynamic Library and Language

to C. Use the default values for the other project build configuration settings.

21-11

21 Generating C/C++ Code from MATLAB Code

3 Click Generate.

The app indicates that code generation succeeded. It displays the source MATLAB
files and generated output files on the left side of the page. On the Variables
tab, it displays information about the MATLAB source variables. On the Target
Build Log tab, it displays the build log, including compiler warnings and errors. By
default, in the code window, the app displays the C source code file, ep1.c. To view a
different file, in the Source Code or Output Files pane, click the file name.

On Microsoft® Windows systems, MATLAB Coder generates a C dynamic library,
ep1.dll, and supporting files, in the default folder, codegen\dll\ep1. It
generates the minimal set of #include statements for header files required by the
selected code replacement library. On Linux®, it generates a shared object (.so) file.
On Mac, it generates a dynamic library (.dylib) file. The DLL linkage conforms to
the target language, in this example, C. If you set the target language to C++, the
linkage conforms to C++. MATLAB Coder generates a standalone C static library
mcadd in the codegen\lib\mcadd folder.

4 To view the code generation report, click View Report.
5 Click Next to open the Finish Workflow page.

Review the Finish Workflow Page

The Finish Workflow page indicates that code generation succeeded. It provides a
project summary and links to generated output.

Generate a C Dynamic Library at the Command Line

This example shows how to generate a C dynamic library from MATLAB code at the
command line using the codegen function.

1 Write two MATLAB functions, ep1 takes one input, a single scalar, and ep2 takes
two inputs, both double scalars. In a local writable folder, create a MATLAB file,
ep1.m, that contains:

function y = ep1(u) %#codegen

y = u;

In the same local writable folder, create a MATLAB file, ep2.m, that contains:

function y = ep2(u, v) %#codegen

y = u + v;

21-12

 Generating C/C++ Dynamically Linked Libraries from MATLAB Code

2 Generate the C dynamic library.

codegen -config:dll ep1 -args single(0) ep2 -args {0,0}

On Microsoft Windows systems, codegen generates a C dynamic library, ep1.dll,
and supporting files, in the default folder, codegen/dll/ep1. It generates the
minimal set of #include statements for header files required by the selected code
replacement library. On Linux, it generates a shared object (.so) file. On Mac, it
generates a dynamic library (.dylib) file. The DLL linkage conforms to the target
language, in this example, C. If you set the target language to C++, the linkage
conforms to C++.

Note: The default target language is C. To change the target language to C++, see
“Specify a Language for Code Generation” on page 21-28.

21-13

21 Generating C/C++ Code from MATLAB Code

Generating Standalone C/C++ Executables from MATLAB Code

In this section...

“Generate a C Executable Using the MATLAB Coder App” on page 21-14
“Generate a C Executable at the Command Line” on page 21-23
“Specifying main Functions for C/C++ Executables” on page 21-24
“Specify main Functions” on page 21-25

Generate a C Executable Using the MATLAB Coder App

This example shows how to generate a C executable from MATLAB code using the
MATLAB Coder app. In this example, you generate an executable for a MATLAB
function that generates a random scalar value. Using the app, you:

1 Generate a C main function that calls the generated library function.
2 Copy and modify the generated main.c and main.h.
3 Modify the project settings so that the app can find the modified main.c and

main.h.
4 Generate the executable.

Create the Entry-Point Function

In a local writable folder, create a MATLAB function, coderand, that generates a
random scalar value from the standard uniform distribution on the open interval (0,1):

function r = coderand() %#codegen

r = rand();

Create the Test File

In the same local writable folder, create a MATLAB file, coderand_test.m, that calls
coderand.

function y = coderand_test()

y = coderand();

Open the MATLAB Coder app

On the MATLAB Toolstrip Apps tab, under Code Generation, click the MATLAB
Coder app icon.

21-14

 Generating Standalone C/C++ Executables from MATLAB Code

The app opens the Select Source Files page.

Specify Source Files

1 On the Select Source Files page, type or select the name of the entry-point
function coderand.

The app creates a project with the default name coderand.prj in the current
folder.

2 Click Next to go to the Define Input Types step. The app analyzes the function for
coding issues and code generation readiness. If the app identifies issues, it opens the
Review Code Generation Readiness page where you can review and fix issues.
In this example, because the app does not detect issues, it opens the Define Input
Types page.

Define Input Types

Because C uses static typing, at compile time, MATLAB Coder must determine the
properties of all variables in the MATLAB files. You must specify the properties of all
entry-point function inputs. From the properties of the entry-point function inputs,
MATLAB Coder can infer the properties of all variables in the MATLAB files.

In this example, the function coderand does not have inputs.

Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates a MEX file from your entry-point
functions, runs the MEX function, and reports issues. This step is optional. However, it
is a best practice to perform this step. You can detect and fix run-time errors that are
harder to diagnose in the generated C code.

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues

arrow .

Select or enter the test file coderand_test.
2 Click Check for Issues.

The app generates a MEX function for coderand. It runs the test file replacing calls
to coderand with calls to the MEX function. If the app detects issues during the
MEX function generation or execution, it provides warning and error messages.

21-15

21 Generating C/C++ Code from MATLAB Code

Click these messages to navigate to the problematic code and fix the issue. In this
example, the app does not detect issues.

3 Click Next to go to the Generate Code step.

Generate a C main Function

When you generate an executable, you must provide a C/C++ function. By default,
when you generate C/C++ source code, static libraries, dynamically linked libraries, or
executables, MATLAB Coder generates a main function. This generated main function is
a template that you modify for your application. See “Incorporate Generated Code Using
an Example Main Function” on page 25-20. After you copy and modify the generated
main function, you can use it for generation of the C/C++ executable. Alternatively, you
can write your own main function.

Before you generate the executable for coderand, generate a main function that calls
coderand.

1 To open the Generate dialog box, click the Generate arrow .
2 In the Generate dialog box, set Build type to Source Code and Language to C.

Use the default values for the other project build configuration settings.
3 Click More Settings.
4 On the All Settings tab, under Advanced, verify that Generate example main is

set to Generate, but do not compile, an example main function. Click
Close.

5 Click Generate.

MATLAB Coder generates a main.c file and a main.h file. The app indicates that
code generation succeeded.

6 Click Next to open the Finish Workflow page.

On the Finish Workflow page, under Generated Output, you see that main.c is
in the subfolder coderand\codegen\lib\coderand\examples.

Copy the Generated Example Main Files

Because subsequent code generation can overwrite the generated example files, before
you modify these files, copy them to a writable folder outside of the codegen folder. For
this example, copy main.c and main.h from the subfolder coderand\codegen\lib
\coderand\examples to a writable folder, for example, c:\myfiles.

21-16

 Generating Standalone C/C++ Executables from MATLAB Code

Modify the Generated Example Main Files

1 In the folder that contains a copy of the example main files, open main.c.

Generated main.c

/***/

/* This automatically generated example C main file shows how to call */

/* entry-point functions that MATLAB Coder generated. You must customize */

/* this file for your application. Do not modify this file directly. */

/* Instead, make a copy of this file, modify it, and integrate it into */

/* your development environment. */

/* */

/* This file initializes entry-point function arguments to a default */

/* size and value before calling the entry-point functions. It does */

/* not store or use any values returned from the entry-point functions. */

/* If necessary, it does pre-allocate memory for returned values. */

/* You can use this file as a starting point for a main function that */

/* you can deploy in your application. */

/* */

/* After you copy the file, and before you deploy it, you must make the */

/* following changes: */

/* * For variable-size function arguments, change the example sizes to */

/* the sizes that your application requires. */

/* * Change the example values of function arguments to the values that */

/* your application requires. */

/* * If the entry-point functions return values, store these values or */

/* otherwise use them as required by your application. */

/* */

/***/

/* Include Files */

#include "rt_nonfinite.h"

#include "coderand.h"

#include "main.h"

#include "coderand_terminate.h"

#include "coderand_initialize.h"

/* Function Declarations */

static void main_coderand(void);

/* Function Definitions */

/*

 * Arguments : void

21-17

21 Generating C/C++ Code from MATLAB Code

 * Return Type : void

 */

static void main_coderand(void)

{

 double r;

 /* Call the entry-point 'coderand'. */

 r = coderand();

}

/*

 * Arguments : int argc

 * const char * const argv[]

 * Return Type : int

 */

int main(int argc, const char * const argv[])

{

 (void)argc;

 (void)argv;

 /* Initialize the application.

 You do not need to do this more than one time. */

 coderand_initialize();

 /* Invoke the entry-point functions.

 You can call entry-point functions multiple times. */

 main_coderand();

 /* Terminate the application.

 You do not need to do this more than one time. */

 coderand_terminate();

 return 0;

}

/*

 * File trailer for main.c

 *

 * [EOF]

 */

2 Modify main.c so that it prints the results of a coderand call:

• In main_coderand, delete the line

double r;

21-18

 Generating Standalone C/C++ Executables from MATLAB Code

• In main_coderand, replace

r = coderand()

with

printf("coderand=%g\n", coderand());

• For this example, main does not have arguments. In main, delete the lines:

(void)argc;

(void)argv;

Change the definition of main to

int main()

Modified main.c

/* Include Files */

#include "rt_nonfinite.h"

#include "coderand.h"

#include "main.h"

#include "coderand_terminate.h"

#include "coderand_initialize.h"

/* Function Declarations */

static void main_coderand(void);

/* Function Definitions */

/*

 * Arguments : void

 * Return Type : void

 */

static void main_coderand(void)

{

 /* Call the entry-point 'coderand'. */

 printf("coderand=%g\n", coderand());

}

/*

 * Arguments : int argc

 * const char * const argv[]

 * Return Type : int

 */

21-19

21 Generating C/C++ Code from MATLAB Code

int main()

{

 /* Initialize the application.

 You do not need to do this more than one time. */

 coderand_initialize();

 /* Invoke the entry-point functions.

 You can call entry-point functions multiple times. */

 main_coderand();

 /* Terminate the application.

 You do not need to do this more than one time. */

 coderand_terminate();

 return 0;

}

/*

 * File trailer for main.c

 *

 * [EOF]

 */

3 Open main.h

Generated main.h

***/

/* This automatically generated example C main file shows how to call */

/* entry-point functions that MATLAB Coder generated. You must customize */

/* this file for your application. Do not modify this file directly. */

/* Instead, make a copy of this file, modify it, and integrate it into */

/* your development environment. */

/* */

/* This file initializes entry-point function arguments to a default */

/* size and value before calling the entry-point functions. It does */

/* not store or use any values returned from the entry-point functions. */

/* If necessary, it does pre-allocate memory for returned values. */

/* You can use this file as a starting point for a main function that */

/* you can deploy in your application. */

/* */

/* After you copy the file, and before you deploy it, you must make the */

/* following changes: */

/* * For variable-size function arguments, change the example sizes to */

/* the sizes that your application requires. */

21-20

 Generating Standalone C/C++ Executables from MATLAB Code

/* * Change the example values of function arguments to the values that */

/* your application requires. */

/* * If the entry-point functions return values, store these values or */

/* otherwise use them as required by your application. */

/* */

/***/

#ifndef __MAIN_H__

#define __MAIN_H__

/* Include Files */

#include <stddef.h>

#include <stdlib.h>

#include <string.h>

#include "rtwtypes.h"

#include "coderand_types.h"

/* Function Declarations */

extern int main(int argc, const char * const argv[]);

#endif

/*

 * File trailer for main.h

 *

 * [EOF]

 */

4 Modify main.h:

• Add stdio to the include files:

#include <stdio.h>

• Change the declaration of main to

extern int main()

Modified main.h

#ifndef __MAIN_H__

#define __MAIN_H__

/* Include Files */

21-21

21 Generating C/C++ Code from MATLAB Code

#include <stdio.h>

#include <stddef.h>

#include <stdlib.h>

#include <string.h>

#include "rtwtypes.h"

#include "coderand_types.h"

/* Function Declarations */

extern int main();

#endif

/*

 * File trailer for main.h

 *

 * [EOF]

 */

Generate the Executable

1
To open the Generate Code page, expand the workflow steps and click
Generate

2 To open the Generate dialog box, click the Generate arrow .
3 Set Build type to Executable (.exe).
4 Click More Settings.
5 On the Custom Code tab, in Additional source files, enter main.c
6 On the Custom Code tab, in Additional include directories, enter the location of

the modified main.c and main.h files. For example, c:\myfiles. Click Close.
7 To generate the executable, click Generate.

The app indicates that code generation succeeded.
8 Click Next to go to the Finish Workflow step.
9 Under Generated Output, you can see the location of the generated executable

coderand.exe.

Run the Executable

To run the executable in MATLAB on a Windows platform:

21-22

 Generating Standalone C/C++ Executables from MATLAB Code

system('coderand')

Generate a C Executable at the Command Line

In this example, you create a MATLAB function that generates a random scalar value
and a main C function that calls this MATLAB function. You then specify types for the
function input parameters, specify the main function, and generate a C executable for the
MATLAB code.

1 Write a MATLAB function, coderand, that generates a random scalar value from
the standard uniform distribution on the open interval (0,1):

function r = coderand() %#codegen

r = rand();

2 Write a main C function, c:\myfiles\main.c, that calls coderand. For example:

/*

** main.c

*/

#include <stdio.h>

#include <stdlib.h>

#include "coderand.h"

#include "coderand_initialize.h"

#include "coderand_terminate.h"

int main()

{

 coderand_initialize();

 printf("coderand=%g\n", coderand());

 coderand_terminate();

 return 0;

}

Note: In this example, because the default file partitioning method is to generate
one file for each MATLAB file, you include “coderand_initialize.h” and
“coderand_terminate.h”. If your file partitioning method is set to generate
one file for all functions, do not include “coderand_initialize.h” and
“coderand_terminate.h”.

21-23

21 Generating C/C++ Code from MATLAB Code

3 Configure your code generation parameters to include the main C function and then
generate the C executable:

cfg = coder.config('exe');

cfg.CustomSource = 'main.c';

cfg.CustomInclude = 'c:\myfiles';

codegen -config cfg coderand

codegen generates a C executable, coderand.exe, in the current folder. It
generates supporting files in the default folder, codegen/exe/coderand. codegen
generates the minimal set of #include statements for header files required by the
selected code replacement library.

Specifying main Functions for C/C++ Executables

When you generate an executable, you must provide a main function. For a C executable,
provide a C file, main.c. For a C++ executable, provide a C++ file, main.cpp. Verify that
the folder containing the main function has only one main file. Otherwise, main.c takes
precedence over main.cpp, which causes an error when generating C++ code. You can
specify the main file from the project settings dialog box, the command line, or the Code
Generation dialog box.

By default, when you generate C/C++ source code, static libraries, dynamically linked
libraries, or executables, MATLAB Coder generates a main function. This generated
main function is a template that you modify for your application. See “Incorporate
Generated Code Using an Example Main Function” on page 25-20. After you copy
and modify the generated main function, you can use it for generation of the C/C++
executable. Alternatively, you can write your own main function.

When you convert a MATLAB function to a C/C++ library function or a C/C++
executable, MATLAB Coder generates an initialize function and a terminate function.

• If your file partitioning method is set to generate one file for each MATLAB file, you
must include the initialize and terminate header functions in main.c. Otherwise, do
not include them in main.c.

• You must call these functions along with the C/C++ function. For more information,
see “Calling Initialize and Terminate Functions” on page 25-9.

21-24

 Generating Standalone C/C++ Executables from MATLAB Code

Specify main Functions

Specifying main Functions Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the Custom Code tab, set:

a Additional source files to the name of the C/C++ source file that contains the
main function. For example, main.c. For more information, see “Specifying
main Functions for C/C++ Executables” on page 21-24.

b Additional include directories to the location of main.c. For example, c:
\myfiles.

Specifying main Functions at the Command Line

Set the CustomSource and CustomInclude properties of the code generation
configuration object (see “Working with Configuration Objects” on page 21-33).
The CustomInclude property indicates the location of C/C++ files specified by
CustomSource.

1 Create a configuration object for an executable:

cfg = coder.config('exe');

2 Set the CustomSource property to the name of the C/C++ source file that contains
the main function. (For more information, see “Specifying main Functions for C/C++
Executables” on page 21-24.) For example:

cfg.CustomSource = 'main.c';

3 Set the CustomInclude property to the location of main.c. For example:

cfg.CustomInclude = 'c:\myfiles';

4 Generate the C/C++ executable using the command-line options. For example, if
myFunction takes one input parameter of type double:

codegen -config cfg myMFunction -args {0}

MATLAB Coder compiles and links the main function with the C/C++ code that it
generates from myMFunction.m.

21-25

21 Generating C/C++ Code from MATLAB Code

Configure Build Settings

In this section...

“Specify Build Type” on page 21-26
“Specify a Language for Code Generation” on page 21-28
“Specify Output File Name” on page 21-30
“Specify Output File Locations” on page 21-30
“Parameter Specification Methods” on page 21-32
“Specify Build Configuration Parameters” on page 21-32

Specify Build Type

Build Types

MATLAB Coder can generate code for the following output types:

• MEX function
• Standalone C/C++ code
• Standalone C/C++ code and compile it to a static library
• Standalone C/C++ code and compile it to a dynamically linked library
• Standalone C/C++ code and compile it to an executable

Note: When you generate an executable, you must provide a C/C++ file that contains
the main function, as described in “Specifying main Functions for C/C++ Executables”
on page 21-24.

Location of Generated Files

By default, MATLAB Coder generates files in output folders based on your output type.
For more information, see “Generated Files and Locations” on page 21-130.

Note: Each time MATLAB Coder generates the same type of output for the same code or
project, it removes the files from the previous build. If you want to preserve files from a
build, copy them to a different location before starting another build.

21-26

 Configure Build Settings

Specify the Build Type Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Set Build type to one of the following.

• Source Code

• MEX

• Static Library

• Dynamic Library

• Executable

If you select Source Code, MATLAB Coder does not invoke the make command or
generate compiled object code. When you iterate between modifying MATLAB code and
generating C/C++ code and you want to inspect the generated code, this option can save
you time. This option is equivalent to Static Library with the Generate code only
box selected.

Code generation uses a different set of configuration parameters for MEX functions
than it uses for the other build types. . When you switch the output type between MEX
Function and Source, Static Library, Dynamic Library, or Executable, verify
these settings. For more information, see “Changing Output Type” on page 18-32.

Specifying the Build Type at the Command Line

Call codegen with the -config option. For example, suppose that you have a primary
function foo that takes no input parameters. The following table shows how to specify
different output types when compiling foo. If a primary function has input parameters,
you must specify these inputs. For more information, see “Primary Function Input
Specification” on page 21-46.

Note: C is the default language for code generation with MATLAB Coder. To generate C+
+ code, see “Specify a Language for Code Generation” on page 21-28.

To Generate: Use This Command:

MEX function using the default
code generation options

codegen foo

21-27

21 Generating C/C++ Code from MATLAB Code

To Generate: Use This Command:

MEX function specifying code
generation options

cfg = coder.config('mex');

% Set configuration parameters, for example,

% enable a code generation report

cfg.GenerateReport=true;

% Call codegen, passing the configuration

% object

codegen -config cfg foo

Standalone C/C++ code and
compile it to a library using the
default code generation options

codegen -config:lib foo

Standalone C/C++ code and
compile it to a library specifying
code generation options

cfg = coder.config('lib');

% Set configuration parameters, for example,

% enable a code generation report

cfg.GenerateReport=true;

% Call codegen, passing the configuration

% object

codegen -config cfg foo

Standalone C/C++ code and
compile it to an executable using
the default code generation
options and specifying the
main.c file at the command line

codegen -config:exe main.c foo

Note: You must specify a main function for generating a C/
C++ executable. See “Specifying main Functions for C/C++
Executables” on page 21-24

Standalone C/C++ code and
compile it to an executable
specifying code generation
options

cfg = coder.config('exe');

% Set configuration parameters, for example,

% specify main file

cfg.CustomSource = 'main.c';

cfg.CustomInclude = 'c:\myfiles';

codegen -config cfg foo

Note: You must specify a main function for generating a C/
C++ executable. See “Specifying main Functions for C/C++
Executables” on page 21-24

Specify a Language for Code Generation

• “Specify the Language Using the MATLAB Coder App” on page 21-29

21-28

 Configure Build Settings

• “Specifying the Language Using the Command-Line Interface” on page 21-29

MATLAB Coder can generate C or C++ libraries and executables. C is the default
language. You can specify a language explicitly from the project settings dialog box or at
the command line.

Specify the Language Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Set Language to C or C++.

Note: If you specify C++, MATLAB Coder wraps the C code into .cpp files. You can
use a C++ compiler and interface with external C++ applications. MATLAB Coder
does not generate C++ classes.

Specifying the Language Using the Command-Line Interface

1 Select a suitable compiler for your target language.
2 Create a configuration object for code generation. For example, for a library:

cfg = coder.config('lib');

3 Set the TargetLang property to 'C' or 'C++'. For example:

cfg.TargetLang = 'C++';

Note: If you specify C++, MATLAB Coder wraps the C code into .cpp files. You can
then use a C++ compiler and interface with external C++ applications. MATLAB
Coder does not generate C++ classes.

See Also

• “Working with Configuration Objects” on page 21-33
• “Setting Up the C or C++ Compiler”

21-29

21 Generating C/C++ Code from MATLAB Code

Specify Output File Name

Specify Output File Name Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 In the Output file name field, enter the file name.

Note: Do not put spaces in the file name.

By default, if the name of the first entry-point MATLAB file is fcn1, the output file name
is:

• fcn1 for C/C++ libraries and executables.
• fcn1_mex for MEX functions.

By default, MATLAB Coder generates files in the folder project_folder/codegen/
target/fcn1:

• project_folder is your current project folder
• target is:

• mex for MEX functions
• lib for static C/C++ libraries
• dll for dynamic C/C++ libraries
• exe for C/C++ executables

Command-Line Alternative

Use the codegen function -o option.

Specify Output File Locations

Specify Output File Location Using the MATLAB Coder App

The output file location must not contain:

21-30

 Configure Build Settings

• Spaces (Spaces can lead to code generation failures in certain operating system
configurations).

• Tabs
• \, $, #, *, ?
• Non-7-bit ASCII characters, such as Japanese characters.

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Set Build type to Source Code, Static Library, Dynamic Library, or

Executable (depending on your requirements).
3 Click More Settings.
4 Click the Paths tab.

The default setting for the Build folder field is A subfolder of the project
folder. By default, MATLAB Coder generates files in the folder project_folder/
codegen/target/fcn1:

• fcn1 is the name of the alphabetically first entry-point file.
• target is:

• mex for MEX functions
• lib for static C/C++ libraries
• dll for dynamically linked C/C++ libraries
• exe for C/C++ executables

5 To change the output location, you can either:

• Set Build Folder to A subfolder of the current MATLAB working
folder

MATLAB Coder generates files in the MATLAB_working_folder/codegen/
target/fcn1 folder

• Set Build Folder to Specified folder. In the Build folder name field,
provide the path to the folder.

Command-Line Alternative

Use the codegen function -d option.

21-31

21 Generating C/C++ Code from MATLAB Code

Parameter Specification Methods

If you are using Use Details

The MATLAB Coder app The project settings dialog box. “Specify Build Configuration
Parameters MATLAB Coder
App” on page 21-32

codegen at the command
line and want to specify a few
parameters
codegen in build scripts

Configuration objects “Specify Build Configuration
Parameters at the Command
Line Using Configuration
Objects” on page 21-33

codegen at the command
line and want to specify many
parameters

Configuration object dialog
boxes

“Specifying Build Configuration
Parameters at the Command
Line Using Dialog Boxes” on
page 21-37

Specify Build Configuration Parameters

• “Specify Build Configuration Parameters MATLAB Coder App” on page 21-32
• “Specify Build Configuration Parameters at the Command Line Using Configuration

Objects” on page 21-33
• “Specifying Build Configuration Parameters at the Command Line Using Dialog

Boxes” on page 21-37

You can specify build configuration parameters from the MATLAB Coder project settings
dialog box, the command line, or configuration object dialog boxes.

Specify Build Configuration Parameters MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Set Build type to Source Code, Static Library, Dynamic Library, or

Executable (depending on your requirements).
3 Click More Settings.

The project settings dialog box provides the set of configuration parameters
applicable to the output type that you select. Code generation uses a different set of
configuration parameters for MEX functions than it uses for the other build types.

21-32

 Configure Build Settings

When you switch the output type between MEX Function and Source Code,
Static Library, Dynamic Library, or Executable, verify these settings. See
“Changing Output Type” on page 18-32.

4 Modify the parameters as required. For more information about parameters on a tab,
click Help.

Changes to the parameter settings take place immediately.

Specify Build Configuration Parameters at the Command Line Using Configuration Objects

Types of Configuration Objects

The codegen function uses configuration objects to customize your environment for code
generation. The following table lists the available configuration objects.

Configuration Object Description

coder.CodeConfig If no Embedded Coder license is available or you disable
use of the Embedded Coder license, specifies parameters
for C/C++ library or executable generation.

For more information, see the class reference information
for coder.CodeConfig.

coder.EmbeddedCodeConfig If an Embedded Coder license is available, specifies
parameters for C/C++ library or executable generation.

For more information, see the class reference information
for coder.EmbeddedCodeConfig.

coder.HardwareImplementation Specifies parameters of the target hardware
implementation. If not specified, codegen generates code
that is compatible with the MATLAB host computer.

For more information, see the class reference information
for coder.HardwareImplementation.

coder.MexCodeConfig Specifies parameters for MEX code generation.

For more information, see the class reference information
for coder.MexCodeConfig.

Working with Configuration Objects

To use configuration objects to customize your environment for code generation:

21-33

21 Generating C/C++ Code from MATLAB Code

1 In the MATLAB workspace, define configuration object variables, as described in
“Creating Configuration Objects” on page 21-35.

For example, to generate a configuration object for C static library generation:

cfg = coder.config('lib');

% Returns a coder.CodeConfig object if no

% Embedded Coder license available.

% Otherwise, returns a coder.EmbeddedCodeConfig object.

2 Modify the parameters of the configuration object as required, using one of these
methods:

• Interactive commands, as described in “Specify Build Configuration Parameters
at the Command Line Using Configuration Objects” on page 21-33

• Dialog boxes, as described in “Specifying Build Configuration Parameters at the
Command Line Using Dialog Boxes” on page 21-37

3 Call the codegen function with the -config option. Specify the configuration object
as its argument.

The -config option instructs codegen to generate code for the target, based on
the configuration property values. In the following example, codegen generates a
C static library from a MATLAB function, foo, based on the parameters of a code
generation configuration object, cfg, defined in the first step:

codegen -config cfg foo

The -config option specifies the type of output that you want to build — in this
case, a C static library. For more information, see codegen.

21-34

 Configure Build Settings

Creating Configuration Objects

You can define a configuration object in the MATLAB workspace.

To Create... Use a Command Such As...

MEX configuration object
coder.MexCodeConfig

cfg = coder.config('mex');

Code generation configuration
object for generating a standalone
C/C++ library or executable
coder.CodeConfig

% To generate a static library

cfg = coder.config('lib');

% To generate a dynamic library

cfg = coder.config('dll')

% To generate an executable

cfg = coder.config('exe');

Note: If an Embedded Coder license is available, creates a
coder.EmbeddedCodeConfig object.

If you use concurrent licenses, to disable the check out of an
Embedded Coder license, use one of the following commands:

cfg = coder.config('lib', 'ecoder', false)

cfg = coder.config('dll', 'ecoder', false)

cfg = coder.config('exe', 'ecoder', false)

Code generation configuration
object for generating a standalone
C/C++ library or executable for an
embedded target
coder.EmbeddedCodeConfig

% To generate a static library

cfg = coder.config('lib');

% To generate a dynamic library

cfg = coder.config('dll')

% To generate an executable

cfg = coder.config('exe');

Note: Requires an Embedded Coder license; otherwise creates
a coder.CodeConfig object.

Hardware implementation
configuration object
coder.HardwareImplementation

hwcfg = coder.HardwareImplementation

21-35

21 Generating C/C++ Code from MATLAB Code

Each configuration object comes with a set of parameters, initialized to default values.
You can change these settings, as described in “Modifying Configuration Objects at the
Command Line Using Dot Notation” on page 21-36.

Modifying Configuration Objects at the Command Line Using Dot Notation

You can use dot notation to modify the value of one configuration object parameter at a
time. Use this syntax:

configuration_object.property = value

Dot notation uses assignment statements to modify configuration object properties:

• To specify a main function during C/C++ code generation:

cfg = coder.config('exe');

cfg.CustomInclude = 'c:\myfiles';

cfg.CustomSource = 'main.c';

codegen -config cfg foo

• To automatically generate and launch code generation reports after generating a C/C+
+ static library:

cfg = coder.config('lib');

cfg.GenerateReport= true;

cfg.LaunchReport = true;

codegen -config cfg foo

Saving Configuration Objects

Configuration objects do not automatically persist between MATLAB sessions. Use one of
the following methods to preserve your settings:

Save a configuration object to a MAT-file and then load the MAT-file at your next session

For example, assume that you create and customize a MEX configuration object mexcfg
in the MATLAB workspace. To save the configuration object, at the MATLAB prompt,
enter:

save mexcfg.mat mexcfg

The save command saves mexcfg to the file mexcfg.mat in the current folder.

To restore mexcfg in a new MATLAB session, at the MATLAB prompt, enter:

load mexcfg.mat

21-36

 Configure Build Settings

The load command loads the objects defined in mexcfg.mat to the MATLAB workspace.

Write a script that creates the configuration object and sets its properties.

You can rerun the script whenever you need to use the configuration object again.

Specifying Build Configuration Parameters at the Command Line Using Dialog Boxes

1 Create a configuration object as described in “Creating Configuration Objects” on
page 21-35.

For example, to create a coder.MexCodeConfig configuration object for MEX code
generation:

mexcfg = coder.config('mex');

2 Open the property dialog box using one of these methods:

• In the MATLAB workspace, double-click the configuration object variable.
• At the MATLAB prompt, issue the open command, passing it the configuration

object variable, as in this example:

open mexcfg

3 In the dialog box, modify configuration parameters as required, then click Apply.
4 Call the codegen function with the -config option. Specify the configuration object

as its argument:

codegen -config mexcfg foo

The -config option specifies the type of output that you want to build. For more
information, see codegen.

21-37

21 Generating C/C++ Code from MATLAB Code

Specify Data Types Used in Generated Code

In this section...

“Specify Data Type Using the MATLAB Coder App” on page 21-38
“Specify Data Type at the Command Line” on page 21-38

MATLAB Coder can use built-in C data types or predefined types from rtwtypes.h in
generated code. By default, when the generated code declares variables, it uses built-in C
types.

You can explicitly specify the data types used in generated code in the project settings
dialog box or at the command line.

Specify Data Type Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Set Build type to Source Code, Static Library, Dynamic Library, or

Executable (depending on your requirements).
3 Click More Settings.
4 To use built-in C types, on the Code Appearance tab, set Data Type

Replacement to Use built-in C data types in the generated code.
To use predefined types from rtwtypes.h, set Data Type Replacement to Use
MathWorks typedefs in the generated code.

Specify Data Type at the Command Line

1 Create a configuration object for code generation. Use coder.config with
arguments 'lib','dll', or 'exe' (depending on your requirements). For example:

cfg = coder.config('lib');

2 To use built-in C types, set the DataTypeReplacement property to 'CBuiltIn'.

cfg.DataTypeReplacement = 'CBuiltIn';

To use predefined types from rtwtypes.h, set the DataTypeReplacement property
to 'CoderTypedefs'.

21-38

 Change the Standard Math Library

Change the Standard Math Library

For calls to math operations, the code generator uses the standard math library that you
specify in the build settings. The default standard math library depends on the language
that you select. For C, it is C89/C90 (ANSI). For C++, it is C++03 (ISO).

You can change the standard math library to one of these libraries.

Library Name Language Support Standard

C89/C90 (ANSI) C, C++ ISO/IEC 9899:1990
C99 (ISO) C, C++ ISO/IEC 9899:1999
C++03 (ISO) C++ ISO/IEC 14882:2003

The C++03 (ISO) math library is available only if the language is C++.

To change the library:

• In the project build settings, on the Custom Code tab, set the Standard math
library parameter.

• In a code configuration object, set the TargetLangStandard parameter.

Verify that your compiler supports the library that you want to use. If you select a library
that your compiler does not support, compiler errors can occur.

More About
• “Specify Build Configuration Parameters MATLAB Coder App” on page 21-32
• “Specify Build Configuration Parameters at the Command Line Using

Configuration Objects” on page 21-33

21-39

21 Generating C/C++ Code from MATLAB Code

Share Build Configuration Settings

To share build configuration settings between multiple projects or between the project
and command-line workflow, you can export settings to and import settings from a code
generation configuration object.

Export Settings

To export the current project settings to a code generation configuration object stored in
the base workspace:

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Set Build type to Source Code, Static Library, Dynamic Library), or

Executable (depending on your requirements).
3 Click More Settings.
4 Click Import/Export Settings.
5 In the Variable name field, specify a name for the configuration object.
6 Click Export to Variable.

MATLAB Coder saves the project settings information in a configuration object with
the specified name in the base workspace.

Project Output Type Configuration Object

MEX Function coder.MexCodeConfig
C/C++ Static Library

C/C++ Dynamic Library

C/C++ Executable

Without an Embedded Coder license:
coder.CodeConfig
With an Embedded Coder license:
coder.EmbeddedCodeConfig

You can then either import these settings into another project or use the
configuration object with the codegen function -config option to generate code at
the command line.

21-40

 Share Build Configuration Settings

Import Settings

To import the settings saved in a code generation configuration object stored in the base
workspace:

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Set Build type to Source Code, Static Library, Dynamic Library, or

Executable (depending on your requirements).
3 Click More Settings.
4 Click Import/Export Settings.
5 In the Variable name field, specify the name of the configuration object.
6 Click Import from Variable.

See Also

• “Configure Build Settings” on page 21-26
• coder.config

• “Convert MATLAB Coder Project to MATLAB Script” on page 21-42

21-41

21 Generating C/C++ Code from MATLAB Code

Convert MATLAB Coder Project to MATLAB Script

After you define input types, you can convert a MATLAB Coder project to the equivalent
script of MATLAB commands. The script reproduces the project in a configuration object
and runs the codegen command. You can:

• Move from a project workflow to a command-line workflow.
• Save the project as a text file that you can share.

You can convert a project using the MATLAB Coder app or the command-line interface.

Convert a Project Using the MATLAB Coder App

1
On the app toolbar, click , and then select Convert to script.

2 Specify the script name and click Save.

Convert a Project Using the Command-Line Interface

To convert a project to a script using the command-line interface, use the -tocode option
of the coder command. The project file must be on the search path.

For example, to convert the project, myproject.prj to the script named myscript.m
use this command:

coder -tocode myproject -script myscript.m

The coder command overwrites a file that has the same name as the script. If you omit
the -script option, the coder command writes the script to the Command Window.

For more information about the -tocode option, see coder.

Run the Script

1 Make sure that the entry-point functions that are arguments to codegen in the
script are on the search path.

2 Run the script. For example:

 myscript

21-42

 Convert MATLAB Coder Project to MATLAB Script

The following variables appear in the base workspace.

Variable For

cfg Configuration object
ARGS Types of input arguments, if the project has

entry-point function inputs
ARG Types of cell array elements, if the project

has cell array inputs. A script can reuse
ARG for different cell array elements

GLOBALS Types and initial values of global variables,
if the project has global variables

cfg, ARGS, ARG, and GLOBALS appear in the workspace only after you run the script.
The type of configuration object depends on the project output type.

Project Output Type Configuration Object

MEX Function coder.MexCodeConfig
C/C++ Static Library

C/C++ Dynamic Library

C/C++ Executable

Without an Embedded Coder license:
coder.CodeConfig
With an Embedded Coder license:
coder.EmbeddedCodeConfig

You can import the settings from the configuration object cfg into a project. See “Share
Build Configuration Settings” on page 21-40.

For a project that includes fixed-point conversion, project to script conversion generates a
pair of scripts for fixed-point conversion and fixed-point code generation. For an example,
see “Convert Fixed-Point Conversion Project to MATLAB Scripts” on page 15-102.

21-43

21 Generating C/C++ Code from MATLAB Code

Preserve Variable Names in Generated Code

If code readability is more important than reduced memory usage, specify that you
want the code generator to preserve your variable names rather than reuse them in the
generated code.

By default, when possible, variables share names and memory in the generated code. The
code generator reuses your variable names for other variables or reuses other variable
names for your variables. For example, for code such as:

if (s>0)

 myvar1 = 0;

 ...

else

 myvar2 = 0;

 ...

end

the generated code can look like this code:

 if (s > 0.0) {

 myvar2 = 0.0;

 ...

 } else {

 myvar2 = 0.0;

 ...

 }

When the code generator preserves your variable names, the generated code can look like
this code:

 if (s > 0.0) {

 myvar1 = 0.0;

 ...

 } else {

 myvar2 = 0.0;

 ...

 }

To specify that you want the code generator to preserve your variable names:

• In a code generation configuration object, set the PreserveVariableNames
parameter to 'UserNames'.

21-44

 Preserve Variable Names in Generated Code

• In the MATLAB Coder app, set Preserve variable names to User names.

Preservation of variable names does not prevent an optimization from removing them
from the generated code or prevent the C/C++ compiler from reusing them in the
generated binary code.

More About
• “Reuse Large Arrays and Structures” on page 29-57
• “Configure Build Settings” on page 21-26

21-45

21 Generating C/C++ Code from MATLAB Code

Primary Function Input Specification

In this section...

“Why You Must Specify Input Properties” on page 21-46
“Properties to Specify” on page 21-46
“Rules for Specifying Properties of Primary Inputs” on page 21-49
“Methods for Defining Properties of Primary Inputs” on page 21-50
“Define Input Properties by Example at the Command Line” on page 21-51
“Specify Constant Inputs at the Command Line” on page 21-53
“Specify Variable-Size Inputs at the Command Line” on page 21-54

Why You Must Specify Input Properties

Because C and C++ are statically typed languages, MATLAB Coder must determine
the properties of all variables in the MATLAB files at compile time. To infer variable
properties in MATLAB files, MATLAB Coder must be able to identify the properties of
the inputs to the primary function, also known as the top-level or entry-point function.
Therefore, if your primary function has inputs, you must specify the properties of
these inputs, to MATLAB Coder. If your primary function has no input parameters,
MATLAB Coder can compile your MATLAB file without modification. You do not need to
specify properties of inputs to local functions or external functions called by the primary
function.

If you use the tilde (~) character to specify unused function inputs:

• In MATLAB Coder projects, if you want a different type to appear in the generated
code, specify the type. Otherwise, the inputs default to real, scalar doubles.

• When generating code with codegen, you must specify the type of these inputs using
the -args option.

Properties to Specify

If your primary function has inputs, you must specify the following properties for each
input.

For Specify properties

 Class Size Complexity numerictype fimath

21-46

 Primary Function Input Specification

For Specify properties

Fixed-point
inputs
Each field in
a structure
input

Specify properties for each field according to its class

When a primary input is a structure, the code generator treats each field as a
separate input. Therefore, you must specify properties for allfields of a primary
structure input in the order that they appear in the structure definition:

• For each field of input structures, specify class, size, and complexity.
• For each field that is fixed-point class, also specify numerictype, and fimath.

Other inputs

Default Property Values

MATLAB Coder assigns the following default values for properties of primary function
inputs.

Property Default

class double

size scalar

complexity real

numerictype No default
fimath MATLAB default fimath object

Specifying Default Values for Structure Fields

In most cases, when you do not explicitly specify values for properties, MATLAB Coder
uses defaults except for structure fields. The only way to name a field in a structure is
to set at least one of its properties. Therefore, you might need to specify default values
for properties of structure fields. For examples, see “Specifying Class and Size of Scalar
Structure” on page 21-77 and “Specifying Class and Size of Structure Array” on page
21-78.
Specifying Default fimath Values for MEX Functions

MEX functions generated with MATLAB Coder use the default fimath value in effect
at compile time. If you do not specify a default fimath value, MATLAB Coder uses the
MATLAB default fimath. The MATLAB factory default has the following properties:

21-47

21 Generating C/C++ Code from MATLAB Code

RoundingMethod: Nearest

OverflowAction: Saturate

ProductMode: FullPrecision

SumMode: FullPrecision

CastBeforeSum: true

For more information, see “fimath for Sharing Arithmetic Rules”.

When running MEX functions that depend on the default fimath value, do not change
this value during your MATLAB session. Otherwise, you receive a run-time warning,
alerting you to a mismatch between the compile-time and run-time fimath values.

For example, suppose that you define the following MATLAB function test:

function y = test %#codegen

y = fi(0);

The function test constructs a fi object without explicitly specifying a fimath object.
Therefore, test relies on the default fimath object in effect at compile time. At the
MATLAB prompt, generate the MEX function text_mex to use the factory setting of the
MATLAB default fimath:

codegen test

% codegen generates a MEX function, test_mex,

% in the current folder

Next, run test_mex to display the MATLAB default fimath value:

test_mex

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 16

 FractionLength: 15

Now create a local MATLAB fimath value. so you no longer use the default setting:

F = fimath('RoundingMethod','Floor');

Finally, clear the MEX function from memory and rerun it:

clear test_mex

test_mex

21-48

 Primary Function Input Specification

The mismatch is detected and causes an error:

??? This function was generated with a different default

fimath than the current default.

Error in ==> test_mex

Supported Classes

The following table presents the class names supported by MATLAB Coder.

Class Name Description

logical Logical array of true and false values
char Character array
int8 8-bit signed integer array
uint8 8-bit unsigned integer array
int16 16-bit signed integer array
uint16 16-bit unsigned integer array
int32 32-bit signed integer array
uint32 32-bit unsigned integer array
int64 64-bit signed integer array
uint64 64–bit unsigned integer array
single Single-precision floating-point or fixed-point

number array
double Double-precision floating-point or fixed-point

number array
struct Structure array
embedded.fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs

When specifying the properties of primary inputs, follow these rules.

• You must specify the class of all primary inputs. If you do not specify the size or
complexity of primary inputs, they default to real scalars.

21-49

21 Generating C/C++ Code from MATLAB Code

• For each primary function input whose class is fixed point (fi), you must specify the
input numerictype and fimath properties.

• For each primary function input whose class is struct, you must specify the
properties of each of its fields in the order that they appear in the structure definition.

Methods for Defining Properties of Primary Inputs

Method Advantages Disadvantages

“Specify Properties of
Entry-Point Function
Inputs Using the App”
on page 18-3

• If you are working in a MATLAB
Coder project, easy to use

• Does not alter original MATLAB
code

• MATLAB Coder saves the
definitions in the project file

• Not efficient for specifying
memory-intensive inputs such as
large structures and arrays

“Define Input
Properties by Example
at the Command Line”
on page 21-51

Note: If you define
input properties
programmatically
in the MATLAB file,
you cannot use this
method

• Easy to use
• Does not alter original MATLAB

code
• Designed for prototyping a

function that has a few primary
inputs

• Must be specified at the
command line every time you
invoke codegen (unless you use
a script)

• Not efficient for specifying
memory-intensive inputs such as
large structures and arrays

“Define Input
Properties
Programmatically in
the MATLAB File” on
page 21-67

• Integrated with MATLAB code;
no need to redefine properties
each time you invoke MATLAB
Coder

• Provides documentation of
property specifications in the
MATLAB code

• Efficient for specifying memory-
intensive inputs such as large
structures

• Uses complex syntax
• MATLAB Coder project

files do not currently
recognize properties defined
programmatically. If you are
using a project, you must reenter
the input types in the project.

21-50

 Primary Function Input Specification

Define Input Properties by Example at the Command Line

• “Command-Line Option -args” on page 21-51
• “Rules for Using the -args Option” on page 21-51
• “Specifying Properties of Primary Inputs by Example at the Command Line” on page

21-52
• “Specifying Properties of Primary Fixed-Point Inputs by Example at the Command

Line” on page 21-52

Command-Line Option -args

The codegen function provides a command-line option -args for specifying the
properties of primary (entry-point) function inputs as a cell array of example values. The
cell array can be a variable or literal array of constant values. Using this option, you
specify the properties of inputs at the same time as you generate code for the MATLAB
function with codegen .

If you have a test function or script that calls the entry-point MATLAB function with the
required types, you can use coder.getArgTypes to determine the types of the function
inputs. coder.getArgTypes returns a cell array of coder.Type objects that you can
pass to codegen using the -args option. See “Specifying General Properties of Primary
Inputs” on page 21-74 for codegen.

For information about specifying cell array inputs, see “Specify Cell Array Inputs at the
Command Line” on page 21-56.

Rules for Using the -args Option

When using the -args command-line option to define properties by example, follow these
rules:

• The cell array of sample values must contain the same number of elements as
primary function inputs.

• The order of elements in the cell array must correspond to the order in which inputs
appear in the primary function signature — for example, the first element in the cell
array defines the properties of the first primary function input.

Note: If you specify an empty cell array with the -args option, codegen interprets this
to mean that the function takes no inputs; a compile-time error occurs if the function
does have inputs.

21-51

21 Generating C/C++ Code from MATLAB Code

Specifying Properties of Primary Inputs by Example at the Command Line

Consider a MATLAB function that adds its two inputs:

function y = mcf(u,v)

%#codegen

y = u + v;

The following examples show how to specify different properties of the primary inputs u
and v by example at the command line:

• Use a literal cell array of constants to specify that both inputs are real scalar doubles:

codegen mcf -args {0,0}

• Use a literal cell array of constants to specify that input u is an unsigned 16-bit, 1-
by-4 vector and input v is a scalar double:

codegen mcf -args {zeros(1,4,'uint16'),0}

• Assign sample values to a cell array variable to specify that both inputs are real,
unsigned 8-bit integer vectors:

a = uint8([1;2;3;4])

b = uint8([5;6;7;8])

ex = {a,b}

codegen mcf -args ex

Specifying Properties of Primary Fixed-Point Inputs by Example at the Command Line

To generate a MEX function or C/C++ code for fixed-point MATLAB code, you must
install Fixed-Point Designer software.

Consider a MATLAB function that calculates the square root of a fixed-point number:

%#codegen

function y = sqrtfi(x)

y = sqrt(x);

To specify the properties of the primary fixed-point input x by example, follow these
steps:

1 Define the numerictype properties for x, for example:

T = numerictype('WordLength',32,...

 'FractionLength',23,...

21-52

 Primary Function Input Specification

 'Signed',true);

2 Define the fimath properties for x, for example:

F = fimath('SumMode','SpecifyPrecision',...

 'SumWordLength',32,...

 'SumFractionLength',23,...

 'ProductMode','SpecifyPrecision',...

 'ProductWordLength',32,...

 'ProductFractionLength',23);

3 Create a fixed-point variable with the numerictype and fimath properties that you
defined, for example:

myeg = { fi(4.0,T,F) };

4 Compile the function sqrtfi using the codegen command, passing the variable
myeg as the argument to the -args option, for example:

codegen sqrtfi -args myeg;

Specify Constant Inputs at the Command Line

If you know that your primary inputs do not change at run time, you can reduce overhead
in the generated code by specifying that the primary inputs are constant values.
Constant inputs are commonly used for flags that control how an algorithm executes and
values that specify the sizes or types of data.

To specify that inputs are constants, use the -args command-line option with a
coder.Constant object. To specify that an input is a constant with the size, class,
complexity, and value of constant_input, use the following syntax:

-args {coder.Constant(constant_input)}

Calling Functions with Constant Inputs

The code generator compiles constant function inputs into the generated code. In the
generated C or C++ code, function signatures do not contain the constant inputs. By
default, MEX function signatures contain the constant inputs. When you call a MEX
function, you must provide the compile-time constant values. The constant input values
must match the compile-time values. You can control whether a MEX function signature
includes constant inputs and whether the constant input values must match the compile-
time values. See “Control Constant Inputs in MEX Function Signatures” on page
21-63.

21-53

21 Generating C/C++ Code from MATLAB Code

Specifying a Structure as a Constant Input

Suppose that you define a structure tmp in the MATLAB workspace to specify the
dimensions of a matrix:

tmp = struct('rows', 2, 'cols', 3);

The following MATLAB function rowcol accepts a structure input p to define matrix y:

function y = rowcol(u,p) %#codegen

y = zeros(p.rows,p.cols) + u;

The following example shows how to specify that primary input u is a double scalar
variable and primary input p is a constant structure:

codegen rowcol -args {0,coder.Constant(tmp)}

Specify Variable-Size Inputs at the Command Line

Variable-size data is data whose size might change at run time. MATLAB supports
bounded and unbounded variable-size data for code generation. Bounded variable-
size data has fixed upper bounds. This data can be allocated statically on the stack
or dynamically on the heap. Unbounded variable-size data does not have fixed upper
bounds. This data must be allocated on the heap. You can define inputs to have one or
more variable-size dimensions — and specify their upper bounds — using the -args
option and coder.typeof function:

-args {coder.typeof(example_value, size_vector, variable_dims}

Specifies a variable-size input with:

• Same class and complexity as example_value
• Same size and upper bounds as size_vector
• Variable dimensions specified by variable_dims

When you enable dynamic memory allocation, you can specify Inf in the size vector for
dimensions with unknown upper bounds at compile time.

When variable_dims is a scalar, it is applied to all the dimensions, with the following
exceptions:

• If the dimension is 1 or 0, which are fixed.
• If the dimension is unbounded, which is always variable size.

21-54

 Primary Function Input Specification

For more information, see coder.typeof and “Generate Code for Variable-Size Data” on
page 21-106.

Specifying a Variable-Size Vector Input

1 Write a function that computes the average of every n elements of a vector A and
stores them in a vector B:

function B = nway(A,n) %#codegen

% Compute average of every N elements of A and put them in B.

coder.extrinsic('error');

if ((mod(numel(A),n) == 0) && (n>=1 && n<=numel(A)))

 B = ones(1,numel(A)/n);

 k = 1;

 for i = 1 : numel(A)/n

 B(i) = mean(A(k + (0:n-1)));

 k = k + n;

 end

else

 B = zeros(1,0);

 error('n <= 0 or does not divide number of elements evenly');

end

2 Specify the first input A as a vector of double values. Its first dimension stays fixed in
size and its second dimension can grow to an upper bound of 100. Specify the second
input n as a double scalar.

codegen -report nway -args {coder.typeof(0,[1 100],1),1}

3 As an alternative, assign the coder.typeof expression to a MATLAB variable, then
pass the variable as an argument to -args:

vareg = coder.typeof(0,[1 100],1)

codegen -report nway -args {vareg, 0}

21-55

21 Generating C/C++ Code from MATLAB Code

Specify Cell Array Inputs at the Command Line

To specify cell array inputs at the command line, use the same methods that you use for
other types of inputs. You can:

• Provide an example cell array input to the -args option of the codegen command.
• Provide a coder.CellType object to the -args option of the codegen command. To

create a coder.CellType object, use coder.typeof.
• Use coder.Constant to specify a constant cell array input.

For code generation, cell arrays are classified as homogeneous or heterogeneous. See
“Code Generation for Cell Arrays” on page 9-2. When you provide an example cell
array to codegen or coder.typeof, the function determines whether the cell array
type is homogeneous or heterogeneous. If the cell array elements have the same class
and size, coder.typeof returns a homogeneous cell array type. If the elements have
different classes, coder.typeof returns a heterogeneous cell array type. For some
cell arrays, the classification as homogeneous or heterogeneous is ambiguous. For
example, the type for {1 [2 3]} can be a 1x2 heterogeneous type. The first element is
double and the second element is 1x2 double. The type can also be a 1x3 homogeneous
type in which the elements have class double and size 1x:2. For these ambiguous cases,
coder.typeof uses heuristics to classify the type as homogeneous or heterogeneous.
If you want a different classification, use the coder.CellType makeHomogeneous or
makeHeterogeneous methods. The makeHomogeneous method makes a homogeneous
copy of a type. The makeHeterogeneous method makes a heterogeneous copy of a type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the
classification as homogeneous and heterogeneous, respectively. You cannot later use one
of these methods to create a copy that has a different classification.

If you have a test file, you can use coder.getArgTypes to determine input types.
In the output cell array of types, for cell array inputs, coder.getArgTypes returns
a coder.CellType object. If you want a different classification (homogeneous or
heterogeneous), use the makeHomogeneous or makeHeterogeneous methods.

Specify Cell Array Inputs by Example

To specify a cell array input by example, provide an example cell array in the -args
option of the codegen command.

21-56

 Specify Cell Array Inputs at the Command Line

For example:

• To specify a 1x3 cell array whose elements have class double:

codegen myfunction -args {{1 2 3}} -report

The input argument is a 1x3 homogeneous cell array whose elements are 1x1 double.
• To specify a 1x2 cell array whose first element has class char and whose second

element has class double:

codegen myfunction -args {{'a', 1}} -report

The input argument is a 1x2 heterogeneous cell array whose first element is 1x1 char
and whose second element is 1x1 double.

Specify the Type of the Cell Array Input

To specify the type of a cell array input, use coder.typeof to create a
coder.CellType object. Pass the coder.CellType object to the -args option of the
codegen command.

For example:

• To specify a 1x3 cell array whose elements have class double:

t = coder.typeof({1 2 3});

codegen myfunction -args {t} -report

The input argument is a 1x3 homogeneous cell array whose elements are 1x1 double.
• To specify a 1x2 cell array whose first element has class char and whose second

element has class double:

t = coder.typeof({'a', 1});

codegen myfunction -args {t}

The input argument is a 1x2 heterogeneous cell array whose first element is a 1x1
char and whose second element is a 1x1 double.

You can also use the advanced function coder.newtype to create a coder.CellType
object.

21-57

21 Generating C/C++ Code from MATLAB Code

Make a Homogeneous Copy of a Type

If coder.typeof returns a heterogeneous cell array type, but you want a homogeneous
type, use the makeHomogeneous method to make a homogeneous copy of the type.

The following code creates a heterogeneous type.

t = coder.typeof({1 [2 3]})

t =

coder.CellType

 1x2 heterogeneous cell

 f0: 1x1 double

 f1: 1x2 double

To make a homogeneous copy of the type, use:

t = makeHomogeneous(t)

t =

coder.CellType

 1x2 homogeneous cell

 base: 1x:2 double

Alternatively, use this notation:

t = makeHomogeneous(coder.typeof({1 [2 3]}))

t =

coder.CellType

 1x2 homogeneous cell

 base: 1x:2 double

The classification as homogeneous is permanent. You cannot later use the
makeHeterogeneous method to make a heterogeneous copy of the type.

If the elements of a type have different classes, such as char and double, you cannot use
makeHomogeneous to make a homogeneous copy of the type.

If you use coder.cstructname to specify a name for the structure type that represents
a type in the generated code, you cannot create a homogeneous copy of the type.

21-58

 Specify Cell Array Inputs at the Command Line

Make a Heterogeneous Copy of a Type

If coder.typeof returns a homogeneous cell array type, but you want a heterogeneous
type, use the makeHeterogeneous method to make a heterogeneous copy of the type.

The following code creates a homogeneous type.

t = coder.typeof({1 2 3})

t =

coder.CellType

 1x3 homogeneous cell

 base: 1x1 double

To make the type heterogeneous, use:

t = makeHeterogeneous(t)

t =

coder.CellType

 1x3 heterogeneous cell

 f0: 1x1 double

 f1: 1x1 double

 f2: 1x1 double

Alternatively, use this notation:

t = makeHeterogeneous(coder.typeof({1 2 3}))

t =

coder.CellType

 1x3 heterogeneous cell

 f0: 1x1 double

 f1: 1x1 double

 f2: 1x1 double

The classification as heterogeneous is permanent. You cannot later use the
makeHomogeneous method to make a homogeneous copy of the type.

If a type is variable size, you cannot use makeHeterogeneous to make a heterogeneous
copy of it.

21-59

21 Generating C/C++ Code from MATLAB Code

Specify Variable-Size Cell Array Inputs

You can specify variable-size cell array inputs in the following ways:

• In the coder.typeof call.

For example, to specify a variable-size cell array whose first dimension is fixed and
whose second dimension has an upper bound of 5:

t = coder.typeof({1}, [1 5], [0 1])

t =

coder.CellType

 1x:5 homogeneous cell

 base: 1x1 double

For elements with the same classes, but different sizes, you can the use
coder.typeof size and variable dimensions arguments to create a variable-size
homogeneous cell array type. For example, the following code does not use the size
and variable dimensions arguments. This code creates a type for a heterogeneous cell
array.

t = coder.typeof({1 [2 3]})

t =

coder.CellType

 1x2 heterogeneous cell

 f0: 1x1 double

 f1: 1x2 double

The following code, that uses the size and dimensions arguments, creates a type for a
variable-size homogeneous type cell array:

t = coder.typeof({1 [2 3]}, [1 5], [0 1])

t =

coder.CellType

 1x:5 homogeneous cell

 base: 1x:2 double

• Use coder.resize.

21-60

 Specify Cell Array Inputs at the Command Line

For example, to specify a variable-size cell array whose first dimension is fixed and
whose second dimension has an upper bound of 5:

t = coder.typeof({1});

t = coder.resize(t, [1 5], [0,1])

t =

coder.CellType

 1x5 homogeneous cell

 base: 1x1 double

You cannot use coder.resize with a heterogeneous cell array type.

Specify Type Name for Heterogeneous Cell Array Inputs

A heterogeneous cell array is represented in the generated code as a structure. To specify
the name of the structure type in the generated code, use coder.cstructname.

For example, to specify the name myname for the cell array type in the generated code:

t = coder.typeof({'a', 1})

t = coder.cstructname(t, 'myname')

t =

coder.CellType

 1x2 heterogeneous cell myname

 f0: 1x1 char

 f1: 1x1 double

If you use coder.cstructname with a homogeneous cell array type,
coder.cstructname returns a heterogeneous copy of the type. However, it is a best
practice to use the makeHeterogeneous method of the coder.CellType object
to make a heterogeneous copy of a homogeneous cell array type. Then, you can use
coder.cstructname with the heterogeneous copy of the type.

Specify Constant Cell Array Inputs

To specify that a cell array input is constant, use the coder.Constant function with the
-args option of the codegen command. For example:

21-61

21 Generating C/C++ Code from MATLAB Code

codegen myfunction -args {coder.Constant({'red', 1 'green', 2, 'blue', 3})} -report

The input is a 1x6 heterogeneous cell array. The sizes and classes of the elements are:

• 1x3 char
• 1x1 double
• 1x5 char
• 1x1 double
• 1x4 char
• 1x1 double

See Also
coder.CellType | coder.getArgTypes | coder.newtype | coder.resize |
coder.typeof

Related Examples
• “Define Input Properties by Example at the Command Line” on page 21-51
• “Specify Constant Inputs at the Command Line” on page 21-53

More About
• “Code Generation for Cell Arrays” on page 9-2

21-62

 Control Constant Inputs in MEX Function Signatures

Control Constant Inputs in MEX Function Signatures

In this section...

“Control MEX Function Signature Using the MATLAB Coder App” on page 21-63
“Control MEX Function Signature at the Command-Line Interface” on page 21-63
“Options for Controlling Constant Inputs in MEX Function Signatures” on page
21-64
“Call MEX Function with a Constant Input” on page 21-65
“See Also” on page 21-66

You can control whether a generated MEX function signature includes constant inputs.
If you want to use the same test file to run the original MATLAB function and the MEX
function, then the MEX function signature must contain the constant inputs. You can
also control whether the run-time values of the constant inputs must match the compile-
time values. Checking that the values match can slow down execution speed.

Control MEX Function Signature Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Set Build type to MEX.
3 Click More Settings.
4 On the All Settings tab, set Constant Inputs to one of the menu options. See

“Options for Controlling Constant Inputs in MEX Function Signatures” on page
21-64.

Control MEX Function Signature at the Command-Line Interface

1 Create a code configuration object for MEX code generation.

mexcfg = coder.config('mex');

2 Set the ConstantInputs parameter to 'CheckValues', 'IgnoreValues', or
'Remove' For example:

mexcfg.ConstantInputs = 'IgnoreValues';

For a description of the options, see “Options for Controlling Constant Inputs in
MEX Function Signatures” on page 21-64

21-63

21 Generating C/C++ Code from MATLAB Code

Options for Controlling Constant Inputs in MEX Function Signatures

The following table lists the options for the:

• Constant Inputs setting in a project with Output Type set to MEX.
• ConstantInputs property in a configuration object for MEX code generation.

Constant Inputs (Project) ConstantInputs (Configuration
Object)

Description

Check values at run time

(default)

'CheckValues' • The MEX function signature
includes the constant
inputs. When you call the
function, you must provide
the constant inputs.

• The run-time values of the
constant inputs must match
the compile-time values.
When you call the function,
you must provide the value
that was used at compile-
time.

• Allows you to use the same
test file to run the original
MATLAB algorithm and the
MEX function.

• Slows down execution of the
MEX function.

• This setting is the default.
Ignore input value 'IgnoreValues' • The MEX function signature

includes the constant
inputs. When you call the
function, you must provide
the constant inputs.

• The run-time values of the
constant inputs can differ
from the compile-time values.

21-64

 Control Constant Inputs in MEX Function Signatures

Constant Inputs (Project) ConstantInputs (Configuration
Object)

Description

• Allows you to use the same
test file to run the original
MATLAB algorithm and the
MEX function.

Remove from MEX

signature

'Remove' The MEX function signature
does not include the constant
inputs. When you call the
function, you do not provide the
constant inputs.

Call MEX Function with a Constant Input

This example shows how to call MEX functions that have constant inputs. It shows how
to use the ConstantInputs parameter to control whether the MEX function signature
includes constant inputs and whether the constant input values must match the compile-
time values.

Write a function identity that copies its input to its output.

function y = identity(u) %#codegen

y = u;

Create a code configuration object for MEX code generation.

cfg = coder.config('mex');

Generate a MEX function identity_mex with the constant input 42.

codegen identity -config cfg -args {coder.Constant(42)}

Call identity_mex. You must provide the input 42.

identity_mex(42)

ans =

 42

Configure ConstantInputs so that the MEX function does not check that the input
value matches the compile-time value.

21-65

21 Generating C/C++ Code from MATLAB Code

cfg.ConstantInputs = 'IgnoreValues';

Generate identity_mex with the new configuration.

codegen identity -config cfg -args {coder.Constant(42)}

Call identity_mex with a constant input value other than 42 .

identity_mex(50)

ans =

 42

The MEX function ignored the input value 50.

Configure ConstantInputs so that the MEX function does not include the constant
input.

cfg.ConstantInputs = 'Remove';

Generate identity_mex with the new configuration.

codegen identity -config cfg -args {coder.Constant(42)}

Call identity_mex. Do not provide the input value .

identity_mex()

ans =

 42

See Also

• “Specify Constant Inputs at the Command Line” on page 21-53

• “Define Constant Input Parameters Using the App” on page 18-24

21-66

 Define Input Properties Programmatically in the MATLAB File

Define Input Properties Programmatically in the MATLAB File

For code generation, you can use the MATLAB assert function to define properties of
primary function inputs directly in your MATLAB file.

How to Use assert with MATLAB Coder

Use the assert function to invoke standard MATLAB functions for specifying the class,
size, and complexity of primary function inputs.

When specifying input properties using the assert function, use one of the following
methods. Use the exact syntax that is provided; do not modify it.

• “Specify Any Class” on page 21-67
• “Specify fi Class” on page 21-68
• “Specify Structure Class” on page 21-68
• “Specify Cell Array Class” on page 21-69
• “Specify Fixed Size” on page 21-69
• “Specify Scalar Size” on page 21-69
• “Specify Upper Bounds for Variable-Size Inputs” on page 21-70
• “Specify Inputs with Fixed- and Variable-Size Dimensions” on page 21-70
• “Specify Size of Individual Dimensions” on page 21-71
• “Specify Real Input” on page 21-71
• “Specify Complex Input” on page 21-71
• “Specify numerictype of Fixed-Point Input” on page 21-72
• “Specify fimath of Fixed-Point Input” on page 21-72
• “Specify Multiple Properties of Input” on page 21-72

Specify Any Class

assert (isa (param, 'class_name'))

Sets the input parameter param to the MATLAB class class_name. For example, to set
the class of input U to a 32-bit signed integer, call:

21-67

21 Generating C/C++ Code from MATLAB Code

...

assert(isa(U,'int32'));

...

Specify fi Class

assert (isfi (param))

assert (isa (param, 'embedded.fi'))

Sets the input parameter param to the MATLAB class fi (fixed-point numeric object).
For example, to set the class of input U to fi, call:

...

assert(isfi(U));

...

or

...

assert(isa(U,'embedded.fi'));

...

You must specify both the fi class and the numerictype. See “Specify numerictype
of Fixed-Point Input” on page 21-72. You can also set the fimath properties, see
“Specify fimath of Fixed-Point Input” on page 21-72. If you do not set the fimath
properties, codegen uses the MATLAB default fimath value.

Specify Structure Class

assert (isstruct (param))

assert (isa (param, 'struct'))

Sets the input parameter param to the MATLAB class struct (structure). For example,
to set the class of input U to a struct, call:

...

assert(isstruct(U));

...

or

...

assert(isa(U, 'struct'));

21-68

 Define Input Properties Programmatically in the MATLAB File

...

If you set the class of an input parameter to struct, you must specify the properties of
all fields in the order that they appear in the structure definition.

Specify Cell Array Class

assert(iscell(param))

assert(isa(param, 'cell'))

Sets the input parameter param to the MATLAB class cell (cell array). For example, to
set the class of input C to a cell, call:

...

assert(iscell(C));

...

or

...

assert(isa(C, 'cell'));

...

To specify the properties of cell array elements, see “Specifying Properties of Cell Arrays”
on page 21-75.

Specify Fixed Size

assert (all (size (param) == [dims]))

Sets the input parameter param to the size that dimensions dims specifies. For example,
to set the size of input U to a 3-by-2 matrix, call:

...

assert(all(size(U)== [3 2]));

...

Specify Scalar Size

assert (isscalar (param))

assert (all (size (param) == [1]))

Sets the size of input parameter param to scalar. To set the size of input U to scalar, call:

21-69

21 Generating C/C++ Code from MATLAB Code

...

assert(isscalar(U));

...

or

...

assert(all(size(U)== [1]));

...

Specify Upper Bounds for Variable-Size Inputs

assert (all(size(param)<=[N0 N1 ...]));

assert (all(size(param)<[N0 N1 ...]));

Sets the upper-bound size of each dimension of input parameter param. To set the upper-
bound size of input U to be less than or equal to a 3-by-2 matrix, call:

assert(all(size(U)<=[3 2]));

Note: You can also specify upper bounds for variable-size inputs using coder.varsize.

Specify Inputs with Fixed- and Variable-Size Dimensions

assert (all(size(param)>=[M0 M1 ...]));

assert (all(size(param)<=[N0 N1 ...]));

When you use assert(all(size(param)>=[M0 M1 ...])) to specify the lower-bound
size of each dimension of an input parameter:

• You must also specify an upper-bound size for each dimension of the input parameter.
• For each dimension, k, the lower-bound Mk must be less than or equal to the upper-

bound Nk.
• To specify a fixed-size dimension, set the lower and upper bound of a dimension to the

same value.
• Bounds must be nonnegative.

To fix the size of the first dimension of input U to 3 and set the second dimension as
variable size with upper bound of 2, call:

assert(all(size(U)>=[3 0]));

21-70

 Define Input Properties Programmatically in the MATLAB File

assert(all(size(U)<=[3 2]));

Specify Size of Individual Dimensions

assert (size(param, k)==Nk);

assert (size(param, k)<=Nk);

assert (size(param, k)<Nk);

You can specify individual dimensions and all dimensions simultaneously. You can also
specify individual dimensions instead of specifying all dimensions simultaneously. The
following rules apply:

• You must specify the size of each dimension at least once.
• The last dimension specification takes precedence over earlier specifications.

Sets the upper-bound size of dimension k of input parameter param. To set the upper-
bound size of the first dimension of input U to 3, call:

assert(size(U,1)<=3)

To fix the size of the second dimension of input U to 2, call:

assert(size(U,2)==2)

Specify Real Input

assert (isreal (param))

Specifies that the input parameter param is real. To specify that input U is real, call:

...

assert(isreal(U));

...

Specify Complex Input

assert (~isreal (param))

Specifies that the input parameter param is complex. To specify that input U is complex,
call:

...

assert(~isreal(U));

...

21-71

21 Generating C/C++ Code from MATLAB Code

Specify numerictype of Fixed-Point Input

assert (isequal (numerictype (fiparam), T))

Sets the numerictype properties of fi input parameter fiparam to the numerictype
object T. For example, to specify the numerictype property of fixed-point input U as a
signed numerictype object T with 32-bit word length and 30-bit fraction length, use the
following code:

%#codegen

...

% Define the numerictype object.

T = numerictype(1, 32, 30);

% Set the numerictype property of input U to T.

assert(isequal(numerictype(U),T));

...

Specifying the numerictype for a variable does not automatically specify that the
variable is fixed point. You must specify both the fi class and the numerictype.

Specify fimath of Fixed-Point Input

assert (isequal (fimath (fiparam), F))

Sets the fimath properties of fi input parameter fiparam to the fimath object F. For
example, to specify the fimath property of fixed-point input U so that it saturates on
integer overflow, use the following code:

%#codegen

...

% Define the fimath object.

F = fimath('OverflowMode','saturate');

% Set the fimath property of input U to F.

assert(isequal(fimath(U),F));

...

If you do not specify the fimath properties using assert, codegen uses the MATLAB
default fimath value.

Specify Multiple Properties of Input

assert (function1 (params) &&

 function2 (params) &&

21-72

 Define Input Properties Programmatically in the MATLAB File

 function3 (params) && ...)

Specifies the class, size, and complexity of one or more inputs using a single assert
function call. For example, the following code specifies that input U is a double, complex,
3-by-3 matrix, and input V is a 16-bit unsigned integer:

%#codegen

...

assert(isa(U,'double') &&

 ~isreal(U) &&

 all(size(U) == [3 3]) &&

 isa(V,'uint16'));

...

Rules for Using assert Function

When using the assert function to specify the properties of primary function inputs,
follow these rules:

• Call assert functions at the beginning of the primary function, before control-flow
operations such as if statements or subroutine calls.

• Do not call assert functions inside conditional constructs, such as if, for, while,
and switch statements.

• For a fixed-point input, you must specify both the fi class and the numerictype. See
“Specify numerictype of Fixed-Point Input” on page 21-72. You can also set the
fimath properties. See “Specify fimath of Fixed-Point Input” on page 21-72. If you
do not set the fimath properties, codegen uses the MATLAB default fimath value.

• If you set the class of an input parameter to struct, you must specify the class, size,
and complexity of all fields in the order that they appear in the structure definition.

• When you use assert(all(size(param)>=[M0 M1 ...])) to specify the lower-
bound size of each dimension of an input parameter:

• You must also specify an upper-bound size for each dimension of the input
parameter.

• For each dimension, k, the lower-bound Mk must be less than or equal to the
upper-bound Nk.

• To specify a fixed-size dimension, set the lower and upper bound of a dimension to
the same value.

• Bounds must be nonnegative.

21-73

21 Generating C/C++ Code from MATLAB Code

• If you specify individual dimensions, the following rules apply:

• You must specify the size of each dimension at least once.
• The last dimension specification takes precedence over earlier specifications.

Specifying General Properties of Primary Inputs

In the following code excerpt, a primary MATLAB function mcspecgram takes two
inputs: pennywhistle and win. The code specifies the following properties for these
inputs.

Input Property Value

class int16

size 220500-by-1 vector
pennywhistle

complexity real (by default)
class double

size 1024-by-1 vector
win

complexity real (by default)

%#codegen

function y = mcspecgram(pennywhistle,win)

nx = 220500;

nfft = 1024;

assert(isa(pennywhistle,'int16'));

assert(all(size(pennywhistle) == [nx 1]));

assert(isa(win, 'double'));

assert(all(size(win) == [nfft 1]));

...

Alternatively, you can combine property specifications for one or more inputs inside
assert commands:

%#codegen

function y = mcspecgram(pennywhistle,win)

nx = 220500;

nfft = 1024;

assert(isa(pennywhistle,'int16') && all(size(pennywhistle) == [nx 1]));

assert(isa(win, 'double') && all(size(win) == [nfft 1]));

...

21-74

 Define Input Properties Programmatically in the MATLAB File

Specifying Properties of Primary Fixed-Point Inputs

To specify fixed-point inputs, you must install Fixed-Point Designer software.

In the following example, the primary MATLAB function mcsqrtfi takes one fixed-point
input x. The code specifies the following properties for this input.

Property Value

class fi

numerictype numerictype object T, as specified in the primary
function

fimath fimath object F, as specified in the primary function
size scalar

complexity real (by default)

function y = mcsqrtfi(x) %#codegen

T = numerictype('WordLength',32,'FractionLength',23,...

 'Signed',true);

F = fimath('SumMode','SpecifyPrecision',...

 'SumWordLength',32,'SumFractionLength',23,...

 'ProductMode','SpecifyPrecision',...

 'ProductWordLength',32,'ProductFractionLength',23);

assert(isfi(x));

assert(isequal(numerictype(x),T));

assert(isequal(fimath(x),F));

y = sqrt(x);

You must specify both the fi class and the numerictype.

Specifying Properties of Cell Arrays

To specify the MATLAB class cell (cell array), use one of the following syntaxes:

assert(iscell(param))

assert(isa(param, 'cell'))

For example, to set the class of input C to cell, use:

...

assert(iscell(C));

21-75

21 Generating C/C++ Code from MATLAB Code

...

or

...

assert(isa(C, 'cell'));

...

You can also specify the size of the cell array and the properties of the cell array
elements. The number of elements that you specify determines whether the cell array is
homogeneous or heterogeneous. See “Code Generation for Cell Arrays” on page 9-2.

If you specify the properties of the first element only, the cell array is homogeneous.
For example, the following code specifies that C is a 1x3 homogeneous cell array whose
elements are 1x1 double.

...

assert(isa(C, 'cell'));

assert(all(size(C) == [1 3]));

assert(isa(C{1}, 'double'));

...

If you specify the properties of the first element only, but also assign a structure
type name to the cell array, the cell array is heterogeneous. Each element has the
properties of the first element. For example, the following code specifies that C is a 1x3
heterogeneous cell array. Each element is a 1x1 double.

...

assert(isa(C, 'cell'));

assert(all(size(C) == [1 3]));

assert(isa(C{1}, 'double'));

coder.cstructname(C, 'myname');

...

If you specify the properties of each element, the cell array is heterogeneous. For
example, the following code specifies a 1x2 heterogeneous cell array whose first element
is 1x1 char and whose second element is 1x3 double.

...

assert(isa(C, 'cell'));

assert(all(size(C) == [1 2]));

assert(isa(C{1}, 'char'));

assert(all(size(C{2}) == [1 3]));

assert(isa(C{2}, 'double'));

21-76

 Define Input Properties Programmatically in the MATLAB File

...

If you specify more than one element, you cannot specify that the cell array is variable
size, even if all elements have the same properties. For example, the following code
specifies a variable-size cell array. Because the code specifies the properties of the first
and second elements, code generation fails.

...

assert(isa(C, 'cell'));

assert(all(size(C) <= [1 2]));

assert(isa(C{1}, 'double'));

assert(isa(C{2}, 'double'));

...

In the previous example, if you specify the first element only, you can specify that the cell
array is variable-size. For example:

...

assert(isa(C, 'cell'));

assert(all(size(C) <= [1 2]));

assert(isa(C{1}, 'double'));

...

Specifying Class and Size of Scalar Structure

Suppose that you defineS as the following scalar MATLAB structure:

S = struct('r',double(1),'i',int8(4));

The following code specifies the properties of the function input S and its fields:

function y = fcn(S) %#codegen

% Specify the class of the input as struct.

assert(isstruct(S));

% Specify the class and size of the fields r and i

% in the order in which you defined them.

assert(isa(S.r,'double'));

assert(isa(S.i,'int8');

...

In most cases, when you do not explicitly specify values for properties, MATLAB Coder
uses defaults—except for structure fields. The only way to name a field in a structure

21-77

21 Generating C/C++ Code from MATLAB Code

is to set at least one of its properties. At a minimum, you must specify the class of a
structure field.

Specifying Class and Size of Structure Array

For structure arrays, you must choose a representative element of the array for
specifying the properties of each field. For example, assume that you have defined S as
the following 1-by-2 array of MATLAB structures:

S = struct('r',{double(1), double(2)},'i',{int8(4), int8(5)});

The following code specifies the class and size of each field of structure input S by using
the first element of the array:

%#codegen

function y = fcn(S)

% Specify the class of the input S as struct.

assert(isstruct(S));

% Specify the size of the fields r and i

% based on the first element of the array.

assert(all(size(S) == [1 2]));

assert(isa(S(1).r,'double'));

assert(isa(S(1).i,'int8'));

The only way to name a field in a structure is to set at least one of its properties. At a
minimum, you must specify the class of all fields.

21-78

 Speed Up Compilation by Generating Only Code

Speed Up Compilation by Generating Only Code

To speed up compilation, you can generate only code. When you generate only code,
MATLAB Coder does not invoke the make command or generate compiled object code.
When you iterate between modifying MATLAB code and generating C/C++ code, and you
want to inspect the generated code, using this option saves time.

To select this option in the MATLAB Coder app:

1 On the Generate Code page, click the Generate arrow to open the Generate
dialog box.

2 Set Build Type to Static Library, Dynamic Library, or Executable.
3 Select the Generate code only check box.

To set this option at the command line, use the codegen -c option. For example, to
generate only code for a function foo:

codegen -c foo

See Also
codegen

More About
• “Speed Up MEX Generation by Using JIT Compilation” on page 29-64

21-79

21 Generating C/C++ Code from MATLAB Code

Disable Creation of the Code Generation Report

If you disable creation of the code generation report, you can speed up code generation,
unless an error occurs. If an error occurs, the code generator creates a report even if you
disabled creation of the report.

To disable creation of the code generation report:

• In the MATLAB Coder app, in the project build settings, on the Debugging tab, clear
the Always create a code generation report check box.

• At the command line, when you generate code, do not use the -report option. If you
specify a code configuration object, make sure that the GenerateReport property is
set to false.

By default, creation of the code generation report is disabled.

Related Examples
• “Enable Code Generation Reports” on page 22-27

More About
• “Configure Build Settings” on page 21-26
• “Code Generation Reports” on page 22-9

21-80

 Paths and File Infrastructure Setup

Paths and File Infrastructure Setup

In this section...

“Compile Path Search Order” on page 21-81
“Specify Folders to Search for Custom Code” on page 21-81
“Naming Conventions” on page 21-82

Compile Path Search Order

MATLAB Coder resolves MATLAB functions by searching first on the code generation
path and then on the MATLAB path. The code generation path contains the current
folder and the code generation libraries. By default, unless MATLAB Coder determines
that a function should be extrinsic or you explicitly declare the function to be extrinsic,
MATLAB Coder tries to compile and generate code for functions it finds on the path.
MATLAB Coder does not compile extrinsic functions, but rather dispatches them to
MATLAB for execution. See “Resolution of Function Calls for Code Generation” on page
14-2.

Specify Folders to Search for Custom Code

If you want to integrate custom code — such as source, header, and library files — with
the generated code, you can specify additional folder to search. The following table
describes how to specify these search paths. The path should not contain:

• Spaces (Spaces can lead to code generation failures in certain operating system
configurations)

• Tabs
• \, $, #, *, ?
• Non-7-bit ASCII characters, such as Japanese characters

To specify additional
folders

Do this

Using the MATLAB
Coder app

1 To open the Generate dialog box, on the Generate Code

page, click the Generate arrow .
2 Click More Settings.

21-81

21 Generating C/C++ Code from MATLAB Code

To specify additional
folders

Do this

3 On the Paths tab, in the Search paths field, either
browse to add a folder to the search path or enter the full
path. The search path must not contain spaces.

At the command line Use the codegen function -I option.

Naming Conventions

MATLAB Coder enforces naming conventions for MATLAB functions and generated files.

• “Reserved Prefixes” on page 21-82
• “Reserved Keywords” on page 21-82
• “Conventions for Naming Generated Files” on page 21-85

Reserved Prefixes

MATLAB Coder reserves the prefix eml for global C/C++ functions and variables in
generated code. For example, MATLAB for code generation run-time library function
names begin with the prefix emlrt, such as emlrtCallMATLAB. To avoid naming
conflicts, do not name C/C++ functions or primary MATLAB functions with the prefix
eml.

Reserved Keywords

• “C Reserved Keywords” on page 21-83
• “C++ Reserved Keywords” on page 21-83
• “Reserved Keywords for Code Generation” on page 21-83
• “MATLAB Coder Code Replacement Library Keywords” on page 21-84

MATLAB Coder software reserves certain words for its own use as keywords of the
generated code language. MATLAB Coder keywords are reserved for use internal to
MATLAB Coder software and should not be used in MATLAB code as identifiers or
function names. C reserved keywords should also not be used in MATLAB code as
identifiers or function names. If your MATLAB code contains reserved keywords, the
code generation build does not complete and an error message is displayed. To address
this error, modify your code to use identifiers or names that are not reserved.

21-82

 Paths and File Infrastructure Setup

If you are generating C++ code using the MATLAB Coder software, in addition, your
MATLAB code must not contain the “C++ Reserved Keywords” on page 21-83.

C Reserved Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

C++ Reserved Keywords

catch friend protected try

class inline public typeid

const_cast mutable reinterpret_cast typename

delete namespace static_cast using

dynamic_cast new template virtual

explicit operator this wchar_t

export private throw

Reserved Keywords for Code Generation

abs fortran localZCE rtNaN

asm HAVESTDIO localZCSV SeedFileBuffer

bool id_t matrix SeedFileBufferLen

boolean_T int_T MODEL single

byte_T int8_T MT TID01EQ

char_T int16_T NCSTATES time_T

21-83

21 Generating C/C++ Code from MATLAB Code

cint8_T int32_T NULL true

cint16_T int64_T NUMST TRUE

cint32_T INTEGER_CODE pointer_T uint_T

creal_T LINK_DATA_BUFFER_SIZE PROFILING_ENABLED uint8_T

creal32_T LINK_DATA_STREAM PROFILING_NUM_SAMPLES uint16_T

creal64_T localB real_T uint32_T

cuint8_T localC real32_T uint64_T

cuint16_T localDWork real64_T UNUSED_PARAMETER

cuint32_T localP RT USE_RTMODEL

ERT localX RT_MALLOC VCAST_FLUSH_DATA

false localXdis rtInf vector

FALSE localXdot rtMinusInf

MATLAB Coder Code Replacement Library Keywords

The list of code replacement library (CRL) reserved keywords for your development
environment varies depending on which CRLs currently are registered. Beyond the
default ANSI, ISO, and GNU® CRLs provided with MATLAB Coder software, additional
CRLs might be registered and available for use if you have installed other products that
provide CRLs (for example, a target product), or if you have used Embedded Coder APIs
to create and register custom CRLs.

To generate a list of reserved keywords for the CRLs currently registered in your
environment, use the following MATLAB function:
crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers()

This function returns a cell array of character vectors that contain CRL keywords.
Specifying the return argument is optional.

Note: To list the CRLs currently registered in your environment, use the MATLAB
command crviewer.

To generate a list of reserved keywords for the CRL that you are using to generate code,
call the function passing the name of the CRL as displayed in the Code replacement

21-84

 Paths and File Infrastructure Setup

library menu on the Code Generation > Interface pane of the Configuration
Parameters dialog box. For example,
crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

Here is a partial example of the function output:
>> crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

crl_ids =

 'exp10'

 'exp10f'

 'acosf'

 'acoshf'

 'asinf'

 'asinhf'

 'atanf'

 'atanhf'

...

 'rt_lu_cplx'

 'rt_lu_cplx_sgl'

 'rt_lu_real'

 'rt_lu_real_sgl'

 'rt_mod_boolean'

 'rt_rem_boolean'

 'strcpy'

 'utAssert'

Note: Some of the returned keywords appear with the suffix $N, for example,
'rt_atan2$N'. $N expands into the suffix _snf only if nonfinite numbers are
supported. For example, 'rt_atan2$N' represents 'rt_atan2_snf' if nonfinite
numbers are supported and 'rt_atan2' if nonfinite numbers are not supported. As a
precaution, you should treat both forms of the keyword as reserved.

Conventions for Naming Generated Files

The following table describes how MATLAB Coder names generated files. MATLAB
Coder follows MATLAB conventions by providing platform-specific extensions for MEX
files.

Platform MEX File
Extension

MATLAB Coder
Extension for
Static Library

MATLAB Coder
Extension for
Shared Library

MATLAB Coder
Executable
Extension

Linux (64-bit) .mexa64 .a .so None

21-85

21 Generating C/C++ Code from MATLAB Code

Platform MEX File
Extension

MATLAB Coder
Extension for
Static Library

MATLAB Coder
Extension for
Shared Library

MATLAB Coder
Executable
Extension

Apple Mac (64-
bit)

.mexmaci64 .a .dylib None

Windows (64-
bit)

.mexw64 .lib .dll

Also, generates
an import
library with a
.lib extension
that is required
for linking
against the
.dll.

.exe

21-86

 Generate Code for Multiple Entry-Point Functions

Generate Code for Multiple Entry-Point Functions

In this section...

“Advantages of Generating Code for Multiple Entry-Point Functions” on page 21-87
“Generate Code for More Than One Entry-Point Function Using the MATLAB Coder
App” on page 21-87
“Generating Code for More Than One Entry-Point Function at the Command Line” on
page 21-90
“How to Call an Entry-Point Function in a MEX Function” on page 21-91
“How to Call an Entry-Point Function in a C/C++ Library Function from C/C++ Code”
on page 21-92

Advantages of Generating Code for Multiple Entry-Point Functions

Generating a single C/C++ library for more than one entry-point MATLAB function
allows you to:

• Create C/C++ libraries containing multiple, compiled MATLAB files to integrate with
larger C/C++ applications.

• Share code efficiently between library functions.
• Communicate between library functions using shared memory.

Generating a MEX function for more than one entry-point function allows you to validate
entry-point interactions in MATLAB before creating a C/C++ library.

Generate Code for More Than One Entry-Point Function Using the
MATLAB Coder App

This example shows how to generate code for multiple entry-point functions using the
MATLAB Coder app.

Create the Entry-Point Functions

1 In a local writable folder, create a MATLAB file, ep1.m, that contains:

function y = ep1(u) %#codegen

y = u;

21-87

21 Generating C/C++ Code from MATLAB Code

2 In the same local writable folder, create a MATLAB file, ep2.m, that contains:

function y = ep2(u, v) %#codegen

y = u + v;

Create the Test File

In the folder that contains ep1.m and ep2.m, create a MATLAB file, ep_test.m, that
calls ep1 and ep2 with example inputs.

function [y, y1] = ep_test

y = ep1(single(2));

y1 = ep2(double(3), double(4));

Open the MATLAB Coder App

On the MATLAB Toolstrip Apps tab, under Code Generation, click the MATLAB
Coder app icon.

Specify Source Files

1 On the Select Source Files page, type or select the name of the entry-point
function ep1.

The app creates a project with the default name ep1.prj in the current folder.
2 To add ep2 to the list of entry-point functions, click Add Entry-Point Function.

Type or select the name of the entry-point function ep2.
3 Click Next to go to the Define Input Types step. The app analyzes the functions

for coding issues and code generation readiness. If the app identifies issues, it opens
the Review Code Generation Readiness page where you can review and fix
issues. In this example, because the app does not detect issues, it opens the Define
Input Types page.

Define Input Types

Because C uses static typing, at compile time, MATLAB Coder must determine the
properties of all variables in the MATLAB files. You must specify the properties of all
entry-point function inputs. From the properties of the entry-point function inputs,
MATLAB Coder can infer the properties of all variables in the MATLAB files.

Specify a test file that MATLAB Coder can use to automatically define types:

1 Enter or select the test file ep_test.m.

21-88

 Generate Code for Multiple Entry-Point Functions

2 Click Autodefine Input Types.

The test file, ep_test.m, calls the entry-point functions ep1 and ep2 with the
example input types. MATLAB Coder infers that for ep1, input u is single(1x1).
For ep2, u and v are double(1x1).

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates a MEX file from your entry-point
functions, runs the MEX function, and reports issues. This step is optional. However, it
is a best practice to perform this step. You can detect and fix run-time errors that are
harder to diagnose in the generated C code.

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues

arrow .

The app populates the test file field with ep_test, the test file that you used to
define the input types.

2 Click Check for Issues.

The app generates a MEX function named ep1_mex for ep1 and ep2. It runs the
test file ep_test replacing calls to ep1 and ep2 with calls to the MEX function. If
the app detects issues during the MEX function generation or execution, it provides
warning and error messages. Click these messages to navigate to the problematic
code and fix the issue. In this example, the app does not detect issues.

3 Click Next to go to the Generate Code step.

Generate MEX Function

1 To open the Generate dialog box, click the Generate arrow .
2 Set Build type to MEX.
3 Verify that the Output file name is ep1_mex. By default, the app uses the name of

the alphabetically first entry-point function.
4 Click Generate.

MATLAB Coder builds the project. It generates a MEX function, ep1_mex, in the
current folder. MATLAB Coder also generates other supporting files in a subfolder
called codegen/mex/ep1_mex. MATLAB Coder uses the name of the MATLAB

21-89

21 Generating C/C++ Code from MATLAB Code

function as the root name for the generated files. It creates a platform-specific
extension for the MEX file, as described in “Naming Conventions” on page 21-82.

You can now test your MEX function in MATLAB. See “How to Call an Entry-Point
Function in a MEX Function” on page 21-91.

If you generate a static library for ep1 and ep2, MATLAB Coder builds the project
and generates a C library, ep1, and supporting files in the default folder, codegen/
lib/ep1.

Generating Code for More Than One Entry-Point Function at the
Command Line

To generate code for more than one entry-point function, use the following syntax, where
global_options applies to functions, fun_1 through fun_n, and options_n applies
only to the preceding function fun_n.

codegen -global_options fun_1 -options_1 ... fun_n -options_n

By default, codegen:

• Generates a MEX function in the current folder. codegen names the MEX function,
fun_mex. fun is the name of the alphabetically first entry-point function.

Stores generated files in the subfolder codegen/mex/fun_1. fun_1 is the name of
the first entry-point function.

You can specify the output file name and subfolder name using the -o option.

codegen -o out_fun fun_1 -options_1 ... fun_n -options_n

In this case, codegen:

• Generates a MEX function named out_fun_mex in the current folder.
• Stores generated files in the subfolder codegen/mex/out_fun.

For more information on setting build options at the command line, see codegen.

Generating a MEX Function with Two Entry-Point Functions at the Command Line

Generate a MEX function with two entry-point functions, ep1 and ep2. Function ep1
takes one input, a single scalar, and ep2 takes two inputs, a double scalar and a double
vector. Using the -o option, name the generated MEX function sharedmex.

21-90

 Generate Code for Multiple Entry-Point Functions

codegen -o sharedmex ep1 -args single(0) ep2 -args { 0, zeros(1,1024) }

codegen generates a MEX function named sharedmex.mex in the current folder and
stores generated files in the subfolder codegen/mex/sharedmex.

Generating a C/C++ Static Library with Two Entry-Point Functions at the Command Line

Generate standalone C/C++ code and compile it to a library for two entry-point functions,
ep1 and ep2. Function ep1 takes one input, a single scalar, and ep2 takes two inputs, a
double scalar and a double vector. Use the -config:lib option to specify that the target
is a library. Using the -o option, name the generated library sharedlib.

codegen -config:lib -o sharedlib ep1 -args single(0) ep2 ...

 -args { 0, zeros(1,1024) }

codegen generates C/C++ library code in the codegen/lib/sharedlib folder.

For information on viewing entry-point functions in the code generation report, see “Code
Generation Reports” on page 22-9.

How to Call an Entry-Point Function in a MEX Function

To call an entry-point function in a MEX function that has more than one entry point,
use this syntax:

MEX_Function('entry_point_function_name',

 ... entry_point_function_param1,

 ... , entry_point_function_paramn)

Calling an Entry-Point Function in a MEX Function

Consider a MEX function, sharedmex, that has entry-point functions ep1 and ep2.
Entry-point function ep1 takes one single scalar input and ep2 takes two inputs, a
double scalar and a double vector.

To call ep1 with an input parameter u, enter:

sharedmex('ep1', u)

To call ep2 with input parameters u and v, enter:

sharedmex('ep2', u, v)

21-91

21 Generating C/C++ Code from MATLAB Code

How to Call an Entry-Point Function in a C/C++ Library Function from C/
C++ Code

To call an entry-point function in a C/C++ library function from C/C++ code, write a main
function in C/C++ that:

• Includes the generated header files, which contain the function prototypes for the
entry-point functions.

• Calls the initialize function before calling the entry-point functions for the first time.
• Calls the terminate function after calling the entry-point functions for the last time.
• Configures your target to integrate this custom C/C++ main function with your

generated code, as described in “Specify External File Locations” on page 25-14.
• Generates the C/C++ executable using codegen.

See the example, “Call a Generated C Static Library Function from C Code” on page
25-4.

21-92

 Generate Code for Global Data

Generate Code for Global Data

In this section...

“Workflow” on page 21-93
“Declare Global Variables” on page 21-93
“Define Global Data” on page 21-94
“Synchronizing Global Data with MATLAB” on page 21-95
“Define Constant Global Data” on page 21-99
“Limitations of Using Global Data” on page 21-102

Workflow

To generate C/C++ code from MATLAB code that uses global data:

1 Declare the variables as global in your code.
2 Before using the global data, define and initialize it.

For more information, see “Define Global Data” on page 21-94.
3 Generate code using the MATLAB Coder app or using codegen.

If you use global data, you must also specify whether you want to synchronize this
data between MATLAB and the generated MEX function. For more information, see
“Synchronizing Global Data with MATLAB” on page 21-95.

Declare Global Variables

When using global data, you must first declare the global variables in your MATLAB
code. Consider the use_globals function that uses two global variables AR and B:

function y = use_globals(u)

%#codegen

% Turn off inlining to make

% generated code easier to read

coder.inline('never');

% Declare AR and B as global variables

global AR;

global B;

AR(1) = u + B(1);

21-93

21 Generating C/C++ Code from MATLAB Code

y = AR * 2;

Define Global Data

You can define global data in the MATLAB global workspace, in a MATLAB Coder
project, or at the command line. If you do not initialize global data in the project or at the
command line, MATLAB Coder looks for the variable in the MATLAB global workspace.
If the variable does not exist, MATLAB Coder generates an error.

Defining Global Data in the MATLAB Global Workspace

To generate a MEX function for the use_globals function described in “Declare Global
Variables” on page 21-93 using codegen:

1 In the MATLAB workspace, define and initialize the global data. At the MATLAB
prompt, enter:

global AR B;

AR = ones(4);

B = [1 2 3];

2 Generate a MEX file.

codegen use_globals -args {0}

% Use the -args option to specify that the input u

% is a real, scalar, double

% By default, codegen generates a MEX function,

% use_globals_mex, in the current folder

Defining Global Data Using the MATLAB Coder App

1 On the Define Input Types page, automatically define input types or click Let me
enter input or global types directly.

The app displays a table of entry-point inputs.
2 To add a global variable, click Add global.

By default, the app names the first global variable in a project g, and subsequent
global variables g1, g2, and so on.

3 Under Global variables, enter a name for the global variable.
4 Click the field to the right of the global variables name. Specify the type and initial

value of the global variable. See “Specify Global Variable Type and Initial Value
Using the App” on page 18-27.

21-94

 Generate Code for Global Data

If you do not specify the type, you must create a variable with the same name in the
global workspace.

Defining Global Data at the Command Line

To define global data at the command line, use the codegen -globals option. For
example, to compile the use_globals function described in “Declare Global Variables”
on page 21-93, specify two global inputs AR and B at the command line. Use the
-args option to specify that the input u is a real, scalar double. By default, codegen
generates a MEX function, use_globals_mex, in the current folder.

codegen -globals {'AR',ones(4),'B',[1 2 3]} use_globals -args {0}

Alternatively, specify the type and initial value with the -globals flag using the format
-globals {'g', {type, initial_value}}. For cell arrays, you must use this
format. See “Specify Global Cell Arrays at the Command Line” on page 21-103.

Defining Variable-Size Global Data

To provide initial values for variable-size global data, specify the type and initial
value with the -globals flag using the format -globals {'g', {type,
initial_value}}. For example, to specify a global variable g1 that has an initial value
[1 1] and upper bound [2 2], enter:

codegen foo -globals {'g1', {coder.typeof(0, [2 2],1),[1 1]}}

For a detailed explanation of the syntax, see coder.typeof.

Synchronizing Global Data with MATLAB

Why Synchronize Global Data?

The generated MEX function and MATLAB each have their own copies of global data.
To make these copies consistent, you must synchronize their global data whenever the
two interact. If you do not synchronize the data, their global variables might differ. The
level of interaction determines when to synchronize global data. For more information,
see “When to Synchronize Global Data” on page 21-96.

When global data is constant, you cannot synchronize the global data with MATLAB. By
default, the MEX function tests for consistency between the compile-time constant global
values and the MATLAB values at function entry and after extrinsic function calls. If the
MATLAB values differ from the compile-time constant global values, the MEX function

21-95

21 Generating C/C++ Code from MATLAB Code

ends with an error. For information about controlling when the MEX function tests for
consistency between the compile-time constant global values and the MATLAB values,
see “Consistency Between MATLAB and Constant Global Data” on page 21-101.

When to Synchronize Global Data

By default, synchronization between the MEX function's global data and MATLAB occurs
at MEX function entry and exit and for extrinsic calls. Use this synchronization method
for maximum consistency between the MEX function and MATLAB.

To improve performance, you can:

• Select to synchronize only at MEX function entry and exit points.
• Disable synchronization when the global data does not interact.
• Choose whether to synchronize before and after each extrinsic call.

The following table summarizes which global data synchronization options to use. To
learn how to set these options, see “How to Synchronize Global Data” on page 21-97.

21-96

 Generate Code for Global Data

Global Data Synchronization Options

If you want to Set the global data
synchronization mode
to:

Synchronize before and after
extrinsic calls?

Have maximum consistency
when all extrinsic calls modify
global data.

At MEX-function

entry, exit and

extrinsic calls

(default)

Yes. Default behavior.

Have maximum consistency
when most extrinsic calls modify
global data, but a few do not.

At MEX-function

entry, exit and

extrinsic calls

(default)

Yes. Use the
coder.extrinsic -
sync:off option to turn
off synchronization for the
extrinsic calls that do not
change global data.

Have maximum consistency
when most extrinsic calls do not
modify global data, but a few do.

At MEX-function

entry and exit

Yes. Use the
coder.extrinsic -sync:on
option to synchronize only the
calls that modify global data.

Maximize performance when
synchronizing global data, and
none of your extrinsic calls
modify global data.

At MEX-function

entry and exit

No.

Communicate between
generated MEX functions
only. No interaction between
MATLAB and MEX function
global data.

Disabled No.

How to Synchronize Global Data

To control global data synchronization, set the global data synchronization mode and
select whether to synchronize extrinsic functions. For guidelines on which options to use,
see “When to Synchronize Global Data” on page 21-96.

You can control the global data synchronization mode from the project settings
dialog box, the command line, or a MEX configuration dialog box. You control the
synchronization of data with extrinsic functions using the coder.extrinsic -sync:on
and -sync:off options.

21-97

21 Generating C/C++ Code from MATLAB Code

Controlling the Global Data Synchronization Mode Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Set Build type to MEX.
3 Click More Settings.
4 On the Memory tab, set Global data synchronization mode to At MEX-

function entry and exit or Disabled, as applicable.

Controlling the Global Data Synchronization Mode from the Command Line

1 In the MATLAB workspace, define the code generation configuration object. At the
MATLAB command line, enter:

mexcfg = coder.config('mex');

2 At the MATLAB command line, set the GlobalDataSyncMethod property to
SyncAtEntryAndExits or NoSync, as applicable. For example:

mexcfg.GlobalDataSyncMethod = 'SyncAtEntryAndExits';

3 When compiling your code, use the mexcfg configuration object. For example, to
generate a MEX function for function foo that has no inputs:

codegen -config mexcfg foo

Controlling Synchronization for Extrinsic Function Calls

To control whether synchronization between MATLAB and MEX function global data
occurs before and after you call an extrinsic function, use the coder.extrinsic-
sync:on and -sync:off options.

By default, global data is:

• Synchronized before and after each extrinsic call, if the global data synchronization
mode is At MEX-function entry, exit and extrinsic calls. If you are sure
that certain extrinsic calls do not change global data, turn off synchronization for
these calls using the -sync:off option. For example, if functions foo1 and foo2 do
not change global data, turn off synchronization for these functions:

coder.extrinsic('-sync:off', 'foo1', 'foo2');

• Not synchronized, if the global data synchronization mode is At MEX-function
entry and exit. If the code has a few extrinsic calls that change global data,

21-98

 Generate Code for Global Data

turn on synchronization for these calls using the -sync:on option. For example,
if functions foo1 and foo2 change global data, turn on synchronization for these
functions:

coder.extrinsic('-sync:on', 'foo1', 'foo2');

• Not synchronized, if the global data synchronization mode is Disabled. When
synchronization is disabled, you cannot use the -sync:on option to control the
synchronization for specific extrinsic calls.

Define Constant Global Data

If you know that the value of a global variable does not change at run time, you can
reduce overhead in the generated code by specifying that the global variable has a
constant value. You cannot write to the constant global variable.

Define Constant Global Data Using the MATLAB Coder App

• On the Define Input Types page, automatically define input types or click Let me
enter input or global types directly.

The app displays a table of entry-point inputs.

1 To add a global variable, click Add global.

By default, the app names the first global variable in a project g, and subsequent
global variables g1, g2, and so on.

2 Under Global Variables, enter a name for the global variable.
3 Click the field to the right of the global variable name.
4 Select Define Constant Value.

21-99

21 Generating C/C++ Code from MATLAB Code

5 In the field to the right of the global variable, enter a MATLAB expression.

Define Constant Global Data at the Command Line

To specify that a global variable is constant using the codegen command, use the -
globals option with the coder.Constant class.

1 Define a configuration object for the code generation output type that you want. For
example, define a configuration object for MEX code generation:

cfg = coder.config('mex');

21-100

 Generate Code for Global Data

2 Use coder.Constant to specify that a global variable has a constant value. For
example, the following code specifies that the global variable g has initial value 4
and that global variable gc has the constant value 42.

global_values = {'g', 4, 'gc', coder.Constant(42)};

3 Generate the code using the -globals option. For example, generate code for
myfunction specifying that the global variables are defined in the cell array
global_values.

codegen -config cfg -globals global_values myfunction

Consistency Between MATLAB and Constant Global Data

By default, the generated MEX function verifies that the values of constant global data
in the MATLAB workspace are consistent with the compile-time values in the generated
MEX. It tests for consistency at function entry and after calls to extrinsic functions.
If the MEX function detects an inconsistency, it ends with an error. To control when
the MEX function tests for consistency, use the global synchronization mode and the
coder.extrinsic synchronization options.

The following table shows how the global data synchronization mode and the
coder.extrinsic synchronization option setting determine when a MEX function
verifies consistency between the compile-time constant global data values and MATLAB.

Global Data
Synchronization
Mode (Project)

GlobalDataSyncMethod (MEX
Configuration Object)

Verify
Consistency
of Constant
Global Values
at MEX
Function Entry

coder.extrinsic
synchronization
option

Verify
Consistency
of Constant
Global Values
After Extrinsic
Function Call

'sync:on'

(default)
yesAt MEX-

function

entry, exit

and extrinsic

calls (default)

'SyncAlways' yes

'sync:off' no

'sync:on' yesAt MEX-

function

entry and

exit

'SyncAtEntryAndExits' yes
'sync:off'

(default)
no

Disabled 'NoSync' no N/A N/A

21-101

21 Generating C/C++ Code from MATLAB Code

Constant Global Data in a Code Generation Report

The code generation report provides the following information about a constant global
variable:

• Type of Global on the Variables tab.
• Highlighted variable name in the Function pane.

See “MATLAB Code Variables in a Report” on page 22-17.

Limitations of Using Global Data

You cannot use global data with the coder.cstructname function.

21-102

 Specify Global Cell Arrays at the Command Line

Specify Global Cell Arrays at the Command Line

To specify global cell array inputs, use the -globals option of the codegen command
with this syntax:

codegen myfunction -globals {global_var, {type_object, initial_value}}

For example:

• To specify that the global variable g is a 1x3 cell array whose elements have class
double and whose initial value is {1 2 3}, use:

codegen myfunction -globals {'g', {coder.typeof({1 1 1}), {1 2 3}}}

Alternatively, use:

t = coder.typeof({1 1 1});

codegen myfunction -globals {'g', {t, {1 2 3}}}

The global variable g is a 1x3 homogeneous cell array whose elements are 1x1 double.

To make g heterogeneous, use:

t = makeHeterogeneous(coder.typeof({1 1 1}));

codegen myfunction -globals {'g', {t, {1 2 3}}}

• To specify that g is a cell array whose first element has type char, whose second
element has type double, and whose initial value is {'a', 1}, use:

codegen myfunction -globals {'g', {coder.typeof({'a', 1}), {'a', 1}}}

The global variable g is a 1x2 heterogeneous cell array whose first element is 1x1 char
and whose second element is 1x1 double.

• To specify that g is a cell array whose first element has type double, whose second
element is a 1x2 double array, and whose initial value is {1 [2 3]}, use:

codegen myfunction -globals {'g', {coder.typeof({1 [2 3]}), {1 [2 3]}}}

Alternatively, use:

t = coder.typeof({1 [2 3]});

codegen myfunction -globals {'g', {t, {1 [2 3]}}}

21-103

21 Generating C/C++ Code from MATLAB Code

The global variable g is a 1x2 heterogeneous cell array whose first element is 1x1
double and whose second element is 1x2 double.

Global variables that are cell arrays cannot have variable size.

See Also
codegen | coder.typeof

Related Examples
• “Generate Code for Global Data” on page 21-93

21-104

 Generate Code for Enumerations

Generate Code for Enumerations

The basic workflow for generating code for enumerated types in MATLAB code is:

1 Define an enumerated data type that derives from one of these base types: int8,
uint8, int16, uint16, or int32.

2 Save the enumerated data type in a file on the MATLAB path.
3 Write a MATLAB function that uses the enumerated type.
4 Specify enumerated type inputs.
5 Generate code.

More About
• “Code Generation for Enumerations” on page 10-2
• “Generate Code for an LED Control Function That Uses Enumerated Types” on

page 21-186
• “Customize Enumerated Types in Generated Code” on page 10-6
• “Specify an Enumerated Type Input Parameter by Example” on page 18-11
• “Specify an Enumerated Type Input Parameter by Type” on page 18-15

21-105

21 Generating C/C++ Code from MATLAB Code

Generate Code for Variable-Size Data

In this section...

“Disable Support for Variable-Size Data” on page 21-106
“Control Dynamic Memory Allocation” on page 21-107
“Generating Code for MATLAB Functions with Variable-Size Data” on page 21-109
“Generate Code for a MATLAB Function That Expands a Vector in a Loop” on page
21-110
“Using Dynamic Memory Allocation for an "Atoms" Simulation” on page 21-116

Variable-size data is data whose size might change at run time. You can use MATLAB
Coder to generate C/C++ code from MATLAB code that uses variable-size data. MATLAB
supports bounded and unbounded variable-size data for code generation. Bounded
variable-size data has fixed upper bounds. This data can be allocated statically on the
stack or dynamically on the heap. Unbounded variable-size data does not have fixed
upper bounds. This data must be allocated on the heap. By default, for MEX and C/C++
code generation, support for variable-size data is enabled and dynamic memory allocation
is enabled for variable-size arrays whose size is greater than or equal to a configurable
threshold.

Disable Support for Variable-Size Data

By default, for MEX and C/C++ code generation, support for variable-size data is
enabled. You modify variable sizing settings from the project settings dialog box, the
command line, or using dialog boxes.

Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the Memory tab, select or clear Enable variable-sizing.

At the Command Line

1 Create a configuration object for code generation. For example, for a library:

21-106

 Generate Code for Variable-Size Data

cfg = coder.config('lib');

2 Set the EnableVariableSizing option:

cfg.EnableVariableSizing = false;

3 Using the -config option, pass the configuration object to codegen :

codegen -config cfg foo

Control Dynamic Memory Allocation

By default, dynamic memory allocation is enabled for variable-size arrays whose size is
greater than or equal to a configurable threshold. If you disable support for variable-size
data (see “Disable Support for Variable-Size Data” on page 21-106), you also disable
dynamic memory allocation. You can modify dynamic memory allocation settings from
the project settings dialog box or the command line.

Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the Memory tab, set Dynamic memory allocation to one of the following

options:

Setting Action

Never Dynamic memory allocation is disabled.
Variable-size data is allocated statically
on the stack.

For all variable-sized arrays Dynamic memory allocation is enabled
for variable-size arrays. Variable-size
data is allocated dynamically on the
heap.

For arrays with max size at or

above threshold

Dynamic memory allocation is enabled
for variable-size arrays whose size is
greater than or equal to the Dynamic
memory allocation threshold.
Variable-size arrays whose size is less

21-107

21 Generating C/C++ Code from MATLAB Code

Setting Action

than this threshold are allocated on the
stack.

4 Optionally, if you set Dynamic memory allocation to For arrays with
maximum size at or above threshold, configure Dynamic memory
allocation threshold to fine-tune memory allocation.

At the Command Line

1 Create a configuration object for code generation. For example, for a MEX function:

mexcfg = coder.config('mex');

2 Set the DynamicMemoryAllocation option:

Setting Action

mexcfg.DynamicMemoryAllocation='Off'; Dynamic memory allocation
is disabled. Variable-size data
is allocated statically on the
stack.

mexcfg.DynamicMemoryAllocation='AllVariableSizeArrays'; Dynamic memory allocation
is enabled for variable-size
arrays. Variable-size data is
allocated dynamically on the
heap.

mexcfg.DynamicMemoryAllocation='Threshold'; Dynamic memory allocation
is enabled for variable-
size arrays whose size (in
bytes) is greater than or
equal to the value specified
using the Dynamic memory
allocation threshold

parameter. Variable-size
arrays whose size is less than
this threshold are allocated on
the stack.

3 Optionally, if you set Dynamic memory allocation to ‘Threshold’, configure
Dynamic memory allocation threshold to fine tune memory allocation.

4 Using the -config option, pass the configuration object to codegen:

21-108

 Generate Code for Variable-Size Data

codegen -config mexcfg foo

Generating Code for MATLAB Functions with Variable-Size Data

Here is a basic workflow that first generates MEX code for verifying the generated
code and then generates standalone code after you are satisfied with the result of the
prototype.

To work through these steps with a simple example, see “Generate Code for a MATLAB
Function That Expands a Vector in a Loop” on page 21-110

1 In the MATLAB Editor, add the compilation directive %#codegen at the top of your
function.

This directive:

• Indicates that you intend to generate code for the MATLAB algorithm
• Turns on checking in the MATLAB Code Analyzer to detect potential errors

during code generation
2 Address issues detected by the Code Analyzer.

In some cases, the MATLAB Code Analyzer warns you when your code assigns
data a fixed size but later grows the data, such as by assignment or concatenation
in a loop. If that data is supposed to vary in size at run time, you can ignore these
warnings.

3 Generate a MEX function using codegen to verify the generated code. Use the
following command-line options:

• -args {coder.typeof...} if you have variable-size inputs
• -report to generate a code generation report

For example:

codegen -report foo -args {coder.typeof(0,[2 4],1)}

This command uses coder.typeof to specify one variable-size input for function
foo. The first argument, 0, indicates the input data type (double) and complexity
(real). The second argument, [2 4], indicates the size, a matrix with two
dimensions. The third argument, 1, indicates that the input is variable sized. The
upper bound is 2 for the first dimension and 4 for the second dimension.

21-109

21 Generating C/C++ Code from MATLAB Code

Note: During compilation, codegen detects variables and structure fields that
change size after you define them, and reports these occurrences as errors. In
addition, codegen performs a run-time check to generate errors when data exceeds
upper bounds.

4 Fix size mismatch errors:

Cause How To Fix For More Information

You try to change the
size of data after its size
has been locked.

Declare the data to be
variable sized.

See “Diagnosing and Fixing
Size Mismatch Errors” on
page 7-22.

5 Fix upper bounds errors

Cause How To Fix For More Information

MATLAB cannot
determine or compute
the upper bound

Specify an upper bound. See “Specifying Upper
Bounds for Variable-Size
Data” on page 7-6 and
“Diagnosing and Fixing Size
Mismatch Errors” on page
7-22.

MATLAB attempts to
compute an upper bound
for unbounded variable-
size data.

If the data is unbounded,
enable dynamic memory
allocation.

See “Control Dynamic
Memory Allocation” on page
21-107.

6 Generate C/C++ code using the codegen function.

Generate Code for a MATLAB Function That Expands a Vector in a Loop

• “About the MATLAB Function myuniquetol” on page 21-111
• “Step 1: Add Compilation Directive for Code Generation” on page 21-111
• “Step 2: Address Issues Detected by the Code Analyzer” on page 21-111
• “Step 3: Generate MEX Code” on page 21-112
• “Step 4: Generate C Code” on page 21-113
• “Step 5: Specify an Upper Bound for the Output Vector” on page 21-114
• “Step 6: Change the Dynamic Memory Allocation Threshold” on page 21-115

21-110

 Generate Code for Variable-Size Data

About the MATLAB Function myuniquetol

This example uses the function myuniquetol. This function returns in vector B a version
of input vector A, where the elements are unique to within tolerance tol of each other. In
vector B, abs(B(i) - B(j)) > tol for all i and j. Initially, assume input vector A can store
up to 100 elements.

function B = myuniquetol(A, tol)

A = sort(A);

B = A(1);

k = 1;

for i = 2:length(A)

 if abs(A(k) - A(i)) > tol

 B = [B A(i)];

 k = i;

 end

end

Step 1: Add Compilation Directive for Code Generation

Add the %#codegen compilation directive at the top of the function:

function B = myuniquetol(A, tol) %#codegen

A = sort(A);

B = A(1);

k = 1;

for i = 2:length(A)

 if abs(A(k) - A(i)) > tol

 B = [B A(i)];

 k = i;

 end

end

Step 2: Address Issues Detected by the Code Analyzer

The Code Analyzer detects that variable B might change size in the for-loop. It issues
this warning:

The variable 'B' appears to change size on every loop iteration.

Consider preallocating for speed.

In this function, you expect vector B to expand in size because it adds values from vector
A. Therefore, you can ignore this warning.

21-111

21 Generating C/C++ Code from MATLAB Code

Step 3: Generate MEX Code

It is a best practice to generate MEX code before you generate C/C++ code. Generating
MEX code can identify code generation issues that are harder to detect at run time.

1 Generate a MEX function for myuniquetol:

codegen -report myuniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

What do these command-line options mean?

The -args option specifies the class, complexity, and size of each input to function
myuniquetol:

• The first argument, coder.typeof, defines a variable-size input. The expression
coder.typeof(0,[1 100],1) defines input A as a real double vector with a
fixed upper bound. Its first dimension is fixed at 1 and its second dimension can
vary in size up to 100 elements.

For more information, see “Specify Variable-Size Inputs at the Command Line”
on page 21-54.

• The second argument, coder.typeof(0), defines input tol as a real double
scalar.

The -report option instructs codegen to generate a code generation report,
regardless of whether errors or warnings occur.

For more information, see the codegen reference page.

Code generation is successful. codegen does not detect issues. In the current folder,
codegen generates a MEX function for myuniquetol and provides a link to the code
generation report.

2 Click the View report link.
3 In the code generation report, select the Variables tab.

21-112

 Generate Code for Variable-Size Data

The size of A is 1x:100 because you specified that A is variable size with an upper
bound of 100. The size of variable B is 1x:?, indicating that it is variable size with
no upper bounds.

Step 4: Generate C Code

Generate C code for variable-size inputs. By default, codegen allocates memory
statically for data whose size is less than the dynamic memory allocation threshold of 64
kilobytes. If the size of the data is greater than or equal to the threshold or is unbounded,
codegen allocates memory dynamically on the heap.

1 Create a configuration option for C library generation:

cfg=coder.config('lib');

2 Issue this command:

21-113

21 Generating C/C++ Code from MATLAB Code

codegen -config cfg -report myuniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

codegen generates a static library in the default location, codegen\lib
\myuniquetol and provides a link to the code generation report.

3 Click the View report link.
4 In the code generation report, click the C code tab.
5 On the C code tab, click the link to myuniquetol.h.

The function declaration is:

extern void myuniquetol(const double A_data[], const int A_size[2],...

 double tol,emxArray_real_T *B);

codegen computes the size of A and, because its maximum size is less than the
default dynamic memory allocation threshold of 64k bytes, allocates this memory
statically. The generated code contains:

• double A_data[]: the definition of A.
• int A_size[2]: the actual size of the input.

The code generator determines that B is variable size with unknown upper bounds. It
represents B as emxArray_real_T. MATLAB provides utility functions for creating
and interacting with emxArrays in your generated code. For more information, see
“C Code Interface for Arrays” on page 7-17.

Step 5: Specify an Upper Bound for the Output Vector

You specified that the input A is variable size with an upper bound of 100. Therefore, you
know that the output B cannot be larger than 100 elements.

• Use coder.varsize to indicate that B is variable size with an upper bound of 100.

function B = myuniquetol(A, tol) %#codegen

A = sort(A);

coder.varsize('B', [1 100], [0 1]);

B = A(1);

k = 1;

for i = 2:length(A)

 if abs(A(k) - A(i)) > tol

21-114

 Generate Code for Variable-Size Data

 B = [B A(i)];

 k = i;

 end

end

• Generate code.

codegen -config cfg -report myuniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

The function declaration is:

extern void myuniquetol(const double A_data[], const int A_size[2],...

 double tol, double B_data[], int B_size[2]);

The code generator statically allocates the memory for B. It stores the size of B in int
B_size[2].

Step 6: Change the Dynamic Memory Allocation Threshold

In this step, you reduce the dynamic memory allocation threshold and generate code for
an input that exceeds this threshold. This step specifies that the second dimension of A
has an upper bound of 10000.

1 Change the upper bound of B to match the upper bound of A.

function B = myuniquetol(A, tol) %#codegen

A = sort(A);

coder.varsize('B', [1 10000], [0 1]);

B = A(1);

k = 1;

for i = 2:length(A)

 if abs(A(k) - A(i)) > tol

 B = [B A(i)];

 k = i;

 end

end

2 Set the dynamic memory allocation threshold to 4 kilobytes and generate code where
the size of input A exceeds this threshold.

cfg.DynamicMemoryAllocationThreshold=4096;

codegen -config cfg -report myuniquetol -args {coder.typeof(0,[1 10000],1),coder.typeof(0)}

3 View the generated code in the report. Because the maximum size of A and
B now exceed the dynamic memory allocation threshold, codegen allocates

21-115

21 Generating C/C++ Code from MATLAB Code

A and B dynamically on the heap. In the generated code, A and B have type
emxArray_real_T.

extern void myuniquetol(const emxArray_real_T *A, ...

 double tol, emxArray_real_T *B);

Using Dynamic Memory Allocation for an "Atoms" Simulation

This example shows how to generate code for a MATLAB algorithm that runs a
simulation of bouncing "atoms" and returns the result after a number of iterations. There
are no upper bounds on the number of atoms that the algorithm accepts, so this example
takes advantage of dynamic memory allocation.

Prerequisites

There are no prerequisites for this example.

Create a New Folder and Copy Relevant Files

The following code will create a folder in your current working folder (pwd). The new
folder will contain only the files that are relevant for this example. If you do not want
to affect the current folder (or if you cannot generate files in this folder), change your
working folder.

Run Command: Create a New Folder and Copy Relevant Files

coderdemo_setup('coderdemo_atoms');

About the 'run_atoms' Function

The run_atoms.m function runs a simulation of bouncing atoms (also applying gravity
and energy loss).

help run_atoms

 atoms = run_atoms(atoms,n)

 atoms = run_atoms(atoms,n,iter)

 Where 'atoms' the initial and final state of atoms (can be empty)

 'n' is the number of atoms to simulate.

 'iter' is the number of iterations for the simulation

 (if omitted it is defaulted to 3000 iterations.)

21-116

 Generate Code for Variable-Size Data

Set Up Code Generation Options

Create a code generation configuration object

cfg = coder.config;

% Enable dynamic memory allocation for variable size matrices.

cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

Set Up Example Inputs

Create a template structure 'Atom' to provide the compiler with the necessary
information about input parameter types. An atom is a structure with four fields
(x,y,vx,vy) specifying position and velocity in Cartesian coordinates.

atom = struct('x', 0, 'y', 0, 'vx', 0, 'vy', 0);

Generate a MEX Function for Testing

Use the command 'codegen' with the following arguments:

'-args {coder.typeof(atom, [1 Inf]),0,0}' indicates that the first argument is a row vector
of atoms where the number of columns is potentially infinite. The second and third
arguments are scalar double values.

'-config cfg' enables dynamic memory allocation, defined by workspace variable cfg

codegen run_atoms -args {coder.typeof(atom, [1 Inf]),0,0} -config cfg -o run_atoms_mex

Run the MEX Function

The MEX function simulates 10000 atoms in approximately 1000 iteration steps given
an empty list of atoms. The return value is the state of all the atoms after simulation is
complete.

atoms = repmat(atom,1,0);

atoms = run_atoms_mex(atoms,10000,1000)

Iteration: 50

Iteration: 100

Iteration: 150

Iteration: 200

Iteration: 250

Iteration: 300

Iteration: 350

Iteration: 400

21-117

21 Generating C/C++ Code from MATLAB Code

Iteration: 450

Iteration: 500

Iteration: 550

Iteration: 600

Iteration: 650

Iteration: 700

Iteration: 750

Iteration: 800

Iteration: 850

Iteration: 900

Iteration: 950

Iteration: 1000

Completed iterations: 1000

atoms =

 1×10000 struct array with fields:

 x

 y

 vx

 vy

Run the MEX Function Again

Continue the simulation with another 500 iteration steps

atoms = run_atoms_mex(atoms,10000,500)

Iteration: 50

Iteration: 100

Iteration: 150

Iteration: 200

Iteration: 250

Iteration: 300

Iteration: 350

Iteration: 400

Iteration: 450

Iteration: 500

Completed iterations: 500

atoms =

 1×10000 struct array with fields:

21-118

 Generate Code for Variable-Size Data

 x

 y

 vx

 vy

Generate a Standalone C Code Library

To generate a C library, create a standard configuration object for libraries:

cfg = coder.config('lib');

Enable dynamic memory allocation

cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

In MATLAB the default data type is double. However, integers are usually used in
C code, so pass int32 integer example values to represent the number of atoms and
iterations.

codegen run_atoms -args {coder.typeof(atom, [1 Inf]),int32(0),int32(0)} -config cfg

Inspect Generated Code

When creating a library the code is generated in the folder codegen/lib/run_atoms/ The
code in this folder is self contained. To interface with the compiled C code you need only
the generated header files and the library file.

dir codegen/lib/run_atoms

. rt_nonfinite.h run_atoms_emxutil.obj

.. rt_nonfinite.obj run_atoms_initialize.c

buildInfo.mat rtw_proj.tmw run_atoms_initialize.h

codeInfo.mat rtwtypes.h run_atoms_initialize.obj

examples run_atoms.c run_atoms_ref.rsp

interface run_atoms.h run_atoms_rtw.bat

rtGetInf.c run_atoms.lib run_atoms_rtw.mk

rtGetInf.h run_atoms.obj run_atoms_terminate.c

rtGetInf.obj run_atoms_emxAPI.c run_atoms_terminate.h

rtGetNaN.c run_atoms_emxAPI.h run_atoms_terminate.obj

rtGetNaN.h run_atoms_emxAPI.obj run_atoms_types.h

rtGetNaN.obj run_atoms_emxutil.c

rt_nonfinite.c run_atoms_emxutil.h

21-119

21 Generating C/C++ Code from MATLAB Code

Write a C Main Function

Typically, the main function is platform-dependent code that performs rendering
or some other processing. In this example, a pure ANSI-C function produces a file
'run_atoms_state.m' which (when run) contains the final state of the atom simulation.

type run_atoms_main.c

/* Include standard C libraries */

#include <stdio.h>

/* The interface to the main function we compiled. */

#include "codegen/lib/run_atoms/run_atoms.h"

/* The interface to EMX data structures. */

#include "codegen/lib/run_atoms/run_atoms_emxAPI.h"

int main(int argc, char **argv)

{

 int i;

 emxArray_Atom *atoms;

 /* Main arguments unused */

 (void) argc;

 (void) argv;

 /* Initially create an empty row vector of atoms (1 row, 0 columns) */

 atoms = emxCreate_Atom(1, 0);

 /* Call the function to simulate 10000 atoms in 1000 iteration steps */

 run_atoms(atoms, 10000, 1000);

 /* Call the function again to do another 500 iteration steps */

 run_atoms(atoms, 10000, 500);

 /* Print the result to standard output */

 for (i = 0; i < atoms->size[1]; i++) {

 printf("%f %f %f %f\n",

 atoms->data[i].x, atoms->data[i].y, atoms->data[i].vx, atoms->data[i].vy);

 }

 /* Free memory */

 emxDestroyArray_Atom(atoms);

 return(0);

21-120

 Generate Code for Variable-Size Data

}

Create a Configuration Object for Executables

cfg = coder.config('exe');

cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

Generate a Standalone Executable

You must pass the function (run_atoms.m) as well as custom C code (run_atoms_main.c)
The 'codegen' command automatically generates C code from the MATLAB code,
then calls the C compiler to bundle this generated code with the custom C code
(run_atoms_main.c).

codegen run_atoms run_atoms_main.c -args {coder.typeof(atom, [1 Inf]),int32(0),int32(0)} -config cfg

Run the Executable

After simulation is complete, this produces the file 'atoms_state.mat'. The MAT file is
a 10000x4 matrix, where each row is the position and velocity of an atom (x, y, vx, vy)
representing the current state of the whole system.

[~,atoms_data] = system(['.' filesep 'run_atoms']);

fh = fopen('atoms_state.mat', 'w');

fprintf(fh, '%s', atoms_data);

fclose(fh);

Fetch the State

Running the executable produced 'atoms_state.mat'. Now, recreate the structure array
from the saved matrix

load atoms_state.mat -ascii

clear atoms

for i = 1:size(atoms_state,1)

 atoms(1,i).x = atoms_state(i,1);

 atoms(1,i).y = atoms_state(i,2);

 atoms(1,i).vx = atoms_state(i,3);

 atoms(1,i).vy = atoms_state(i,4);

end

Render the State

Call 'run_atoms_mex' with zero iterations to render only

run_atoms_mex(atoms, 10000, 0);

21-121

21 Generating C/C++ Code from MATLAB Code

Clean Up

Remove files and return to original folder

Run Command: Cleanup

if ispc

 delete run_atoms.exe

21-122

 Generate Code for Variable-Size Data

else

 delete run_atoms

end

delete atoms_state.mat

cleanup

21-123

21 Generating C/C++ Code from MATLAB Code

How MATLAB Coder Partitions Generated Code

In this section...

“Partitioning Generated Files” on page 21-124
“How to Select the File Partitioning Method” on page 21-124
“Partitioning Generated Files with One C/C++ File Per MATLAB File” on page 21-125
“Generated Files and Locations” on page 21-130
“File Partitioning and Inlining” on page 21-132

Partitioning Generated Files

By default, during code generation, MATLAB Coder partitions the code to match your
MATLAB file structure. This one-to-one mapping lets you easily correlate your files
generated in C/C++ with the compiled MATLAB code. MATLAB Coder cannot produce
the same one-to-one correspondence for MATLAB functions that are inlined in generated
code (see “File Partitioning and Inlining” on page 21-132).

Alternatively, you can select to generate all C/C++ functions into a single file. For more
information, see “How to Select the File Partitioning Method” on page 21-124. This
option facilitates integrating your code with existing embedded software.

How to Select the File Partitioning Method

Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the Code Appearance tab, set the Generated file partitioning method to

Generate one file for each MATLAB file or Generate all functions
into a single file.

At the Command Line

Use the codegen configuration object FilePartitionMethod option. For example,
to compile the function foo that has no inputs and generate one C/C++ file for each
MATLAB function:

21-124

 How MATLAB Coder Partitions Generated Code

1 Create a MEX configuration object and set the FilePartitionMethod option:

mexcfg = coder.config('mex');

mexcfg.FilePartitionMethod = 'MapMFileToCFile';

2 Using the -config option, pass the configuration object to codegen:

codegen -config mexcfg -O disable:inline foo

% Disable inlining to generate one C/C++ file for each MATLAB function

Partitioning Generated Files with One C/C++ File Per MATLAB File

By default, for MATLAB functions that are not inlined, MATLAB Coder generates one C/
C++ file for each MATLAB file. In this case, MATLAB Coder partitions generated C/C++
code so that it corresponds to your MATLAB files.

How MATLAB Coder Partitions Entry-Point MATLAB Functions

For each entry-point (top-level) MATLAB function, MATLAB Coder generates one C/C++
source, header, and object file with the same name as the MATLAB file.

For example, suppose you define a simple function foo that calls the function identity.
The source file foo.m contains the following code:

function y = foo(u,v) %#codegen

s = single(u);

d = double(v);

y = double(identity(s)) + identity(d);

Here is the code for identity.m :

function y = identity(u) %#codegen

y = u;

In the MATLAB Coder app, to generate a C static library for foo.m:

1 Define the inputs u and v. For more information, see “Specify Properties of Entry-
Point Function Inputs Using the App” on page 18-3.

2 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
3 Set the Build type to Static Library

21-125

21 Generating C/C++ Code from MATLAB Code

4 Click More Settings.
5 On the All Settings tab, under Function Inlining, set the Inline threshold

parameter to 0
6 Click Close
7 To generate the library, click Generate.

To generate a C static library for foo.m, at the command line, enter:

codegen -config:lib -O disable:inline foo -args {0, 0}

% Use the -args option to specify that u and v are both

% real, scalar doubles

MATLAB Coder generates source, header, and object files for foo and identity in your
output folder.

21-126

 How MATLAB Coder Partitions Generated Code

How MATLAB Coder Partitions Local Functions

For each local function, MATLAB Coder generates code in the same C/C++ file as the
calling function. For example, suppose you define a function foo that calls a local
function identity:

function y = foo(u,v) %#codegen

s = single(u);

d = double(v);

y = double(identity(s)) + identity(d);

function y = identity(u)

y = u;

To generate a C++ library, before generating code, select a C++ compiler and set C++ as
your target language. For example, at the command line:

1 Select C++ as your target language:

cfg = coder.config('lib')

cfg.TargetLang='C++'

2 Generate the C++ library:

codegen -config cfg foo -args {0, 0}

% Use the -args option to specify that u and v are both

% real, scalar doubles

In the primary function foo, MATLAB Coder inlines the code for the identity local
function.

21-127

21 Generating C/C++ Code from MATLAB Code

Note: If you specify C++, MATLAB Coder wraps the C code into .cpp files so that
you can use a C++ compiler and interface with external C++ applications. It does not
generate C++ classes.

Here is an excerpt of the generated code in foo.cpp:

...

/* Function Definitions */

double foo(double u, double v)

{

 return (double)(float)u + v;

}

...

How MATLAB Coder Partitions Overloaded Functions

An overloaded function is a function that has multiple implementations to accommodate
different classes of input. For each implementation (that is not inlined), MATLAB Coder
generates a separate C/C++ file with a unique numeric suffix.

21-128

 How MATLAB Coder Partitions Generated Code

For example, suppose you define a simple function multiply_defined:

%#codegen

function y = multiply_defined(u)

y = u+1;

You then add two more implementations of multiply_defined, one to handle inputs
of type single (in an @single subfolder) and another for inputs of type double (in an
@double subfolder).

To call each implementation, define the function call_multiply_defined:

%#codegen

function [y1,y2,y3] = call_multiply_defined

y1 = multiply_defined(int32(2));

y2 = multiply_defined(2);

y3 = multiply_defined(single(2));

Next, generate C code for the overloaded function multiply_defined. For example, at
the MATLAB command line, enter:

codegen -O disable:inline -config:lib call_multiply_defined

MATLAB Coder generates C source, header, and object files for each implementation of
multiply_defined, as highlighted. Use numeric suffixes to create unique file names.

21-129

21 Generating C/C++ Code from MATLAB Code

Generated Files and Locations

The types and locations of generated files depend on the target that you specify. For
all targets, if errors or warnings occur during build or if you explicitly request a report,
MATLAB Coder generates reports.

Each time MATLAB Coder generates the same type of output for the same code or
project, it removes the files from the previous build. If you want to preserve files from a
build, copy them to a different location before starting another build.

21-130

 How MATLAB Coder Partitions Generated Code

Generated Files for MEX Targets

By default, MATLAB Coder generates the following files for MEX function (mex) targets.

Type of Files Location

Platform-specific MEX files Current folder
MEX, and C/C++ source, header, and
object files

codegen/mex/function_name

HTML reports codegen/mex/function_name/html

Generated Files for C/C++ Static Library Targets

By default, MATLAB Coder generates the following files for C/C++ static library targets.

Type of Files Location

C/C++ source, library, header, and
object files

codegen/lib/function_name

HTML reports codegen/lib/function_name/html

Generated Files for C/C++ Dynamic Library Targets

By default, MATLAB Coder generates the following files for C/C++ dynamic library
targets.

Type of Files Location

C/C++ source, library, header, and
object files

codegen/dll/function_name

HTML reports codegen/dll/function_name/html

Generated Files for C/C++ Executable Targets

By default, MATLAB Coder generates the following files for C/C++ executable targets.

Type of Files Location

C/C++ source, header, and object
files

codegen/exe/function_name

21-131

21 Generating C/C++ Code from MATLAB Code

Type of Files Location

HTML reports codegen/exe/function_name/html

Changing Names and Locations of Generated Files

Using the MATLAB Coder App

To change Action

The output file name 1 To open the Generate dialog box, on the Generate Code

page, click the Generate arrow .
2 In the Output file name field, enter the file name.

The output file location 1 To open the Generate dialog box, on the Generate Code

page, click the Generate arrow .
2 Click More Settings.
3 On the Paths tab, set Build folder to Specified

folder.
4 For the Build folder name field, either browse to the

output file location or enter the full path. The output file
location must not contain:

• Spaces (Spaces can lead to code generation failures in
certain operating system configurations).

• Tabs
• \, $, #, *, ?
• Non-7-bit ASCII characters, such as Japanese

characters.

At the Command Line

You can change the name and location of generated files by using the codegen options -
o and -d.

File Partitioning and Inlining

How MATLAB Coder partitions generated C/C++ code depends on whether you choose
to generate one C/C++ file for each MATLAB file and whether you inline your MATLAB
functions.

21-132

 How MATLAB Coder Partitions Generated Code

If you MATLAB Coder

Generate all C/C++
functions into a single file
and disable inlining

Generates a single C/C++ file without inlining functions.

Generate all C/C++
functions into a single file
and enable inlining

Generates a single C/C++ file. Inlines functions whose
sizes fall within the inlining threshold.

Generate one C/C++ file
for each MATLAB file and
disable inlining

Partitions generated C/C++ code to match MATLAB file
structure. See “Partitioning Generated Files with One C/C
++ File Per MATLAB File” on page 21-125.

Generate one C/C++ file
for each MATLAB file and
enable inlining

Places inlined functions in the same C/C++ file as the
function into which they are inlined.

Even when you enable inlining, MATLAB Coder inlines
only those functions whose sizes fall within the inlining
threshold. For MATLAB functions that are not inlined,
MATLAB Coder partitions the generated C/C++ code, as
described.

21-133

21 Generating C/C++ Code from MATLAB Code

Tradeoffs Between File Partitioning and Inlining

Weighing file partitioning against inlining represents a trade-off between readability,
efficiency, and ease of integrating your MATLAB code with existing embedded software.

If You Generate Generated C/C++
Code

Advantages Disadvantages

All C/C++ functions
into a single file

Does not match
MATLAB file
structure

Easier to integrate
with existing
embedded software

Difficult to map C/
C++ code to original
MATLAB file

One C/C++-file for
each MATLAB file
and enable inlining

Does not exactly
match MATLAB file
structure

Program executes
faster

Difficult to map C/
C++ code to original
MATLAB file

One C/C++-file for
each MATLAB file
and disable inlining

Matches MATLAB
file structure

Easy to map C/C+
+ code to original
MATLAB file

Program runs less
efficiently

How Disabling Inlining Affects File Partitioning

Inlining is enabled by default. Therefore, to generate one C/C++ file for each top-level
MATLAB function, you must:

• Select to generate one C/C++ file for each top-level MATLAB function. For more
information, see “How to Select the File Partitioning Method” on page 21-124.

• Explicitly disable inlining, either globally or for individual MATLAB functions.

How to Disable Inlining Globally Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the All Settings tab, under Function Inlining set the Inline threshold to 0.

How to Disable Inlining Globally at the Command Line

To disable inlining of functions, use the -O disable:inline option with codegen. For
example, to disable inlining and generate a MEX function for a function foo that has no
inputs:

codegen -O disable:inline foo

21-134

 How MATLAB Coder Partitions Generated Code

For more information, see the description of codegen.
How to Disable Inlining for Individual Functions

To disable inlining for an individual MATLAB function, add the directive
coder.inline('never'); on a separate line in the source MATLAB file, after the
function signature.

function y = foo(u,v) %#codegen

coder.inline('never');

s = single(u);

d = double(v);

y = double(identity(s)) + identity(d);

codegen does not inline entry-point functions.

The coder.inline directive applies only to the function in which it appears. In this
example, inlining is disabled for function foo, but not for identity, a top-level function
defined in a separate MATLAB file and called by foo. To disable inlining for identity,
add this directive after its function signature in the source file identity.m. For more
information, see coder.inline.

For a more efficient way to disable inlining for both functions, see “How to Disable
Inlining Globally at the Command Line” on page 21-134.

Correlating C/C++ Code with Inlined Functions

To correlate the C/C++ code that you generate with the original inlined functions, add
comments in the MATLAB code to identify the function. These comments will appear
in the C/C++ code and help you map the generated code back to the original MATLAB
functions.

Modifying the Inlining Threshold

To change inlining behavior, adjust the inlining threshold parameter.
Modifying the Inlining Threshold Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the All Settings tab, under Function Inlining, set the value of the Inline

threshold parameter.

21-135

21 Generating C/C++ Code from MATLAB Code

Modifying the Inlining Threshold at the Command Line

Set the value of the InlineThreshold parameter of the configuration object. See
coder.MexCodeConfig, coder.CodeConfig, coder.EmbeddedCodeConfig.

21-136

 Requirements for Signed Integer Representation

Requirements for Signed Integer Representation

You must compile the code that is generated by the MATLAB Coder software on a target
that uses a two’s complement representation for signed integer values. The generated
code does not verify that the target uses a two’s complement representation for signed
integer values.

21-137

21 Generating C/C++ Code from MATLAB Code

Customize the Post-Code-Generation Build Process

For certain applications, you might want to control aspects of the build process that
occur after code generation but before compilation. For example, you might want to
specify compiler or linker options. You can customize build processing that occurs after
code generation using MATLAB Coder for MEX functions, C/C++ libraries and C/C++
executables.

You can customize your build using:

• The coder.updateBuildInfo function in your MATLAB code
• A post-code-generation command

In this section...

“Customize Build Using coder.updateBuildInfo” on page 21-138
“Customize Build Using Post-Code-Generation Command” on page 21-138
“Build Information Object” on page 21-139
“Build Information Methods” on page 21-139
“Write Post-Code-Generation Command” on page 21-173
“Use Post-Code-Generation Command to Customize Build” on page 21-174
“Write and Use Post-Code-Generation Command at the Command Line” on page
21-175

Customize Build Using coder.updateBuildInfo

To customize the post-code-generation build from your MATLAB code:

1 In your MATLAB code, call coder.updateBuildInfo to update the build
information object. You specify a build information object method and the input
arguments for the method. See coder.updateBuildInfo and “Build Information
Methods” on page 21-139.

2 Generate code from your MATLAB code using the codegen command or from the
project interface.

Customize Build Using Post-Code-Generation Command

To customize your build using the post-code-generation command:

21-138

 Customize the Post-Code-Generation Build Process

1 “Write Post-Code-Generation Command” on page 21-173. Typically, you use this
command to get the project name and build information or to add data to the build
information object.

2 “Use Post-Code-Generation Command to Customize Build” on page 21-174.

Build Information Object

At the start of a build, the MATLAB Coder build process logs the following project, build
option, and dependency information to a build information object, RTW.BuildInfo:

• Compiler options
• Preprocessor identifier definitions
• Linker options
• Source files and paths
• Include files and paths
• Precompiled external libraries

Use the “Build Information Methods” on page 21-139 to access this information in
the build information object. “Write Post-Code-Generation Command” on page 21-173
explains how to use the functions to control a post-code-generation build.

When code generation is complete, MATLAB Coder creates a buildInfo.mat file in the
build folder.

Build Information Methods

Use these methods to access or write data to the build information object. The syntax is:

buildInfo.method_name(input_arg1, ..., input_argn)

addCompileFlags

• Purpose: Add compiler options to build information.
• Syntax: addCompileFlags(buildinfo, options, groups)

groups is optional.
• Arguments:

buildinfo

21-139

21 Generating C/C++ Code from MATLAB Code

Build information stored in RTW.BuildInfo.
options

A character array or cell array of character arrays that specifies the compiler
options to be added to the build information. The function adds each option to
the end of a compiler option vector. If you specify multiple options within a single
character array, for example '-Zi -Wall', the function adds the options to the
vector as a single element. For example, if you add '-Zi -Wall' and then '-
O3', the vector consists of two elements, as shown below.

'-Zi -Wall' '-O3'

groups (optional)
A character array or cell array of character arrays that groups specified compiler
options. You can use groups to

• Document the use of specific compiler options
• Retrieve or apply collections of compiler options

You can apply

• A single group name to one or more compiler options
• Multiple group names to collections of compiler options (available for

nonmakefile build environments only)

To... Specify groups as a...

Apply one group name to
compiler options

Character array.

Apply different group
names to compiler options

Cell array of character arrays such that the number
of group names matches the number of elements you
specify for options.

• Description:

The addCompileFlags function adds specified compiler options to the project's build
information. MATLAB Coder stores the compiler options in a vector. The function
adds options to the end of the vector based on the order in which you specify them.

In addition to the required buildinfo and options arguments, you can use an
optional groups argument to group your options.

21-140

 Customize the Post-Code-Generation Build Process

addDefines

• Purpose: Add preprocessor macro definitions to build information.
• Syntax: addDefines(buildinfo, macrodefs, groups)

groups is optional.
• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.
macrodefs

A character array or cell array of character arrays that specifies the preprocessor
macro definitions to be added to the object. The function adds each definition
to the end of a compiler option vector. If you specify multiple definitions within
a single character array, for example '-DRT -DDEBUG', the function adds the
options to the vector as a single element. For example, if you add '-DPROTO -
DDEBUG' and then '-DPRODUCTION', the vector consists of two elements, as
shown below.

'-DPROTO -DDEBUG' '-DPRODUCTION'

groups (optional)
A character array or cell array of character arrays that groups specified
definitions. You can use groups to

• Document the use of specific macro definitions
• Retrieve or apply groups of macro definitions

You can apply

• A single group name to one or more macro definitions
• Multiple group names to collections of macro definitions (available for

nonmakefile build environments only)

To... Specify groups as a...

Apply one group name to
macro definitions

Character array.

21-141

21 Generating C/C++ Code from MATLAB Code

To... Specify groups as a...

Apply different group
names to macro definitions

Cell array of character arrays such that the number
of group names matches the number elements you
specify for macrodefs.

• Description:

The addDefines function adds specified preprocessor macro definitions to the
project's build information. The MATLAB Coder software stores the definitions in a
vector. The function adds definitions to the end of the vector based on the order in
which you specify them.

In addition to the required buildinfo and macrodefs arguments, you can use an
optional groups argument to group your options.

addIncludeFiles

• Purpose: Add include files to build information.
• Syntax: addIncludeFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.
• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.
filenames

A character array or cell array of character arrays that specifies names of include
files to be added to the build information.

The filename can include wildcard characters, provided that the dot delimiter (.)
is present. Examples are '*.*', '*.h', and '*.h*'.

The function adds the filenames to the end of a vector in the order that you specify
them.

The function removes duplicate include file entries that

• You specify as input
• Already exist in the include file vector
• Have a path that matches the path of a matching filename

21-142

 Customize the Post-Code-Generation Build Process

A duplicate entry consists of an exact match of a path and corresponding filename.
paths (optional)

A character array or cell array of character arrays that specifies paths to the
include files. The function adds the paths to the end of a vector in the order that
you specify them. If you specify a single path as a character array, the function
uses that path for all files.

groups (optional)
A character array or cell array of character arrays that groups specified include
files. You can use groups to

• Document the use of specific include files
• Retrieve or apply groups of include files

You can apply

• A single group name to an include file
• A single group name to multiple include files
• Multiple group names to collections of multiple include files

To... Specify groups as a...

Apply one group name to
include files

Character array.

Apply different group names
to include files

Cell array of character arrays such that the
number of group names that you specify
matches the number of elements you specify for
filenames.

• Description:

The addIncludeFiles function adds specified include files to the project's build
information. The MATLAB Coder software stores the include files in a vector. The
function adds the filenames to the end of the vector in the order that you specify
them.

In addition to the required buildinfo and filenames arguments, you can specify
optional paths and groups arguments. You can specify each optional argument as a
character array or a cell array of character arrays.

21-143

21 Generating C/C++ Code from MATLAB Code

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to the include files it adds to the
build information

Cell array of character arrays Pairs each character array with a specified include file. Thus,
the length of the cell array must match the length of the cell
array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null character vector ('')
for paths.

addIncludePaths

• Purpose: Add include paths to build information.
• Syntax: addIncludePaths(buildinfo, paths, groups)

groups is optional.
• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.
paths

A character array or cell array of character arrays that specifies include file paths
to be added to the build information. The function adds the paths to the end of a
vector in the order that you specify them.

The function removes duplicate include file entries that

• You specify as input
• Already exist in the include path vector
• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path and corresponding filename.
groups (optional)

A character array or cell array of character arrays that groups specified include
paths. You can use groups to

21-144

 Customize the Post-Code-Generation Build Process

• Document the use of specific include paths
• Retrieve or apply groups of include paths

You can apply

• A single group name to an include path
• A single group name to multiple include paths
• Multiple group names to collections of multiple include paths

To Specify groups as a

Apply one group name to
include paths

Character array.

Apply different group
names to include paths

Cell array of character arrays such that the number
of group names that you specify matches the
number of elements you specify for paths.

• Description:

The addIncludePaths function adds specified include paths to the project's build
information. The MATLAB Coder software stores the include paths in a vector. The
function adds the paths to the end of the vector in the order that you specify them.

In addition to the required buildinfo and paths arguments, you can specify an
optional groups argument. You can specify groups as a character array or a cell
array of character arrays.

If You Specify an Optional Argument as
a

The Function

Character array Applies the character array to the include
paths it adds to the build information.

Cell array of character arrays Pairs each character array with a specified
include path. Thus, the length of the cell array
must match the length of the cell array you
specify for paths.

addLinkFlags

• Purpose: Add link options to build information.
21-145

21 Generating C/C++ Code from MATLAB Code

• Syntax: addLinkFlags(buildinfo, options, groups)

groups is optional.
• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.
options

A character array or cell array of character arrays that specifies the linker options
to be added to the build information. The function adds each option to the end of
a linker option vector. If you specify multiple options within a single character
array, for example '-MD -Gy', the function adds the options to the vector as a
single element. For example, if you add '-MD -Gy' and then '-T', the vector
consists of two elements, as shown below.

'-MD -Gy' '-T'

groups (optional)
A character array or cell array of character arrays that groups specified linker
options. You can use groups to

• Document the use of specific linker options
• Retrieve or apply groups of linker options

You can apply

• A single group name to one or more linker options
• Multiple group names to collections of linker options (available for nonmakefile

build environments only)

To Specify groups as a.

Apply one group name to
linker options

Character array.

Apply different group
names to linker options

Cell array of character arrays such that the number
of group names matches the number of elements you
specify for options.

• Description:

21-146

 Customize the Post-Code-Generation Build Process

The addLinkFlags function adds specified linker options to the project's build
information. The MATLAB Coder software stores the linker options in a vector. The
function adds options to the end of the vector based on the order in which you specify
them.

In addition to the required buildinfo and options arguments, you can use an
optional groups argument to group your options.

addLinkObjects

• Purpose: Add link objects to build information.
• Syntax: addLinkObjects(buildinfo, linkobjs, paths, priority,

precompiled, linkonly, groups)

The arguments except buildinfo , linkobjs, and paths are optional. If you specify
an optional argument, you must specify the optional arguments preceding it.

• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.
linkobjs

A character array or cell array of character arrays that specifies the filenames
of linkable objects to be added to the build information. The function adds the
filenames that you specify in the function call to a vector that stores the object
filenames in priority order. If you specify multiple objects that have the same
priority (see priority below), the function adds them to the vector based on the
order in which you specify the object filenames in the cell array.

The function removes duplicate link objects that

• You specify as input
• Already exist in the linkable object filename vector
• Have a path that matches the path of a matching linkable object filename

A duplicate entry consists of an exact match of a path and corresponding linkable
object filename.

paths

21-147

21 Generating C/C++ Code from MATLAB Code

A character array or cell array of character arrays that specifies paths to the
linkable objects. If you specify a character array, the path applies to all linkable
objects.

priority (optional)
A numeric value or vector of numeric values that indicates the relative priority of
each specified link object. Lower values have higher priority. The default priority
is 1000.

precompiled (optional)
The logical value true or false or a vector of logical values that indicates
whether each specified link object is precompiled.

Specify true if the link object has been prebuilt for faster compiling and linking
and exists in a specified location.

If precompiled is false (the default), the MATLAB Coder build process creates
the link object in the build folder.

This argument is ignored if linkonly equals true.
linkonly (optional)

The logical value true or false or a vector of logical values that indicates
whether each specified link object is to be used only for linking.

Specify true if the MATLAB Coder build process should not build, nor generate
rules in the makefile for building, the specified link object, but should include it
when linking the final executable. For example, you can use this to incorporate
link objects for which source files are not available. If linkonly is true, the value
of precompiled is ignored.

If linkonly is false (the default), rules for building the link objects are added
to the makefile. In this case, the value of precompiled determines which
subsection of the added rules is expanded, START_PRECOMP_LIBRARIES (true)
or START_EXPAND_LIBRARIES (false). The software performs the expansion
of the START_PRECOMP_LIBRARIES or START_EXPAND_LIBRARIES macro only
if your code generation target uses the template makefile approach for building
code.

groups (optional)

21-148

 Customize the Post-Code-Generation Build Process

A character array or cell array of character arrays that groups specified link
objects. You can use groups to

• Document the use of specific link objects
• Retrieve or apply groups of link objects

You can apply

• A single group name to a linkable object
• A single group name to multiple linkable objects
• Multiple group name to collections of multiple linkable objects

To. Specify groups as a

Apply one group name to
link objects

Character array.

Apply different group
names to link objects

Cell array of character arrays such that the number
of group names matches the number elements you
specify for linkobjs.

The default value of groups is {''}.
• Description:

The addLinkObjects function adds specified link objects to the project's build
information. The MATLAB Coder software stores the link objects in a vector in
relative priority order. If multiple objects have the same priority or you do not specify
priorities, the function adds the objects to the vector based on the order in which you
specify them.

In addition to the required buildinfo, linkobjs, and paths arguments, you can
specify the optional arguments priority, precompiled, linkonly, and groups.
You can specify paths and groups as a character array or a cell array of character
arrays.

If You Specify paths or groups as
a...

The Function...

Character array Applies the character array to the objects it
adds to the build information.

21-149

21 Generating C/C++ Code from MATLAB Code

If You Specify paths or groups as
a...

The Function...

Cell array of character arrays Pairs each character array with a specified
object. Thus, the length of the cell array must
match the length of the cell array you specify
for linkobjs.

Similarly, you can specify priority, precompiled, and linkonly as a value or
vector of values.

If You Specify priority,
precompiled, or linkonly as a

The Function

Value Applies the value to the objects it adds to the
build information.

Vector of values Pairs each value with a specified object. Thus,
the length of the vector must match the length
of the cell array you specify for linkobjs.

If you choose to specify an optional argument, you must specify the optional
arguments preceding it. For example, to specify that objects are precompiled using
the precompiled argument, you must specify the priority argument that precedes
precompiled. You could pass the default priority value 1000, as shown below.

addLinkObjects(myBuildInfo, 'test1', '/proj/lib/lib1', 1000, true);

addNonBuildFiles

• Purpose: Add nonbuild-related files to build information.
• Syntax: addNonBuildFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.
• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.
filenames

A character array or cell array of character arrays that specifies names of
nonbuild-related files to be added to the build information.

21-150

 Customize the Post-Code-Generation Build Process

The filename can include wildcard characters, provided that the dot delimiter (.)
is present. Examples are '*.*', '*.DLL', and '*.D*'.

The function adds the filenames to the end of a vector in the order that you specify
them.

The function removes duplicate nonbuild file entries that

• Already exist in the nonbuild file vector
• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path and corresponding filename.
paths (optional)

A character array or cell array of character arrays that specifies paths to the
nonbuild files. The function adds the paths to the end of a vector in the order that
you specify them. If you specify a single path as a character array, the function
uses that path for all files.

groups (optional)
A character array or cell array of character arrays that groups specified nonbuild
files. You can use groups to

• Document the use of specific nonbuild files
• Retrieve or apply groups of nonbuild files

You can apply

• A single group name to a nonbuild file
• A single group name to multiple nonbuild files
• Multiple group names to collections of multiple nonbuild files

To Specify groups as a.

Apply one group name to
nonbuild files

Character array.

Apply different group names
to nonbuild files

Cell array of character arrays such that the
number of group names that you specify
matches the number of elements you specify for
filenames.

21-151

21 Generating C/C++ Code from MATLAB Code

• Description:

The addNonBuildFiles function adds specified nonbuild-related files, such as
DLL files required for a final executable, or a README file, to the project's build
information. The MATLAB Coder software stores the nonbuild files in a vector. The
function adds the filenames to the end of the vector in the order that you specify
them.

In addition to the required buildinfo and filenames arguments, you can specify
optional paths and groups arguments. You can specify each optional argument as a
character array or a cell array of character arrays.

If You Specify an Optional Argument
as a

The Function

Character array Applies the character array to the nonbuild files it adds to the
build information.

Cell array of character arrays Pairs each character array with a specified nonbuild file. Thus,
the length of the cell array must match the length of the cell
array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null character vector ('')
for paths.

addSourceFiles

• Purpose: Add source files to build information.
• Syntax: addSourceFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.
• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.
filenames

A character array or cell array of character arrays that specifies names of the
source files to be added to the build information.

The filename can include wildcard characters, provided that the dot delimiter (.)
is present. Examples are '*.*', '*.c', and '*.c*'.

21-152

 Customize the Post-Code-Generation Build Process

The function adds the filenames to the end of a vector in the order that you specify
them.

The function removes duplicate source file entries that

• You specify as input
• Already exist in the source file vector
• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path and corresponding filename.
paths (optional)

A character array or cell array of character arrays that specifies paths to the
source files. The function adds the paths to the end of a vector in the order that
you specify them. If you specify a single path as a character array, the function
uses that path for all files.

groups (optional)
A character array or cell array of character arrays that groups specified source
files. You can use groups to

• Document the use of specific source files
• Retrieve or apply groups of source files

You can apply

• A single group name to a source file
• A single group name to multiple source files
• Multiple group names to collections of multiple source files

To Specify group as a

Apply one group name to
source files

Character array.

Apply different group names to
source files

Cell array of character arrays such that the
number of group names that you specify
matches the number of elements you specify for
filenames.

• Description:

21-153

21 Generating C/C++ Code from MATLAB Code

The addSourceFiles function adds specified source files to the project's build
information. The MATLAB Coder software stores the source files in a vector. The
function adds the filenames to the end of the vector in the order that you specify
them.

In addition to the required buildinfo and filenames arguments, you can specify
optional paths and groups arguments. You can specify each optional argument as a
character array or a cell array of character arrays.

If You Specify an Optional
Argument as a.

The Function

Character array Applies the character array to the source files it adds to the build
information.

Cell array of character arrays Pairs each character array with a specified source file. Thus, the
length of the cell array must match the length of the cell array
you specify for filenames.

If you choose to specify groups, but omit paths, specify a null character vector ('')
for paths.

addSourcePaths

• Purpose: Add source paths to build information.
• Syntax: addSourcePaths(buildinfo, paths, groups)

groups is optional.
• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.
paths

A character array or cell array of character arrays that specifies source file paths
to be added to the build information. The function adds the paths to the end of a
vector in the order that you specify them.

The function removes duplicate source file entries that

• You specify as input

21-154

 Customize the Post-Code-Generation Build Process

• Already exist in the source path vector
• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path and corresponding filename.

Note: The MATLAB Coder software does not check whether a specified path is
valid.

groups (optional)
A character array or cell array of character arrays that groups specified source
paths. You can use groups to

• Document the use of specific source paths
• Retrieve or apply groups of source paths

21-155

21 Generating C/C++ Code from MATLAB Code

You can apply

• A single group name to a source path
• A single group name to multiple source paths
• Multiple group names to collections of multiple source paths

To Specify groups as a

Apply one group name to
source paths

Character array.

Apply different group names
to source paths

Cell array of character arrays such that the
number of group names that you specify matches
the number of elements you specify for paths.

• Description:

The addSourcePaths function adds specified source paths to the project's build
information. The MATLAB Coder software stores the source paths in a vector. The
function adds the paths to the end of the vector in the order that you specify them.

In addition to the required buildinfo and paths arguments, you can specify an
optional groups argument . You can specify groups as a character array or a cell
array of character arrays.

If You Specify an Optional Argument as
a

The Function

Character array Applies the character array to the source paths
it adds to the build information.

Cell array of character arrays Pairs each character array with a specified
source path. Thus, the length of the character
array or cell array must match the length of
the cell array you specify for paths.

Note: The MATLAB Coder software does not check whether a specified path is valid.

addTMFTokens

• Purpose: Add template makefile (TMF) tokens that provide build-time information for
makefile generation.

21-156

 Customize the Post-Code-Generation Build Process

• Syntax: addTMFTokens(buildinfo, tokennames, tokenvalues, groups)

groups is optional.
• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.
tokennames

A character array or cell array of character arrays that specifies names of
TMF tokens (for example, '|>CUSTOM_OUTNAME<|') to be added to the build
information. The function adds the token names to the end of a vector in the order
that you specify them.

If you specify a token name that already exists in the vector, the first instance
takes precedence and its value used for replacement.

tokenvalues

A character array or cell array of character arrays that specifies TMF token
values corresponding to the previously-specified TMF token names. The function
adds the token values to the end of a vector in the order that you specify them.

groups (optional)
A character array or cell array of character arrays that groups specified TMF
tokens. You can use groups to

• Document the use of specific TMF tokens
• Retrieve or apply groups of TMF tokens

You can apply

• A single group name to a TMF token
• A single group name to multiple TMF tokens
• Multiple group names to collections of multiple TMF tokens

To Specify groups as a

Apply one group name to
TMF tokens

Character array.

Apply different group names
to TMF tokens

Cell array of character arrays such that the
number of group names that you specify

21-157

21 Generating C/C++ Code from MATLAB Code

To Specify groups as a
matches the number of elements you specify for
tokennames.

• Description:

Call the addTMFTokens function inside a post code generation command to provide
build-time information to help customize makefile generation. The tokens specified
in the addTMFTokens function call must be handled appropriately in the template
makefile (TMF) for the target selected for your project. For example, if your post
code generation command calls addTMFTokens to add a TMF token named |
>CUSTOM_OUTNAME<| that specifies an output file name for the build, the TMF must
act on the value of |>CUSTOM_OUTNAME<| to achieve the desired result.

The addTMFTokens function adds specified TMF token names and values to the
project's build information. The MATLAB Coder software stores the TMF tokens in
a vector. The function adds the tokens to the end of the vector in the order that you
specify them.

In addition to the required buildinfo, tokennames, and tokenvalues arguments,
you can specify an optional groups argument. You can specify groups as a character
array or a cell array of character arrays.

If You Specify an Optional Argument
as a

The Function

Character array Applies the character array to the TMF tokens it adds to the
build information.

Cell array of character arrays Pairs each character array with a specified TMF token. Thus,
the length of the cell array must match the length of the cell
array you specify for tokennames.

findIncludeFiles

• Purpose: Find and add include (header) files to build information.
• Syntax: findIncludeFiles(buildinfo, extPatterns)

extPatterns is optional.
• Arguments:

buildinfo

21-158

 Customize the Post-Code-Generation Build Process

Build information stored in RTW.BuildInfo.
extPatterns (optional)

A cell array of character arrays that specify patterns of file name extensions for
which the function is to search. Each pattern

• Must start with *.
• Can include a combination of alphanumeric and underscore (_) characters

The default pattern is *.h.

Examples of valid patterns include
*.h

*.hpp

.x

• Description:

The findIncludeFiles function

• Searches for include files, based on specified file name extension patterns, in the
source and include paths recorded in a project's build information object

• Adds the files found, along with their full paths, to the build information object
• Deletes duplicate entries

getCompileFlags

• Purpose: Get compiler options from build information.
• Syntax: options = getCompileFlags(buildinfo, includeGroups,

excludeGroups)

includeGroups and excludeGroups are optional.
• Input arguments:

buildinfo

Build information stored in RTW.BuildInfo.
includeGroups (optional)

A character array or cell array of character arrays that specifies groups of
compiler flags you want the function to return.

excludeGroups (optional)

21-159

21 Generating C/C++ Code from MATLAB Code

A character array or cell array of character arrays that specifies groups of
compiler flags you do not want the function to return.

• Output arguments:

Compiler options stored in the project's build information.
• Description:

The getCompileFlags function returns compiler options stored in the project's build
information. Using optional includeGroups and excludeGroups arguments, you
can selectively include or exclude groups of options the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector ('') for includeGroups.

getDefines

• Purpose: Get preprocessor macro definitions from build information.
• Syntax: [macrodefs, identifiers, values] = getDefines(buildinfo,

includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.
• Input arguments:

buildinfo

Build information stored in RTW.BuildInfo.
includeGroups (optional)

A character array or cell array of character arrays that specifies groups of macro
definitions you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups of macro
definitions you do not want the function to return.

• Output arguments:

Preprocessor macro definitions stored in the project's build information. The function
returns the macro definitions in three vectors.

Vector Description

macrodefs Complete macro definitions with -D prefix

21-160

 Customize the Post-Code-Generation Build Process

Vector Description

identifiers Names of the macros
values Values assigned to the macros (anything specified

to the right of the first equals sign) ; the default is
an empty character vector ('')

• Description:

The getDefines function returns preprocessor macro definitions stored in the
project's build information. When the function returns a definition, it automatically

• Prepends a -D to the definition if the -D was not specified when the definition was
added to the build information

• Changes a lowercase -d to -D

Using optional includeGroups and excludeGroups arguments, you can selectively
include or exclude groups of definitions the function is to return.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector ('') for includeGroups.

getFullFileList

• Purpose: Get All files from project's build information.
• Syntax: [fPathNames, names] = getFullFileList(buildinfo, fcase)

fcase is optional.
• Input arguments:

buildinfo

Build information stored in RTW.BuildInfo.
fcase (optional)

The character vector 'source', 'include', or 'nonbuild'. If the argument is
omitted, the function returns all the files from the build information object.

If You Specify The Function

'source' Returns source files from the build information
object.

21-161

21 Generating C/C++ Code from MATLAB Code

If You Specify The Function

'include' Returns include files from the build information
object.

'nonbuild' Returns nonbuild files from the build information
object.

• Output arguments:

Fully-qualified file paths and file names for files stored in the project's build
information.

Note: Usually it is unnecessary to resolve the path of every file in the project build
information, because the makefile for the project build will resolve file locations based
on source paths and rules. Therefore, getFullFileList returns the path for each
file only if a path was explicitly associated with the file when it was added, or if you
called updateFilePathsAndExtensions to resolve file paths and extensions before
calling getFullFileList.

• Description:

The getFullFileList function returns the fully-qualified paths and names of all
files, or files of a selected type (source, include, or nonbuild), stored in the project's
build information.

getIncludeFiles

• Purpose: Get include files from build information.
• Syntax: files = getIncludeFiles(buildinfo, concatenatePaths,

replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.
• Input arguments:

buildinfo

Build information stored in RTW.BuildInfo.
concatenatePaths

The logical value true or false.

21-162

 Customize the Post-Code-Generation Build Process

If You Specify The Function

true Concatenates and returns each filename with its
corresponding path.

false Returns only filenames.

replaceMatlabroot

The logical value true or false.

If You Specify The Function

true Replaces the token $(MATLAB_ROOT) with the
absolute path for your MATLAB installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups of include
files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups of include
files you do not want the function to return.

• Output arguments:

Names of include files stored in the project's build information.
• Description:

The getIncludeFiles function returns the names of include files stored in the
project's build information. Use the concatenatePaths and replaceMatlabroot
arguments to control whether the function includes paths and your MATLAB
root definition in the output it returns. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude groups of include
files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector ('') for includeGroups.

getIncludePaths

• Purpose: Get include paths from build information.

21-163

21 Generating C/C++ Code from MATLAB Code

• Syntax: files=getIncludePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.
• Input arguments:

buildinfo

Build information stored in RTW.BuildInfo.
replaceMatlabroot

The logical value true or false.

If You Specify The Function

true Replaces the token $(MATLAB_ROOT) with the
absolute path for your MATLAB installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups of include
paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups of include
paths you do not want the function to return.

• Output arguments:

Paths of include files stored in the build information object.
• Description:

The getIncludePaths function returns the names of include file paths stored in
the project's build information. Use the replaceMatlabroot argument to control
whether the function includes your MATLAB root definition in the output it returns.
Using optional includeGroups and excludeGroups arguments, you can selectively
include or exclude groups of include file paths the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector ('') for includeGroups.

21-164

 Customize the Post-Code-Generation Build Process

getLinkFlags

• Purpose: Get link options from build information.
• Syntax: options=getLinkFlags(buildinfo, includeGroups,

excludeGroups)

includeGroups and excludeGroups are optional.
• Input arguments:

buildinfo

Build information stored in RTW.BuildInfo.
includeGroups (optional)

A character array or cell array that specifies groups of linker flags you want the
function to return.

excludeGroups (optional)
A character array or cell array that specifies groups of linker flags you do not
want the function to return. To exclude groups and not include specific groups,
specify an empty cell array ('') for includeGroups.

• Output arguments:

Linker options stored in the project's build information.
• Description:

The getLinkFlags function returns linker options stored in the project's build
information. Using optional includeGroups and excludeGroups arguments, you
can selectively include or exclude groups of options the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector ('') for includeGroups.

getNonBuildFiles

• Purpose: Get nonbuild-related files from build information.
• Syntax: files=getNonBuildFiles(buildinfo, concatenatePaths,

replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.
• Input arguments:

21-165

21 Generating C/C++ Code from MATLAB Code

buildinfo

Build information stored in RTW.BuildInfo.
concatenatePaths

The logical value true or false.

If You Specify The Function

true Concatenates and returns each filename with its
corresponding path.

false Returns only filenames.

replaceMatlabroot

The logical value true or false.

If You Specify The Function

true Replaces the token $(MATLAB_ROOT) with the
absolute path for your MATLAB installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups of
nonbuild files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups of
nonbuild files you do not want the function to return.

• Output arguments:

Names of nonbuild files stored in the project's build information.
• Description:

The getNonBuildFiles function returns the names of nonbuild-related files,
such as DLL files required for a final executable, or a README file, stored in the
project's build information. Use the concatenatePaths and replaceMatlabroot
arguments to control whether the function includes paths and your MATLAB
root definition in the output it returns. Using optional includeGroups and

21-166

 Customize the Post-Code-Generation Build Process

excludeGroups arguments, you can selectively include or exclude groups of nonbuild
files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector ('') for includeGroups.

getSourceFiles

• Purpose: Get source files from project's build information.
• Syntax: srcfiles=getSourceFiles(buildinfo, concatenatePaths,

replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.
• Input arguments:

buildinfo

Build information stored in RTW.BuildInfo.
concatenatePaths

The logical value true or false.

If You Specify The Function

true Concatenates and returns each filename with its
corresponding path.

false Returns only filenames.

Note: Usually it is unnecessary to resolve the path of every file in the
project build information, because the makefile for the project build will
resolve file locations based on source paths and rules. Therefore, specifying
true for concatenatePaths returns the path for each file only if a path
was explicitly associated with the file when it was added, or if you called
updateFilePathsAndExtensions to resolve file paths and extensions before
calling getSourceFiles.

replaceMatlabroot

The logical value true or false.

21-167

21 Generating C/C++ Code from MATLAB Code

If You Specify The Function

true Replaces the token $(MATLAB_ROOT) with the
absolute path for your MATLAB installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups of source
files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups of source
files you do not want the function to return.

• Output arguments:

Names of source files stored in the project's build information.
• Description:

The getSourceFiles function returns the names of source files stored in the
project's build information. Use the concatenatePaths and replaceMatlabroot
arguments to control whether the function includes paths and your MATLAB
root definition in the output it returns. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude groups of source
files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector ('') for includeGroups.

getSourcePaths

• Purpose: Get source paths from build information.
• Syntax: files=getSourcePaths(buildinfo, replaceMatlabroot,

includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.
• Input arguments:

buildinfo

Build information stored in RTW.BuildInfo.

21-168

 Customize the Post-Code-Generation Build Process

replaceMatlabroot

The logical value true or false.

If You Specify The Function

true Replaces the token $(MATLAB_ROOT) with the
absolute path for your MATLAB installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups of source
paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups of source
paths you do not want the function to return.

• Output arguments:

Paths of source files stored in the project's build information.
• Description:

The getSourcePaths function returns the names of source file paths stored in
the project build information. Use the replaceMatlabroot argument to control
whether the function includes your MATLAB root definition in the output it returns.
Using optional includeGroups and excludeGroups arguments, you can selectively
include or exclude groups of source file paths that the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector ('') for includeGroups.

packNGo

• Purpose: Package generated code in zip file for relocation.
• Syntax: packNGo(buildinfo, propVals...)

propVals is optional.
• Arguments:

buildinfo
21-169

21 Generating C/C++ Code from MATLAB Code

Build information loaded from the build folder.
propVals (optional)

A cell array of property-value pairs that specify packaging details.

To Specify Property With Value

Package generated code files in a zip file
as a single, flat folder.

'packType' 'flat' (default)

Package generated code files
hierarchically in a primary zip file.

The value of the 'nestedZipFiles'
property determines whether the primary
zip file contains secondary zip files or
folders.

'packType' 'hierarchical'

Create a primary zip file that contains
three secondary zip files:

• mlrFiles.zip — files in your
matlabroot folder tree

• sDirFiles.zip — files in and under
your build folder

• otherFiles.zip — required files not
in the matlabroot or start folder
trees

Paths for files in the secondary zip files
are relative to the root folder of the
primary zip file.

'nestedZipFiles' true (default)

Create a primary zip file that contains
folders, for example, your build folder and
matlabroot.

'nestedZipFiles' false

Specify a file name for the primary zip file. 'fileName' 'name'

Default:'untitled.zip'
If you omit the .zip file
extension, the function
adds it.

21-170

 Customize the Post-Code-Generation Build Process

To Specify Property With Value

Include only the minimal header files
required to build the code in the zip file.

'minimalHeaders' true (default)

Include header files found on the include
path in the zip file.

'minimalHeaders' false

Include the html folder for your code
generation report.

'includeReport' true (default is false)

Direct packNGo not to error out on parse
errors.

'ignoreParseError' true (default is false)

Direct packNGo not to error out if files are
missing.

'ignoreFileMissing' true (default is false)

• Description:

The packNGo function packages the following code files in a compressed zip file so you
can relocate, unpack, and rebuild them in another development environment.

• Source files (for example, .c and .cpp files)
• Header files (for example, .h and .hpp files)
• Nonbuild-related files (for example, .dll files required for a final executable file

and .txt informational files)
• MAT-file that contains the build information object (.mat file)

Use this function to relocate files so that they can be recompiled for a specific target
environment, or rebuilt in a development environment in which MATLAB is not
installed.

By default, the packNGo function packages the files as a flat folder structure in a zip
file, foo.zip. The zip file is located in the current working folder.

You can customize the output by specifying property name and value pairs as
previously described.

After relocating the zip file, use a standard zip utility to unpack the compressed file.
• Limitations:

The following limitations apply to use of the packNGo function:

21-171

21 Generating C/C++ Code from MATLAB Code

• The function operates on source files only, such as *.c, *.cpp, and *.h files. The
function does not support compile flags, defines, or makefiles.

• The function does not package example main source and header files that you
generate using the default configuration settings. To package the example
main files, configure code generation to generate and compile the example main
function, generate your code, and then package the build files.

• Unnecessary files might be included. The function might find additional files from
source paths and include paths recorded in the build information, even if they are
not used.

• packNGo does not package the code generated for MEX targets.
• See Also:

• “Package Code for Other Development Environments” on page 25-46

updateFilePathsAndExtensions

• Purpose: Update files in project build information with missing paths and file
extensions.

• Syntax: updateFilePathsAndExtensions(buildinfo, extensions)

extensions is optional.
• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.
extensions (optional)

A cell array of character arrays that specifies the extensions (file types) of files
for which to search and include in the update processing. By default, the function
searches for files with a .c extension. The function checks files and updates
paths and extensions based on the order in which you list the extensions in the
cell array. For example, if you specify {'.c' '.cpp'}, and a folder contains
myfile.c and myfile.cpp, an instance of myfile is updated to myfile.c.

• Description:

Using paths that already exist in a project's build information, the
updateFilePathsAndExtensions function checks whether file references in the

21-172

 Customize the Post-Code-Generation Build Process

build information need to be updated with a path or file extension. This function can
be particularly useful for

• Maintaining build information for a toolchain that requires the use of file
extensions

• Updating multiple customized instances of build information for a given project

updateFileSeparator

• Purpose: Change file separator used in project's build information.
• Syntax: updateFileSeparator(buildinfo, separator)
• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.
separator

A character array that specifies the file separator \ (Windows) or / (UNIX®) to be
applied to file path specifications.

• Description:

The updateFileSeparator function changes instances of the current file separator
(/ or \) in a project's build information to the specified file separator.

The default value for the file separator matches the value returned by the MATLAB
command filesep. For makefile based builds, you can override the default by
defining a separator with the MAKEFILE_FILESEP macro in the template makefile.
If the GenerateMakefile parameter is set, the MATLAB Coder software overrides
the default separator and updates the build information after evaluating the
PostCodeGenCommand configuration parameter.

Write Post-Code-Generation Command

A post-code-generation command is a MATLAB file that typically calls functions that
get data from or add data to the build information object. For example, you can access
the project name in the variable projectName and the RTW.BuildInfo object in the
variable buildInfo. You can write the command as a script or a function.

21-173

21 Generating C/C++ Code from MATLAB Code

If You Write the Command as a Then the

Script Script can gain access to the project
(top-level function) name and the build
information directly.

Function Function can receive the project name and
the build information as arguments.

If your post-code-generation command calls user-defined functions, make sure that the
functions are on the MATLAB path. If the build process cannot find a function that you
use in your command, the process fails.

You can call combinations of build information functions to customize the post-code-
generation build. See “Write and Use Post-Code-Generation Command at the Command
Line” on page 21-175

Write Post-Code-Generation Command as a Script

Set PostCodeGenCommand to the script name.

At the command line, enter:

cfg = coder.config('lib');

cfg.PostCodeGenCommand = 'ScriptName';

Write Post-Code-Generation Command as a Function

Set PostCodeGenCommand to the function signature. When you define the command as a
function, you can specify an arbitrary number of input arguments. If you want to access
the project name, include projectName as an argument. If you want to modify or access
build information, add buildInfo as an argument.

At the command line, enter:

cfg = coder.config('lib');

cfg.PostCodeGenCommand = 'FunctionName(projectName, buildInfo)';

Use Post-Code-Generation Command to Customize Build

After you have written a post-code-generation command, you must include this command
in the build processing. You can include the command from the project settings dialog box
or the command line.

21-174

 Customize the Post-Code-Generation Build Process

Use Post-Code-Generation Command in the MATLAB Coder App.

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the Custom Code tab, set the Post-code-generation command parameter.

How you use the PostCodeGenCommand option depends on whether you write the
command as a script or a function. See “Use Post-Code-Generation Command at the
Command Line” on page 21-175 and “Use Post-Code-Generation Command in the
MATLAB Coder App.” on page 21-175.

Use Post-Code-Generation Command at the Command Line

Set the PostCodeGenCommand option for the code generation configuration object
(coder.MexCodeConfig, coder.CodeConfig or coder.EmbeddedCodeConfig).

How you use the PostCodeGenCommand option depends on whether you write the
command as a script or a function. See “Use Post-Code-Generation Command at the
Command Line” on page 21-175 and “Use Post-Code-Generation Command in the
MATLAB Coder App.” on page 21-175.

Write and Use Post-Code-Generation Command at the Command Line

The following example shows how to write and use a post-code-generation command as a
function. The setbuildargs function takes the build information object as a parameter,
sets up link options, and adds them to the build information object.

1 Create a post-code-generation command as a function, setbuildargs, which takes
the buildInfo object as a parameter:

function setbuildargs(buildInfo)

% The example being compiled requires pthread support.

% The -lpthread flag requests that the pthread library be included

% in the build

 linkFlags = {'-lpthread'};

 buildInfo.addLinkFlags(linkFlags);

2 Create a code generation configuration object. Set the PostCodeGenCommand option
to 'setbuildargs(buildInfo)' so that this command is included in the build
processing:

21-175

21 Generating C/C++ Code from MATLAB Code

cfg = coder.config('mex');

cfg.PostCodeGenCommand = 'setbuildargs(buildInfo)';

3 Using the -config option, generate a MEX function passing the configuration object
to codegen. For example, for the function foo that has no input parameters:

codegen -config cfg foo

21-176

 Run-time Stack Overflow

Run-time Stack Overflow

If your C compiler reports a run-time stack overflow, set the value of the maximum
stack usage parameter to be less than the available stack size. In a project, in the
project settings dialog box Memory tab, set the Stack usage max parameter.
For command-line configuration objects (coder.MexCodeConfig, coder.CodeConfig,
coder.EmbeddedCodeConfig), set the StackUsageMax parameter.

21-177

21 Generating C/C++ Code from MATLAB Code

Pass Structure Arguments by Reference or by Value in Generated
Code

This example shows how to control whether structure arguments to generated entry-
point functions are passed by reference or by value.

Passing by reference uses a pointer to access the structure arguments. If the function
writes to an element of the input structure, it overwrites the input value. Passing by
value makes a copy of the input or output structure argument. To reduce memory usage
and execution time, use pass by reference.

If a structure argument is both an input and output, the generated entry-point function
passes the argument by reference. Generated MEX functions pass structure arguments
by reference. For MEX function output, you cannot specify that you want to pass
structure arguments by value.

Specify Pass by Reference or by Value Using the MATLAB Coder App

To open the Generate dialog box, on the Generate Code page, click the Generate
arrow.

Set the Build type to one of the following:

• Source Code
• Static Library
• Dynamic Library
• Executable

Click More Settings.

On the All Settings tab, set the Pass structures by reference to entry-point
functions option to:

• Yes, for pass by reference (default)
• No, for pass by value

Specify Pass by Reference or by Value Using the Command-Line Interface

Create a code configuration object for a static library, a dynamic library, or an executable
program. For example, create a code configuration object for a static library.

21-178

 Pass Structure Arguments by Reference or by Value in Generated Code

cfg = coder.config('lib');

Set the PassStructByReference property to:

• true, for pass by reference (default)
• false, for pass by value

For example:

cfg.PassStructByReference = true;

Pass Input Structure Argument by Reference

Write the MATLAB function my_struct_in that has an input structure argument.

function y = my_struct_in(s)

%#codegen

y = s.f;

Define a structure variable mystruct in the MATLAB® workspace.

mystruct = struct('f', 1:4);

Create a code generation configuration object for a C static library.

cfg = coder.config('lib');

Specify that you want to pass structure arguments by reference.

cfg.PassStructByReference = true;

Generate code. Specify that the input argument has the type of the variable mystruct.

codegen -config cfg -args {mystruct} my_struct_in

View the generated C code.

type codegen/lib/my_struct_in/my_struct_in.c

/*

 * my_struct_in.c

21-179

21 Generating C/C++ Code from MATLAB Code

 *

 * Code generation for function 'my_struct_in'

 *

 */

/* Include files */

#include "rt_nonfinite.h"

#include "my_struct_in.h"

/* Function Definitions */

void my_struct_in(const struct0_T *s, double y[4])

{

 int i0;

 for (i0 = 0; i0 < 4; i0++) {

 y[i0] = s->f[i0];

 }

}

/* End of code generation (my_struct_in.c) */

The generated function signature for my_struct_in is

void my_struct_in(const struct0_T *s, double y[4])

my_struct_in passes the input structure s by reference.

Pass Input Structure Argument by Value

Specify that you want to pass structure arguments by value.

cfg.PassStructByReference = false;

Generate code. Specify that the input argument has the type of the variable mystruct.

codegen -config cfg -args {mystruct} my_struct_in

View the generated C code.

type codegen/lib/my_struct_in/my_struct_in.c

/*

 * my_struct_in.c

 *

 * Code generation for function 'my_struct_in'

21-180

 Pass Structure Arguments by Reference or by Value in Generated Code

 *

 */

/* Include files */

#include "rt_nonfinite.h"

#include "my_struct_in.h"

/* Function Definitions */

void my_struct_in(const struct0_T s, double y[4])

{

 int i0;

 for (i0 = 0; i0 < 4; i0++) {

 y[i0] = s.f[i0];

 }

}

/* End of code generation (my_struct_in.c) */

The generated function signature for my_struct_in is

void my_struct_in(const struct0_T s, double y[4]

my_struct_in passes the input structure s by value.

Pass Output Structure Argument by Reference

Write the MATLAB function my_struct_out that has an output structure argument.

function s = my_struct_out(x)

%#codegen

s.f = x;

Define a variable a in the MATLAB® workspace.

a = 1:4;

Create a code generation configuration object for a C static library.

cfg = coder.config('lib');

Specify that you want to pass structure arguments by reference.

21-181

21 Generating C/C++ Code from MATLAB Code

cfg.PassStructByReference = true;

Generate code. Specify that the input argument has the type of the variable a.

codegen -config cfg -args {a} my_struct_out

View the generated C code.

type codegen/lib/my_struct_out/my_struct_out.c

/*

 * my_struct_out.c

 *

 * Code generation for function 'my_struct_out'

 *

 */

/* Include files */

#include "rt_nonfinite.h"

#include "my_struct_out.h"

/* Function Definitions */

void my_struct_out(const double x[4], struct0_T *s)

{

 int i0;

 for (i0 = 0; i0 < 4; i0++) {

 s->f[i0] = x[i0];

 }

}

/* End of code generation (my_struct_out.c) */

The generated function signature for my_struct_out is

void my_struct_out(const double x[4], struct0_T *s)

my_struct_out passes the output structure s by reference.

Pass Output Structure Argument by Value

Specify that you want to pass structure arguments by value.

cfg.PassStructByReference = false;

Generate code. Specify that the input argument has the type of the variable a.

21-182

 Pass Structure Arguments by Reference or by Value in Generated Code

codegen -config cfg -args {a} my_struct_out

View the generated C code.

type codegen/lib/my_struct_out/my_struct_out.c

/*

 * my_struct_out.c

 *

 * Code generation for function 'my_struct_out'

 *

 */

/* Include files */

#include "rt_nonfinite.h"

#include "my_struct_out.h"

/* Function Definitions */

struct0_T my_struct_out(const double x[4])

{

 struct0_T s;

 int i0;

 for (i0 = 0; i0 < 4; i0++) {

 s.f[i0] = x[i0];

 }

 return s;

}

/* End of code generation (my_struct_out.c) */

The generated function signature for my_struct_out is

struct0_T my_struct_out(const double x[4])

my_struct_out returns an output structure.

Pass Input and Output Structure Argument by Reference

When an argument is both an input and an output, the generated C function passes the
argument by reference even when PassStructByReference is false.

Write the MATLAB function my_struct_inout that has a structure argument that is
both an input argument and an output argument.

21-183

21 Generating C/C++ Code from MATLAB Code

function [y,s] = my_struct_inout(x,s)

%#codegen

y = x + sum(s.f);

Define the variable a and structure variable mystruct in the MATLAB® workspace.

a = 1:4;

mystruct = struct('f',a);

Create a code generation configuration object for a C static library.

cfg = coder.config('lib');

Specify that you want to pass structure arguments by value.

cfg.PassStructByReference = false;

Generate code. Specify that the first input has the type of a and the second input has the
type of mystruct.

codegen -config cfg -args {a, mystruct} my_struct_inout

View the generated C code.

type codegen/lib/my_struct_inout/my_struct_inout.c

/*

 * my_struct_inout.c

 *

 * Code generation for function 'my_struct_inout'

 *

 */

/* Include files */

#include "rt_nonfinite.h"

#include "my_struct_inout.h"

/* Function Definitions */

void my_struct_inout(const double x[4], const struct0_T *s, double y[4])

{

21-184

 Pass Structure Arguments by Reference or by Value in Generated Code

 double b_y;

 int k;

 b_y = s->f[0];

 for (k = 0; k < 3; k++) {

 b_y += s->f[k + 1];

 }

 for (k = 0; k < 4; k++) {

 y[k] = x[k] + b_y;

 }

}

/* End of code generation (my_struct_inout.c) */

The generated function signature for my_struct_inout is

void my_struct_inout(const double x[4], const struct0_T *s, double y[4])

my_struct_inout passes the structure s by reference even though
PassStructByReference is false.

More About
• “Structure Definition for Code Generation” on page 8-2

21-185

21 Generating C/C++ Code from MATLAB Code

Generate Code for an LED Control Function That Uses Enumerated
Types

This example shows how to generate code for a function that uses enumerated types. In
this example, the enumerated types inherit from base type int32. The base type can be
int8, uint8, int16, uint16, or int32.

Define the enumerated type sysMode. Store it in sysMode.m on the MATLAB path.

classdef sysMode < int32

 enumeration

 OFF(0),

 ON(1)

 end

end

Define the enumerated type LEDcolor. Store it in LEDcolor.m on the MATLAB path.

classdef LEDcolor < int32

 enumeration

 GREEN(1),

 RED(2)

 end

end

Define the function displayState, which uses enumerated data to activate an LED
display, based on the state of a device. displayState lights a green LED display to
indicate the ON state. It lights a red LED display to indicate the OFF state.

function led = displayState(state)

%#codegen

if state == sysMode.ON

 led = LEDcolor.GREEN;

else

 led = LEDcolor.RED;

end

21-186

 Generate Code for an LED Control Function That Uses Enumerated Types

Generate a MEX function for displayState. Specify that displayState takes one
input argument that has an enumerated data type sysMode.

codegen displayState -args {sysMode.ON}

Test the MEX function.

displayState_mex(sysMode.OFF)

ans =

 RED

Generate a static library for the function displayState. Specify that displayState
takes one input argument that has an enumerated data type sysMode.

codegen -config:lib displayState -args {sysMode.ON}

codegen generates a C static library with the default name, displayState. It generates
supporting files in the default folder, codegen/lib/displayState.

View the header file displayState_types.h.

type codegen/lib/displayState/displayState_types.h

/*

 * File: displayState_types.h

 *

 * MATLAB Coder version : 3.2

 * C/C++ source code generated on : 30-Aug-2016 12:21:06

 */

#ifndef DISPLAYSTATE_TYPES_H

#define DISPLAYSTATE_TYPES_H

/* Include Files */

#include "rtwtypes.h"

/* Type Definitions */

#ifndef enum_LEDcolor

#define enum_LEDcolor

21-187

21 Generating C/C++ Code from MATLAB Code

enum LEDcolor

{

 GREEN = 1,

 RED

};

#endif /*enum_LEDcolor*/

#ifndef typedef_LEDcolor

#define typedef_LEDcolor

typedef enum LEDcolor LEDcolor;

#endif /*typedef_LEDcolor*/

#ifndef enum_sysMode

#define enum_sysMode

enum sysMode

{

 OFF,

 ON

};

#endif /*enum_sysMode*/

#ifndef typedef_sysMode

#define typedef_sysMode

typedef enum sysMode sysMode;

#endif /*typedef_sysMode*/

#endif

/*

 * File trailer for displayState_types.h

 *

 * [EOF]

 */

The enumerated type LEDcolor is represented as a C enumerated type because the base
type in the class definition for LEDcolor is int32. When the base type is int8, uint8,
int16, or uint16, the code generator produces a typedef for the enumerated type. It
produces #define statements for the enumerated type values. For example:

21-188

 Generate Code for an LED Control Function That Uses Enumerated Types

typedef short LEDcolor;

#define GREEN ((LEDcolor)1)

#define RED ((LEDcolor)2)

More About
• “Code Generation for Enumerations” on page 10-2
• “Customize Enumerated Types in Generated Code” on page 10-6

21-189

22

Verify Generated C/C++ Code

• “Generate Traceable Code” on page 22-2
• “Code Generation Reports” on page 22-9
• “Enable Code Generation Reports” on page 22-27
• “Run-Time Error Detection and Reporting in Standalone C/C++ Code” on page

22-28
• “Generate Standalone Code That Detects and Reports Run-Time Errors” on page

22-30
• “Testing Code Generated from MATLAB Code” on page 22-32
• “Unit Test Generated Code with MATLAB Coder” on page 22-33
• “Unit Test External C Code with MATLAB Coder” on page 22-41

22 Verify Generated C/C++ Code

Generate Traceable Code

In this section...

“Include MATLAB Source Code as Comments by Using the MATLAB Coder App” on
page 22-2
“Include MATLAB Source Code as Comments by Using the Command-Line Interface” on
page 22-3
“Format of Traceability Tags” on page 22-3
“Location of Comments in Generated Code” on page 22-3
“Traceability Limitations” on page 22-7

You can configure MATLAB Coder to generate code that includes the MATLAB source
code as comments. Include this information in the generated code to:

• Correlate the generated code with your source code.
• Understand how the generated code implements your algorithm.
• Evaluate the quality of the generated code.

In these generated comments, a traceability tag immediately precedes each line of source
code. This traceability tag provides details about the location of the source code. See
“Format of Traceability Tags” on page 22-3.

If you have Embedded Coder, you can also generate C/C++ code that includes the
MATLAB function help text in the function banner. See “Tracing Between Generated C
Code and MATLAB Code”.

Include MATLAB Source Code as Comments by Using the MATLAB Coder
App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the Code Appearance tab, under Comments, select the MATLAB source

code as comments check box.
4 Generate code.

22-2

 Generate Traceable Code

Include MATLAB Source Code as Comments by Using the Command-Line
Interface

In the code generation configuration object, set the MATLABSourceComments parameter
to true. For example, this code generates a static library for foo.m and includes the
source code as comments in the generated code:

cfg = coder.config('lib');

cfg.MATLABSourceComments = true;

codegen -config cfg foo

Format of Traceability Tags

In the generated code, traceability tags appear immediately before the MATLAB source
code in the comment. The format of the tag is:
<filename>:<line number>.

For example, the comment indicates that the code x = r * cos(theta); appears at
line 4 in the source file straightline.m.

/* 'straightline:4' x = r * cos(theta); */

Note: With an Embedded Coder license, the traceability tags in the code generation
report are hyperlinks to the MATLAB source code. For more information, see “Tracing
Between Generated C Code and MATLAB Code”.

Location of Comments in Generated Code

The generated comments containing the source code and traceability tag appear in the
generated code as follows.

Straight-Line Source Code

In straight-line source code without if, while, for or switch statements, the comment
containing the source code precedes the generated code that implements the source code
statement. This comment appears after user comments that precede the generated code.

For example, in the following code, the user comment, /* Convert polar to
Cartesian */, appears before the generated comment containing the first line of source
code, together with its traceability tag,

22-3

22 Verify Generated C/C++ Code

/* 'straightline:4' x = r * cos(theta); */.

MATLAB Code

function [x, y] = straightline(r,theta)

%#codegen

% Convert polar to Cartesian

x = r * cos(theta);

y = r * sin(theta);

Commented C Code

void straightline(double r, double theta, double *x, double *y)

{

 /* Convert polar to Cartesian */

 /* 'straightline:4' x = r * cos(theta); */

 *x = r * cos(theta);

 /* 'straightline:5' y = r * sin(theta); */

 *y = r * sin(theta);

}

If Statements

The comment for the if statement immediately precedes the code that implements the
statement. This comment appears after user comments that precede the generated code.
The comments for the elseif and else clauses appear immediately after the code that
implements the clause, and before the code generated for statements in the clause.

MATLAB Code

function y = ifstmt(u,v)

%#codegen

if u > v

 y = v + 10;

elseif u == v

 y = u * 2;

else

 y = v - 10;

end

Commented C Code

double ifstmt(double u, double v)

{

 double y;

22-4

 Generate Traceable Code

 /* 'ifstmt:3' if u > v */

 if (u > v) {

 /* 'ifstmt:4' y = v + 10; */

 y = v + 10.0;

 } else if (u == v) {

 /* 'ifstmt:5' elseif u == v */

 /* 'ifstmt:6' y = u * 2; */

 y = u * 2.0;

 } else {

 /* 'ifstmt:7' else */

 /* 'ifstmt:8' y = v - 10; */

 y = v - 10.0;

 }

 return y;

}

For Statements

The comment for the for statement header immediately precedes the generated code
that implements the header. This comment appears after user comments that precede
the generated code.

MATLAB Code

function y = forstmt(u)

%#codegen

y = 0;

for i = 1:u

 y = y + 1;

end

Commented C Code

double forstmt(double u)

{

 double y;

 int i;

 /* 'forstmt:3' y = 0; */

 y = 0.0;

 /* 'forstmt:4' for i = 1:u */

 for (i = 0; i < (int)u; i++) {

22-5

22 Verify Generated C/C++ Code

 /* 'forstmt:5' y = y + 1; */

 y++;

 }

 return y;

}

While Statements

The comment for the while statement header immediately precedes the generated code
that implements the statement header. This comment appears after user comments that
precede the generated code.
MATLAB Code

function y = subfcn(y)

coder.inline('never');

while y < 100

 y = y + 1;

end

Commented C Code

void subfcn(double *y)

{

 /* 'subfcn:2' coder.inline('never'); */

 /* 'subfcn:3' while y < 100 */

 while (*y < 100.0) {

 /* 'subfcn:4' y = y + 1; */

 (*y)++;

 }

}

Switch Statements

The comment for the switch statement header immediately precedes the generated code
that implements the statement header. This comment appears after user comments that
precede the generated code. The comments for the case and otherwise clauses appear
immediately after the generated code that implements the clause, and before the code
generated for statements in the clause.
MATLAB Code

function y = switchstmt(u)

%#codegen

22-6

 Generate Traceable Code

y = 0;

switch u

 case 1

 y = y + 1;

 case 3

 y = y + 2;

 otherwise

 y = y - 1;

end

Commented C Code

double switchstmt(double u)

{

 double y;

 /* 'switchstmt:3' y = 0; */

 /* 'switchstmt:4' switch u */

 switch ((int)u) {

 case 1:

 /* 'switchstmt:5' case 1 */

 /* 'switchstmt:6' y = y + 1; */

 y = 1.0;

 break;

 case 3:

 /* 'switchstmt:7' case 3 */

 /* 'switchstmt:8' y = y + 2; */

 y = 2.0;

 break;

 default:

 /* 'switchstmt:9' otherwise */

 /* 'switchstmt:10' y = y - 1; */

 y = -1.0;

 break;

 }

 return y;

}

Traceability Limitations

For MATLAB Coder, there are traceability limitations.

22-7

22 Verify Generated C/C++ Code

• You cannot include MATLAB source code as comments for:

• MathWorks toolbox functions
• P-code

• The appearance or location of comments can vary depending on the following
conditions:

• Even if the implementation code is eliminated, for example, due to constant
folding, comments can still appear in the generated code.

• If a complete function or code block is eliminated, comments can be eliminated
from the generated code.

• For certain optimizations, the comments can be separated from the generated
code.

• Even if you do not choose to include source code comments in the generated code,
the generated code includes legally required comments from the MATLAB source
code.

More About
• “Tracing Between Generated C Code and MATLAB Code”
• “Code Generation Reports” on page 22-9

22-8

 Code Generation Reports

Code Generation Reports

In this section...

“Code Generation Report Overview” on page 22-9
“Generating and Opening Reports” on page 22-11
“Names and Locations of Reports” on page 22-11
“MATLAB Code in a Report” on page 22-11
“Call Stack Information in a Report” on page 22-13
“Generated C/C++ Code in a Report” on page 22-15
“Build Summary Information in a Report” on page 22-16
“Errors and Warnings in a Report” on page 22-16
“MATLAB Code Variables in a Report” on page 22-17
“Target Build Information in a Report” on page 22-22
“Keyboard Shortcuts for a Report” on page 22-23
“Searching in a Report” on page 22-25
“Report Limitations” on page 22-25

Code Generation Report Overview

At code generation time, MATLAB Coder produces a report. The report helps you
to verify that your MATLAB code is suitable for code generation and to debug code
generation issues in your code.

The report provides links to your MATLAB code and C/C++ code files. It also provides
compile-time type information for the variables and expressions in your MATLAB code.
This information helps you to find sources of error messages and to understand type
propagation rules.

Here is an example of a code generation report.

22-9

22 Verify Generated C/C++ Code

The report provides:

• MATLAB code information, including a list of functions and classes.
• Call stack information, providing information on the nesting of function calls.
• Links to generated C/C++ code files.
• Summary of build results, including type of target and number of warnings or errors.
• List of error and warning messages.
• List of variables in your MATLAB code.
• Target build log of compilation and linking activities

22-10

 Code Generation Reports

Generating and Opening Reports

• Using the MATLAB Coder app:

After code generation, on the Generate Code page, the MATLAB Coder app
generates a code generation report and provides a link to the report. If the code
generation report is enabled, or build errors occur, the Target Build Log tab also
provides a link to the report. To view the report, click the report link.

• Using the codegen command:

If the code generation report is enabled, or build errors occur, MATLAB Coder
generates a code generation report and provides a link to the report. To open the
report, click the report link. If you specify the LaunchReport option when you
generate code, MATLAB Coder opens the report.

Names and Locations of Reports

MATLAB Coder produces code generation reports in the following locations. The top-level
HTML file at each location is index.html.

• For MEX functions:

output_folder/mex/primary_function_name/html

• For C/C++ executables:

output_folder/exe/primary_function_name/html

• For C/C++ libraries:

output_folder/lib/primary_function_name/html

Note: The default output folder is codegen, but you can specify a different folder. For
more information, see “Configure Build Settings” on page 21-26.

MATLAB Code in a Report

To view your MATLAB code, click the MATLAB code tab. The code generation report
displays the code for the function or class highlighted in the list.

The MATLAB code tab provides:

22-11

22 Verify Generated C/C++ Code

• A list of the MATLAB functions and classes. Depending on the build results, the
report displays icons next to each function or class name:

• Errors in function or class.
• Warnings in function or class.
• Completed build, no errors or warnings.

• A filter control. You can use Filter functions and methods to sort functions and
methods by:

• Size
• Complexity
• Class

• An optional highlight control to highlight potential data type issues in the generated
C/C++ code. This option requires an Embedded Coder license. See “Highlight
Potential Data Type Issues in a Report”.

Local Functions

In the function list on the MATLAB code tab, the code generation report annotates the
local function with the name of the parent function.

For example, if the MATLAB function fcn1 contains the local function local_fcn1, and
fcn2 contains the local function local_fcn2, the report displays:

fcn1 > local_fcn1

fcn2 > local_fcn2

Specializations

If your MATLAB function calls the same function with different types of inputs, the code
generation report numbers these specializations in the function list on the MATLAB
code tab.

For example, if the function fcn calls the function subfcn with different types of inputs:

function y = fcn(u) %#codegen

% Specializations

y = y + subfcn(single(u));

y = y + subfcn(double(u));

22-12

 Code Generation Reports

The code generation report numbers the specializations in the function list:

fcn > subfcn > 1

fcn > subfcn > 2

Extrinsic Functions

The report highlights the extrinsic functions that are supported only within the
MATLAB environment.

Call Stack Information in a Report

The code generation report provides call stack information:

• On the Call stack tab.
• In the list of Calls at the top right of the report.

This list shows the calls from and to the function or method. If more than one function
calls a function, this list provides details of each call-site. Otherwise, the list is
disabled.

Call Stack Information on the Call stack Tab

To view call stack information, click the Call stack tab.

The call stack lists the functions and methods in the order that the top-level function
calls them. It also lists the local functions that each function calls.

The call stack displays a separate tree for each entry point function. You can easily
distinguish between shared and entry-point specific functions. If you click a shared

22-13

22 Verify Generated C/C++ Code

function, the report highlights instances of this function. If you click an entry-point
specific function, the report highlights only that instance.

For example, in the following call stack, ezep1 and ezep2 are entry-point functions.
identity is an entry-point specific function, called only by ezep1. Functions ezep3 and
shared are shared functions.

Entry-point functions

Entry-point specific function

The Calls List

If more than one function calls a function, or if the functions calls other functions, the
Calls list provides details of each call site. To navigate between call sites, select a call
site from the Calls list. If the function is not called more than once, this list is disabled.

If you select the entry-point function ezep2 in the call stack, the Calls list displays the
other call site in ezep1.

22-14

 Code Generation Reports

Generated C/C++ Code in a Report

To view a list of the generated C or C++ files, click the C code tab. The code generation
report displays a list of the generated files in the Target Source Files pane. To view the
code for a file, click the file.

If you generate a MEX function, a list of support files that the code generator uses
appears in the Interface Source Files pane of the C code tab. By default, this list is
collapsed.

When you generate an example main function, by default, the code generation report
does not include the generated example main files. If you configure code generation to
generate and compile an example main function, and then you generate code, example
main files appear in the code generation report. A list of source and header files for the
example main function appears in the Example Source Files pane of the C code tab.

Tracing Generated Code to MATLAB Source Code

You can configure codegen to generate C code that includes the MATLAB source code
as comments. In these generated comments, codegen precedes each line of source code
with a traceability tag that provides details about the location of the source code. See
“Generate Traceable Code” on page 22-2.

For code generated using the Embedded Coder software, these traceability tags are
hyperlinks. To go the relevant line in the source code in the MATLAB editor, click the
tag.

Navigating to MATLAB Source Files for Generated C/C++ Code

To open the MATLAB source code file associated with a generated C/C++ function, click
the link at the top of the code pane.

Navigating to Type Definitions

To see the definition for a generated C/C++ data type, click the data type in the
generated C/C++ code pane.

Custom Code in a Report

The report displays custom code with color syntax highlighting. To learn what these
colors mean and how to customize color settings, see “Check Syntax as You Type”.

22-15

22 Verify Generated C/C++ Code

Build Summary Information in a Report

To view a summary of the build results, including type of target and number of errors or
warnings, click the Summary tab.

Errors and Warnings in a Report

MATLAB Coder reports errors and warnings. If errors occur during the build, MATLAB
Coder does not generate code. The report lists the messages in the order that MATLAB
Coder detects them. It is a best practice to address the first message in the list, because
often subsequent errors and warnings are related to the first message. If the build
produces warnings, but no errors, MATLAB Coder does generate code.

The code generation report:

• Lists errors and warnings on the All Messages tab. The report lists these messages
in chronological order.

• Highlights errors and warnings on the MATLAB code pane.
• Records compilation and linking errors and warnings on the Target Build Log

tab. If the code generator detects compilation warnings, you see a message on the
All Messages tab. The code generator detects compilation warnings only for MEX
output or if you use a supported compiler for other types of output. For a list of
supported compilers, see http://www.mathworks.com/support/compilers/
current_release/.

Errors and Warnings in the All Messages Tab

If errors or warnings occur during the build, click the All Messages tab to view a
complete list of these messages. The code generation report marks messages as either:

Error

Warning

To locate the incorrect line of code for an error or warning, click the message in the list.
The code generation report highlights errors in the list. It highlights MATLAB code in
red and warnings in orange. To go to the error in the source file, click the line number
next to the incorrect line of code in the MATLAB code pane.

22-16

 Code Generation Reports

Note: You can fix errors only in the source file.

Error and Warning Information in Your MATLAB Code

If errors or warnings occur during the build, the code generation report underlines them
in your MATLAB code. The report underlines errors in red and warnings in orange. To
learn more about a particular error or warning, place your cursor over the underlined
text.

Compilation and Linking Errors and Warnings

The code generation report highlights compilation and linking errors and warnings in red
on the Target Build Log tab. For errors, the code generation report opens to the Target
Build Log tab so that you can view the build log. For warnings, the report opens to the
All Messages tab. A message instructs you to view the warnings on the Target Build
Log tab.

MATLAB Code Variables in a Report

The report provides compile-time type information for the variables and expressions
in your MATLAB code, including name, type, size, complexity, and class. It also
provides type information for fixed-point data types, including word length and fraction
length. You can use this type information to find the sources of error messages and to
understand type propagation rules.

You can view information about the variables in your MATLAB code:

• On the Variables tab, view the list.
• In your MATLAB code, place your cursor over the variable name.

In the MATLAB code, an orange variable name indicates a compile-time constant
argument to an entry-point or a specialized function. The information for a constant
argument includes the value. The information about constant arguments helps you
to understand generated function signatures. It also helps you to see when code
generation created function specializations for different constant argument values.

Variables on the Variables Tab

To view a list of the variables in your MATLAB function, click the Variables tab. The
report displays a complete list of variables in the order that they appear in the function

22-17

22 Verify Generated C/C++ Code

that you selected on the MATLAB code tab. Clicking a variable in the list highlights
instances of that variable, and scrolls the MATLAB code pane so that you can view the
first instance.

As applicable, the report provides the following information about each variable:

• Order
• Name
• Type
• Size
• Complexity
• Class
• DataTypeMode (DT mode) — for fixed-point data types only. For more information,

see “Data Type and Scaling Properties”.
• Signed — sign information for built-in data types, signedness information for fixed-

point data types.
• Word length (WL) — for fixed-point data types only.
• Fraction length (FL) — for fixed-point data types only.

Note: For more information on viewing fixed-point data types, see “Use Fixed-Point Code
Generation Reports”.

The report displays a column only if at least one variable in the code has information in
that column. For example, if the code does not contain fixed-point data types, the report
does not display the DT mode, WL, or FL columns.

Sorting Variables on the Variables Tab

By default, the report lists the variables in the order that they appear in the selected
function.

To sort the variables, click the column headings on the Variables tab. To sort the
variables by multiple columns, hold down the Shift key when you click the column
headings.

To restore the list to the original order, click the Order column heading.

22-18

 Code Generation Reports

Structures on the Variables Tab

To display structure field properties, expand the structure on the Variables tab.

If you sort the variables by type, size, complexity, or class, it is possible that a structure
and its fields do not appear sequentially in the list. To restore the list to the original
order, click the Order column heading.
Variable-Size Arrays in the Variables Tab

For variable-size arrays, the Size field includes information about the computed
maximum size of the array. The size of each array dimension that varies is prefixed with
a colon :. The size of an unbounded dimension is :?.

In the following report, variables A and B are variable-size. The second dimension of A
has a maximum size of 100. The size of the second dimension of B is :?.

If you declare a variable-size array, and then fix the dimensions of this array in the code,
the report appends * to the size of the variable. In the generated C code, this variable
appears as a variable-size array, but the sizes of its dimensions do not change during
execution.

22-19

22 Verify Generated C/C++ Code

For information about how to use the size information for variable-size arrays, see
“Variable-Size Data Definition for Code Generation” on page 7-3.

Renamed Variables in the Variables Tab

If your MATLAB function reuses a variable with a different size, type, or complexity,
the code generator attempts to create separate, uniquely named variables. For more
information, see “Reuse the Same Variable with Different Properties” on page 5-10. The
report numbers the renamed variables in the list on the Variables tab. When you place
your cursor over a renamed variable, the report highlights only the instances of this
variable that share data type, size, and complexity.

For example, suppose that your code uses the variable t to hold a scalar double, and
reuses it outside the for-loop to hold a vector of doubles. In the list on the Variables tab,
the report displays two variables, t>1 and t>2,

Viewing Information About Variables and Expressions in Your MATLAB Function Code

To view information about a particular variable or expression in your MATLAB function
code, on the MATLAB code pane, place your cursor over the variable name or expression.
The report highlights variables and expressions in different colors:

Green, when the variable has data type information at this location in the code

For variable-size arrays, the Size field includes information on the computed maximum
size of the array. The size of each array dimension that varies is prefixed with a colon :.

22-20

 Code Generation Reports

Green with orange text, when a constant argument has data type and value information

When the variable is a compile-time constant argument to an entry-point or a specialized
function:

• The variable name is orange.
• The information for the variable includes the value.

If you export the value as a variable to the base workspace, you can use the Workspace
browser to view detailed information about the variable.

To export the value to the base workspace:

1 Click the Value link.
2 In the Export Constant Value dialog box, specify the Variable name.
3 Click OK.

The variable and its value appear in the Workspace browser.

Pink, when the variable has no data type information

22-21

22 Verify Generated C/C++ Code

Purple, information about expressions

You can also view information about expressions in your MATLAB code. On the
MATLAB code pane, place your cursor over an expression. The report highlights
expressions in purple and provides more detailed information.

Red, when there is error information

Target Build Information in a Report

If the build completes, MATLAB Coder provides target build information on the Target
Build Log tab, including:

• Build folder

Clicking this link changes the MATLAB current folder to the build folder.
• Make wrapper

The batch file name that MATLAB Coder used for this build.
• Build log

If compilation or linking errors occur, the code generation report opens to the Target
Build Log tab so that you can view the build log.

22-22

 Code Generation Reports

Keyboard Shortcuts for a Report

You can use keyboard shortcut settings to perform actions in the code generation report.

This table lists actions that you can associate with a keyboard shortcut. The keyboard
shortcuts are defined in your MATLAB preferences. See “Define Keyboard Shortcuts”.

Action Default Keyboard Shortcut for a Windows
Platform

Zoom in Ctrl+Plus
Zoom out Ctrl+Minus
Evaluate selected MATLAB code F9
Open help for selected MATLAB code F1
Open selected MATLAB code Ctrl+D
Step backward through files that you
opened in the code pane

Alt+Left

Step forward through files that you opened
in the code pane

Alt+Right

Refresh F5
Search Ctrl+F

22-23

22 Verify Generated C/C++ Code

Alternatively, you can select these actions from a context menu. To open the context
menu, right-click anywhere in the report.

This table lists keyboard shortcuts that help you navigate between panes and tabs in
the code generation report. To advance through data in the selected pane, use the Tab
key. These keyboard shortcuts override the keyboard shortcut settings in your MATLAB
preferences. See “Define Keyboard Shortcuts”.

To select Use

MATLAB code tab Ctrl+M
Call stack tab Ctrl+K
C code Tab Ctrl+C
Code Pane Ctrl+W
Summary Tab Ctrl+S
All Messages Tab Ctrl+A
Variables Tab Ctrl+V
Target Build Log Tab Ctrl+T

22-24

 Code Generation Reports

Searching in a Report

Use the keyboard shortcut associated with Find in your MATLAB preferences. For
example, on a Windows platform, the default keyboard shortcut for Find is Ctrl+F.

Report Limitations

The report displays information about the variables and expressions in your MATLAB
code with the following limitations:

varargin and varargout

The report does not support varargin and varargout arrays.

Loop Unrolling

The report does not display full information for unrolled loops. It displays data types of
one arbitrary iteration.

Dead Code

The report does not display information about dead code.

Structures

The report does not provide complete information about structures.

• The report does not provide information about all structure fields in the struct()
constructor.

• If a structure has a nonscalar field, and an expression accesses an element of this
field, the report does not provide information for the field.

Column Headings on the Variables Tab

If you scroll through the list of variables, the report does not display the column headings
on the Variables tab.

Multiline Matrices

On the MATLAB code pane, the report does not support selection of multiline matrices.
It supports only selection of individual lines at a time. For example, if you place your
cursor over the following matrix, you cannot select the entire matrix.

22-25

22 Verify Generated C/C++ Code

out1 = [1 2 3;

 4 5 6];

The report does support selection of single line matrices.

out1 = [1 2 3; 4 5 6];

22-26

 Enable Code Generation Reports

Enable Code Generation Reports

In this section...

“Enable Code Generation Reports with the MATLAB Coder App” on page 22-27
“Enable Code Generation Reports at the Command Line” on page 22-27

Enable Code Generation Reports with the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the Debugging tab, select the Always create a code generation report check

box.
4 If you want the app to open the report, select the Automatically launch a report

if one is generated check box.

Enable Code Generation Reports at the Command Line

Use the codegen function -report option. To generate a standalone C/C++ static
library and code generation report for a function foo that has no input parameters, at
the MATLAB command line, enter:

codegen -config:lib -report foo

If you want the code generation or error report to automatically open, use the -
launchreport option instead of the -report option.

22-27

22 Verify Generated C/C++ Code

Run-Time Error Detection and Reporting in Standalone C/C++
Code

You can generate standalone libraries and executables that detect and report run-time
errors, such as out-of-bounds array indexing. If the generated code detects an error, it
reports the error and terminates the program.

During development, before you generate C/C++ code, it is a best practice to test the
generated code by running the MEX version of your algorithm. However, some errors
occur only on the target hardware. To detect these errors, generate the standalone C/C
++ code with run-time error detection enabled. Run-time error detection can affect the
performance of the generated code. If performance is a consideration for your application,
do not generate production code with run-time error detection enabled.

By default, run-time error detection is disabled for standalone libraries and executables.
To enable run-time error detection and reporting for standalone libraries and
executables:

• At the command line, use the code configuration property RuntimeChecks.

cfg = coder.config('lib'); % or 'dll' or 'exe'

cfg.RuntimeChecks = true;

codegen -config cfg myfunction

• In the MATLAB Coder app, in the project settings dialog box, on the Debugging
pane, select the Generate run-time error checks check box.

Run-time error detection and reporting in standalone code has these requirements and
limitations:

• The error reporting software uses fprintf to write error messages to stderr. It
uses abort to terminate the application. If fprintf and abort are not available,
you must provide them. The abort function abruptly terminates the program. If your
system supports signals, you can catch the abort signal (SIGABRT) so that you can
control the program termination.

• Error messages are in English only.
• Some error checks require double-precision support. Therefore, the hardware on

which the generated code runs must support double-precision operations.
• If the program terminates, the error detection and reporting software does not

display the run-time stack. To inspect the stack, attach a debugger. Additionally, the

22-28

 Run-Time Error Detection and Reporting in Standalone C/C++ Code

error detection and reporting software does not release resources, such as allocated
memory.

• If the program terminates, the error detection and reporting software does not release
resources, such as allocated memory.

• In standalone code, the function error does not report an error and does not
terminate execution.

• In standalone code, if called with more than 1 argument, the function assert
does not report an error and does not terminate execution. If called with a single
argument, for example, assert(cond), if cond is not a constant true value, reports
an error and terminates execution.

Related Examples
• “Generate Standalone Code That Detects and Reports Run-Time Errors” on page

22-30

More About
• “Why Test MEX Functions in MATLAB?” on page 20-2

22-29

22 Verify Generated C/C++ Code

Generate Standalone Code That Detects and Reports Run-Time
Errors

This example shows how to generate C/C++ libraries or executables that detect and
report run-time errors such as out-of-bounds array indexing. If the generated code
detects an error, it reports a message and terminates the program. You can detect and fix
errors that occur only on the target hardware.

Write the function getelement that indexes into one structure field using the value of
the other structure field.

function y = getelement(S)

y = S.A(S.u);

end

Create a code configuration object for a standalone library or executable. For example,
create a code configuration object for a static library. Enable the code generation report.

cfg = coder.config('lib');

cfg.GenerateReport = true;

Enable generation of run-time error detection and reporting.

cfg.RuntimeChecks = true;

Define an example input that you can use to specify the properties of the input argument.

S.A = ones(2,2);

S.u = 0;

Generate code.

codegen -config cfg getelement -args {S}

To open the code generation report, click the View report link.

When the report opens, you see the generated C code. You can see the code that checks
for an error and calls a function to report the error. For example, if the code detects an
out-of-bounds array indexing error, it calls rtDynamicBoundsError to report the error
and terminate the program.

/* Include Files */

#include "rt_nonfinite.h"

#include "getelement.h"

22-30

 Generate Standalone Code That Detects and Reports Run-Time Errors

#include "getelement_rtwutil.h"

#include <stdio.h>

#include <stdlib.h>

/* Variable Definitions */

static rtBoundsCheckInfo emlrtBCI = { 1, 4, 2, 5, "S.A", "getelement",

 "C:\\coder\\runtime checks\\getelement.m", 0 };

static rtDoubleCheckInfo emlrtDCI = { 2, 5, "getelement",

 "C:\\coder\\runtime checks\\getelement.m", 1 };

/* Function Definitions */

/*

 * Arguments : const struct0_T *S

 * Return Type : double

 */

double getelement(const struct0_T *S)

{

 double d0;

 int i0;

 d0 = S->u;

 if (d0 != (int)floor(d0)) {

 rtIntegerError(d0, &emlrtDCI);

 }

 i0 = (int)d0;

 if (!((i0 >= 1) && (i0 <= 4))) {

 rtDynamicBoundsError(i0, 1, 4, &emlrtBCI);

 }

 return S->A[i0 - 1];

}

The error reporting software uses fprintf to write error messages to stderr. It uses
abort to terminate the application. If fprintf and abort are not available, you must
provide them. The abort function abruptly terminates the program. If your system
supports signals, you can catch the abort signal (SIGABRT) so that you can control the
program termination.

More About
• “Run-Time Error Detection and Reporting in Standalone C/C++ Code” on page 22-28

22-31

22 Verify Generated C/C++ Code

Testing Code Generated from MATLAB Code

MATLAB Coder helps you to test your generated code.

If you use the MATLAB Coder app to generate a MEX function, you can test the MEX
function in the app. If you use codegen to generate a MEX function, test the MEX
function by using coder.runTest.

If you have Embedded Coder, you can verify the numerical behavior of generated C/C++
code by using software-in-the-loop (SIL) or processor-in-the-loop (PIL) execution. You can
also produce a profile of execution times.

More About
• “Verify MEX Functions in the MATLAB Coder App” on page 20-8
• “Verify MEX Functions at the Command Line” on page 20-9
• “Code Verification Through Software-in-the-Loop and Processor-in-the-Loop

Execution”
• “Execution Time Profiling for SIL and PIL”
• “Unit Test Generated Code with MATLAB Coder” on page 22-33
• “Unit Test External C Code with MATLAB Coder” on page 22-41

22-32

 Unit Test Generated Code with MATLAB Coder

Unit Test Generated Code with MATLAB Coder

This example shows how to test the output of generated code by using MATLAB® unit
tests with MATLAB® Coder™.

To monitor for regressions in code functionality, you can write unit tests for your code. In
MATLAB, you can create and run unit tests by using the MATLAB testing framework.
To test MEX code and standalone code that you generate from MATLAB code, you can
use the same unit tests that you use to test MATLAB code.

A MEX function includes instrumentation that helps you to detect issues before you
generate production code. Running unit tests on a MEX function tests the instrumented
code in MATLAB. Generated standalone code (static library or shared library) does
not include the instrumentation and can include optimizations that are not present in
the MEX code. To run unit tests on standalone code in a separate process outside of
MATLAB, use software-in-the-loop (SIL) or processor-in-the-loop (PIL) execution. To use
SIL or PIL execution, you must have Embedded Coder®.

This example shows how to:

1 Create MATLAB unit tests that call your MATLAB function. This example uses
class-based unit tests.

2 Generate a MEX function from your MATLAB function.
3 Run the unit tests on the MEX function.
4 Run the unit tests on standalone code by using SIL.

Examine the Files

To access the files that this example uses, click Open Script.

addOne.m

The example performs unit tests on the MEX function generated from the MATLAB
function addOne. This function adds 1 to its input argument.

function y = addOne(x)

% Copyright 2014 - 2016 The MathWorks, Inc.

%#codegen

y = x + 1;

22-33

22 Verify Generated C/C++ Code

end

TestAddOne.m

The file TestAddOne.m contains a class-based unit test with two tests.

• reallyAddsOne verifies that when the input is 1, the answer is 2.
• addsFraction verifies that when the input is pi, the answer is pi + 1.

For more information about writing class based-unit tests, see “Author Class-Based Unit
Tests in MATLAB”.

classdef TestAddOne < matlab.unittest.TestCase

 % Copyright 2014 - 2016 The MathWorks, Inc.

 methods (Test)

 function reallyAddsOne(testCase)

 x = 1;

 y = addOne(x);

 testCase.verifyEqual(y, 2);

 end

 function addsFraction(testCase)

 x = pi;

 y = addOne(x);

 testCase.verifyEqual(y, x+1);

 end

 end

end

run_unit_tests.m

The file run_unit_tests.m calls runtests to run the tests in TestAddOne.m.

% Run unit tests

% Copyright 2014 - 2016 The MathWorks, Inc.

runtests('TestAddOne')

22-34

 Unit Test Generated Code with MATLAB Coder

Run Unit Tests on a MEX Function with the MATLAB Coder App

To open the MATLAB Coder app, on the MATLAB Toolstrip Apps tab, under Code
Generation, click the MATLAB Coder app icon.

To prepare for code generation, advance through the app steps.

• On the Select Source Files page, specify that the entry-point function is addOne.
• On the Define Input Types page, specify that the input argument x is a double

scalar.
• On the Check for Run-Time Issues step, enter code that calls addOne with

representative input. For example, addOne(2). Perform this step to make sure that
you can generate code for your MATLAB function and that the generated code does
not have run-time issues.

For more complicated MATLAB functions, you might want to provide a test file for the
Define Input Types and Check for Run-Time Issues steps. This test file calls the
MATLAB function with representative types. The app uses this file to determine the
input types for you. The test file can be different from the test file that you use for unit
testing.

To generate the MEX function, on the Generate Code page:

1 For Build type, specify MEX.
2 Click Generate.

Run the unit tests on the generated MEX.

1 Click Verify Code.
2 In the field for the test file, specify run_unit_tests.
3 Make sure that you set Run using to Generated code.
4 Click Run Generated Code.

22-35

22 Verify Generated C/C++ Code

The app displays the test output on the Test Output tab. The unit tests pass.

22-36

 Unit Test Generated Code with MATLAB Coder

Run Unit Tests After Modifying MATLAB Code

Modify addOne so that the constant 1 is single-precision. To edit addOne, in the upper-
left corner of the app, under Source Code, click addOne.

To generate a MEX function for the modified function, click Generate.

To run the unit tests:

1 Click Verify Code.
2 Make sure that you set the test file to run_unit_tests and Run using to

Generated code
3 Click Run Generated Code.

The unit tests fail.

• reallyAddsOne fails because the class of the output type is single, not double.
• addsFraction fails because the output class and value do not match the expected

class and value. The output type is single, not double. The value of the single-
precision output, 4.1415930, is not the same as the value of the double-precision
output, 4.141592653589793.

Run Unit Tests With Software-in-the-Loop Execution in the App (Requires Embedded Coder)

If you have Embedded Coder, you can run the units tests on generated standalone code
(static library or shared library) by using software-in-the-loop (SIL) execution.

Generate a library for addOne. For example, generate a static library.

On the Generate Code page:

1 For Build type, specify Static Library.

22-37

22 Verify Generated C/C++ Code

2 Click Generate.

Run the unit tests on the generated code.

1 Click Verify Code.
2 In the field for the test file, specify run_unit_tests.
3 Make sure that you set Run using to Generated code.
4 Click Run Generated Code.

To terminate the SIL execution, click Stop SIL Verification.

Run Unit Tests on a MEX Function by Using the Command-Line Workflow

If you use the command-line workflow to generate code, you can run unit tests on a MEX
function by using coder.runTest with a test file that runs the unit tests.

Generate a MEX function for the function that you want to test. For this example, specify
that the input argument is a double scalar by providing a sample input value.

codegen addOne -args {2}

Run the units tests on the MEX function. Specify that the test file is run_unit_tests
and that the function is addOne. When coder.runTest runs the test file, it replaces
calls to addOne with calls to addOne_mex. The unit tests run on the MEX function
instead of the original MATLAB function.

coder.runTest('run_unit_tests', 'addOne')

22-38

 Unit Test Generated Code with MATLAB Coder

Running TestAddOne

..

Done TestAddOne

ans =

 1×2 TestResult array with properties:

 Name

 Passed

 Failed

 Incomplete

 Duration

 Details

Totals:

 2 Passed, 0 Failed, 0 Incomplete.

 0.040978 seconds testing time.

Run Unit Tests With Software-in-the-Loop Execution at the Command Line (Requires Embedded
Coder)

If you have Embedded Coder, you can run the units tests on generated standalone code
(static library or shared library) by using software-in-the-loop (SIL) execution.

Create a coder.EmbeddedCodeConfig object for a static library.

cfg = coder.config('lib');

Configure the object for SIL.

cfg.VerificationMode = 'SIL';

Generate code for the MATLAB function and the SIL interface.

codegen -config cfg -args {2} addOne

Run a test file that runs the unit tests with the SIL interface.

coder.runTest('run_unit_tests', ['addOne_sil.', mexext])

Terminate the SIL execution.

22-39

22 Verify Generated C/C++ Code

Click clear addOne_sil.

See Also
coder.runTest | runtests

More About
• “Author Class-Based Unit Tests in MATLAB”
• “Software-in-the-Loop Execution with the MATLAB Coder App”
• “Software-in-the-Loop Execution From Command Line”
• “Unit Test External C Code with MATLAB Coder” on page 22-41

22-40

 Unit Test External C Code with MATLAB Coder

Unit Test External C Code with MATLAB Coder
This example shows how to test external C code by using MATLAB® unit tests with
MATLAB® Coder™.

If you want to test C code, you can use MATLAB Coder to bring the code into MATLAB.
You can then write unit tests by using the MATLAB testing framework. You can write
richer, more flexible tests by taking advantage of the advanced numerical computing and
visualization capabilities of MATLAB.

This example shows how to:

1 Bring your C code into MATLAB as a MEX function that you generate with
MATLAB Coder.

2 Write a unit test by using the MATLAB testing framework.
3 Run the test on the MEX function.

If you have Embedded Coder®, you can run unit tests on generated standalone code
(static library or shared library) by using the unit tests with software-in-the-loop (SIL)
execution or processor-in-the-loop (PIL) execution.

Examine the Files

To access the files that this example uses, click Open Script.

kalmanfilter.c

kalmanfilter.c is the C function that the example tests. It estimates the position of a
moving object based on its past positions.

kalmanfilter.h

kalmanfilter.h is the header file for kalmanfilter.c.

position.mat

position.mat contains the positions of the object.

callKalmanFilter.m

callKalmanFilter calls kalmanfilter by using coder.ceval.

function [a,b] = callKalmanFilter(position)

22-41

22 Verify Generated C/C++ Code

% Copyright 2014 - 2016 The MathWorks, Inc.

numPts = size(position,2);

a = zeros(2,numPts,'double');

b = zeros(2,numPts,'double');

y = zeros(2,1,'double');

% Main loop

for idx = 1: numPts

 z = position(:,idx); % Get the input data

 % Call the initialize function

 coder.ceval('kalmanfilter_initialize');

 % Call the C function

 coder.ceval('kalmanfilter',z,coder.ref(y));

 % Call the terminate function

 coder.ceval('kalmanfilter_terminate');

 a(:,idx) = [z(1); z(2)];

 b(:,idx) = [y(1); y(2)];

end

end

TestKalmanFilter.m

TestKalmanFilter tests whether the error between the predicted position and actual
position exceeds the specified tolerance. The unit tests are class-based unit tests. For
more information, see “Author Class-Based Unit Tests in MATLAB”.

Although you want to test the MEX function, the unit tests in TestKalmanFilter
call the original MATLAB function from which you generated the MEX function. When
MATLAB Coder runs the tests, it replaces the calls to the MATLAB function with calls
to the MEX function. You cannot run these tests directly in MATLAB because MATLAB
does not recognize the coder.ceval calls in callKalmanFilter.

classdef TestKalmanFilter < matlab.unittest.TestCase

 % Copyright 2014 - 2016 The MathWorks, Inc.

 methods (Test)

22-42

 Unit Test External C Code with MATLAB Coder

 function SSE_LessThanTolerance(testCase)

 load position.mat;

 [z,y] = callKalmanFilter(position);

 tolerance = 0.001; % tolerance of 0.0001 will break

 A = z-1000*y;

 error = sum(sum(A.^2));

 testCase.verifyLessThanOrEqual(error, tolerance);

 % For debugging

 plot_kalman_filter_trajectory(z,1000*y);

 end

 function SampleErrorLessThanTolerance(testCase)

 load position.mat;

 [z,y] = callKalmanFilter(position);

 tolerance = 0.01; % tolerance of 0.001 will break

 A = z-1000*y;

 testCase.verifyEqual(1000*y, z, 'AbsTol', tolerance);

 % For debugging

 plot_kalman_filter_trajectory(z,1000*y);

 [value, location] = max(A(:));

 [R,C] = ind2sub(size(A),location);

 disp(['Max value ' num2str(value) ' is located at [' num2str(R) ',' num2str(C) ']']);

 end

 end

end

run_unit_tests_kalman.m

run_unit_tests_kalman calls runtests to run the tests in TestKalmanFilter.m.

% Run unit tests

% Copyright 2014 - 2016 The MathWorks, Inc.

runtests('TestKalmanFilter')

22-43

22 Verify Generated C/C++ Code

plot_kalman_filter_trajectory.m

plot_kalman_filter_trajectory plots the trajectory of the estimated and actual
positions of the object. Each unit test calls this function.

Generate MEX and Run Unit Tests in the MATLAB Coder App

To open the MATLAB Coder app, on the MATLAB Toolstrip Apps tab, under Code
Generation, click the MATLAB Coder app icon.

To prepare for code generation, advance through the app steps.

• On the Select Source Files page, specify that the entry-point function is
callKalmanFilter.

• On the Define Input Types page, specify that the input argument x is a 2-by-310
array of doubles.

The unit tests load the variable position from position.mat and pass position
to callKalmanFilter. Therefore, the input to callKalmanFilter must have the
properties that position has. In the MATLAB workspace, if you load position.mat,
you see that position is a 2-by-310 array of doubles.

• Skip the Check for Run-Time Issues step for this example.

Configure the app for MEX code generation. Specify the names of the C source and
header files because callKalmanFilter integrates external C code.

1 For Build type, specify MEX.
2 Click More Settings.
3 On the Custom Code tab:

• Under Custom C Code for Generated Files, select Header file. In the custom
code field, enter #include "kalmanfilter.h".

• In the Additional source files field, enter kalmanfilter.c.

22-44

 Unit Test External C Code with MATLAB Coder

To generate the MEX function, click Generate.

Run the unit tests on the generated MEX.

1 Click Verify Code.
2 In the field for the test file, specify run_unit_tests_kalman.
3 Make sure that you set Run using to Generated code.
4 Click Run Generated Code.

22-45

22 Verify Generated C/C++ Code

When the app runs the test file, it replaces calls to callKalmanFilter in the unit test
with calls to callKalmanFilter_mex. The unit tests run on the MEX function instead
of the original MATLAB function.

The app displays the test output on the Test Output tab. The unit tests pass.

From the plots, you can see that the trajectory of the estimated position converges with
the trajectory of the actual position.

22-46

 Unit Test External C Code with MATLAB Coder

Run Unit Tests After Modifying C Code

When you modify the C code, to run the unit tests:

1 Regenerate the MEX function for the MATLAB function that calls the C code.
2 Repeat the verification step.

22-47

22 Verify Generated C/C++ Code

For example, modify kalmanfilter.c so that the value assigned to y[r2] is multiplied
by 1.1.

y[r2] += (double)d_a[r2 + (i0 << 1)] * x_est[i0] * 1.1;

Edit kalmanfilter.c outside of the app because you can use the app to edit only
MATLAB files listed in the Source Code pane of the app.

To generate the MEX function for the modified function, click Generate.

To run the unit tests:

1 Click Verify Code.
2 Make sure that you set the test file to run_unit_tests and Run using to

Generated code
3 Click Run Generated Code.

The tests fail because the error exceeds the specified tolerance.

The plots show the error between the trajectory for the estimated position and the
trajectory for the actual position.

22-48

 Unit Test External C Code with MATLAB Coder

Generate MEX and Run Unit Tests by Using the Command-Line Workflow

You can use the command-line workflow to run unit tests on external C code by using
coder.runTest. Specify a test file that runs the unit tests on the MATLAB function
that calls your C code.

Generate a MEX function for the MATLAB function that calls your C code. For this
example, generate MEX for callKalmanFilter.

22-49

22 Verify Generated C/C++ Code

Create a configuration object for MEX code generation.

cfg = coder.config('mex');

Specify the external source code and header file.

cfg.CustomSource = 'kalmanfilter.c';

cfg.CustomHeaderCode = '#include "kalmanfilter.h"';

To determine the type for the input to callKalmanFilter, load the position file.

load position.mat

To generate the MEX function, run codegen. Specify that the input to
callKalmanFilter has the same type as position.

codegen -config cfg callKalmanFilter -args position

Run the units tests on the MEX function. Specify that the test file is
run_unit_tests_kalman and that the function is callKalmanfilter. When
coder.runTest runs the test file, it replaces calls to callKalmanFilter in the unit
test with calls to callKalmanFilter_mex. The unit tests run on the MEX function
instead of the original MATLAB function.

coder.runTest('run_unit_tests_kalman', 'callKalmanFilter')

Running TestKalmanFilter

Current plot held

.Current plot held

Max value 0.0010113 is located at [2,273]

.

Done TestKalmanFilter

ans =

 1×2 TestResult array with properties:

 Name

 Passed

 Failed

 Incomplete

 Duration

22-50

 Unit Test External C Code with MATLAB Coder

 Details

Totals:

 2 Passed, 0 Failed, 0 Incomplete.

 16.0938 seconds testing time.

22-51

22 Verify Generated C/C++ Code

See Also
coder.runTest | runtests

More About
• “Author Class-Based Unit Tests in MATLAB”
• “Software-in-the-Loop Execution with the MATLAB Coder App”
• “Software-in-the-Loop Execution From Command Line”
• “Unit Test Generated Code with MATLAB Coder” on page 22-33

22-52

23

Code Replacement for MATLAB Code

• “What Is Code Replacement?” on page 23-2
• “Choose a Code Replacement Library” on page 23-8
• “Replace Code Generated from MATLAB Code” on page 23-10

23 Code Replacement for MATLAB Code

What Is Code Replacement?

Code replacement is a technique to change the code that the code generator produces for
functions and operators to meet application code requirements. For example, you can
replace generated code to meet requirements such as:

• Optimization for a specific run-time environment, including, but not limited to,
specific target hardware.

• Integration with existing application code.
• Compliance with a standard, such as AUTOSAR.
• Modification of code behavior, such as enabling or disabling nonfinite or inline

support.
• Application- or project-specific code requirements, such as:

• Elimination of math.h.
• Elimination of system header files.
• Elimination of calls to memcpy or memset.
• Use of BLAS.
• Use of a specific BLAS.

To apply this technique, configure the code generator to apply a code replacement
library (CRL) during code generation. By default, the code generator does not apply a
code replacement library. You can choose from the following libraries that MathWorks
provides:

• GNU C99 extensions—GNU1 gcc math library, which provides C99 extensions as
defined by compiler option -std=gnu99.

• AUTOSAR 4.0—Produces code that more closely aligns with the AUTOSAR standard.
Requires an Embedded Coder license.

• Intel IPP for x86-64 (Windows)—Generates calls to the Intel® Performance Primitives
(IPP) library for the x86-64 Windows platform.

• Intel IPP/SSE for x86-64 (Windows)—Generates calls to the IPP and Streaming SIMD
Extensions (SSE) libraries for the x86-64 Windows platform.

• Intel IPP for x86-64 (Windows using MinGW compiler)—Generates calls to the IPP
library for the x86-64 Windows platform and MinGW compiler.

1. GNU is a registered trademark of the Free Software Foundation.

23-2

 What Is Code Replacement?

• Intel IPP/SSE for x86-64 (Windows using MinGW compiler)—Generates calls to the
IPP and SSE libraries for the x86-64 Windows platform and MinGW compiler.

• Intel IPP for x86/Pentium (Windows)—Generates calls to the IPP library for the x86/
Pentium Windows platform.

• Intel IPP/SSE for x86/Pentium (Windows)—Generates calls to the Intel Performance
IPP and SSE libraries for the x86/Pentium Windows platform.

• Intel IPP for x86-64 (Linux)—Generates calls to the IPP library for the x86-64 Linux
platform.

• Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)—Generates calls to the
GNU libraries for IPP and SSE, with GNU C99 extensions, for the x86-64 Linux
platform.

Libraries that include GNU99 extensions are intended for use with the GCC compiler. If
use one of those libraries with another compiler, generated code might not compile.

Depending on the product licenses that you have, other libraries might be available . If
you have an Embedded Coder license, you can view and choose from other libraries and
you can create custom code replacement libraries.

Code Replacement Libraries

A code replacement library consists of one or more code replacement tables that specify
application-specific implementations of functions and operators. For example, a library
for a specific embedded processor specifies function and operator replacements that
optimize generated code for that processor.

A code replacement table contains one or more code replacement entries, with each entry
representing a potential replacement for a function or operator. Each entry maps a
conceptual representation of a function or operator to an implementation representation
and priority.

23-3

23 Code Replacement for MATLAB Code

Table Entry
Component

Description

Conceptual
representation

Identifies the table entry and contains match criteria for the code
generator. Consists of:

• Function name or a key. The function name identifies most
functions. For operators and some functions, a series of
characters, called a key identifies a function or operator.
For example, function name 'cos' and operator key
'RTW_OP_ADD'.

• Conceptual arguments that observe code generator naming
('y1', 'u1', 'u2', ...), with corresponding I/O types (output or
input) and data types.

• Other attributes, such as an algorithm, fixed-point saturation,
and rounding modes, which identify matching criteria for the
function or operator.

Implementation
representation

Specifies replacement code. Consists of:

• Function name. For example, 'cos_dbl' or 'u8_add_u8_u8'.
• Implementation arguments, with corresponding I/O types

(output or input) and data types.
• Parameters that provide additional implementation details,

such as header and source file names and paths of build
resources.

23-4

 What Is Code Replacement?

Table Entry
Component

Description

Priority Defines the entry priority relative to other entries in the table. The
value can range from 0 to 100, with 0 being the highest priority. If
multiple entries have the same priority, the code generator uses the
first match with that priority.

When the code generator looks for a match in a code replacement library, it creates and
populates a call site object with the function or operator conceptual representation. If
a match exists, the code generator uses the matched code replacement entry populated
with the implementation representation and uses it to generate code.

The code generator searches the tables in a code replacement library for a match in the
order that the tables appear in the library. If the code generator finds multiple matches
within a table, the priority determines the match. The code generator uses a higher-
priority entry over a similar entry with a lower priority.

Code Replacement Terminology

Term Definition

Cache hit A code replacement entry for a function or operator,
defined in the specified code replacement library,
for which the code generator finds a match.

Cache miss A conceptual representation of a function or
operator for which the code generator does not find
a match.

Call site object Conceptual representation of a function or operator
that the code generator uses when it encounters
a call site for a function or operator. The code
generator uses the object to query the code
replacement library for a conceptual representation
match. If a match exists, the code generator returns
a code replacement object, fully populated with
the conceptual representation, implementation
representation, and priority, and uses that object to
generate replacement code.

Code replacement library One or more code replacement tables that specify
application-specific implementations of functions

23-5

23 Code Replacement for MATLAB Code

Term Definition

and operators. When configured to use a code
replacement library, the code generator uses
criteria defined in the library to search for matches.
If a match is found, the code generator replaces
code that it generates by default with application-
specific code defined in the library.

Code replacement table One or more code replacement table entries.
Provides a way to group related or shared entries
for use in different libraries.

Code replacement entry Represents a potential replacement for a function
or operator. Maps a conceptual representation
of a function or operator to an implementation
representation and priority.

Conceptual argument Represents an input or output argument for a
function or operator being replaced. Conceptual
arguments observe naming conventions ('y1',
'u1', 'u2', ...) and data types familiar to the code
generator.

Conceptual representation Represents match criteria that the code generator
uses to qualify functions and operators for
replacement. Consists of:

• Function or operator name or key
• Conceptual arguments with type, dimension,

and complexity specification for inputs and
output

•
Attributes, such as an algorithm and fixed-point
saturation and rounding modes

Implementation argument Represents an input or output argument for a C
or C++ replacement function. Implementation
arguments observe C/C++ name and data type
specifications.

23-6

 What Is Code Replacement?

Term Definition

Implementation representation Specifies C or C++ replacement function prototype.
Consists of:

• Function name (for example, 'cos_dbl' or
'u8_add_u8_u8')

• Implementation arguments specifying type,
type qualifiers, and complexity for the function
inputs and output

• Parameters that provide build information, such
as header and source file names and paths of
build resources and compile and link flags

Key Identifies a function or operator that is being
replaced. A function name or key appears in the
conceptual representation of a code replacement
entry. The key RTW_OP_ADD identifies the addition
operator.

Priority Defines the match priority for a code replacement
entry relative to other entries, which have the
same name and conceptual argument list, within
a code replacement library. The priority can
range from 0 to 100, with 0 being the highest
priority. The default is 100. If a library provides
two implementations for a function or operator, the
implementation with the higher priority shadows
the one with the lower priority.

Code Replacement Limitations

Code replacement verification — It is possible that code replacement behaves differently
than you expect. For example, data types that you observe in code generator input might
not match what the code generator uses as intermediate data types during an operation.
Verify code replacements by examining generated code.

Related Examples
• “Choose a Code Replacement Library” on page 23-8
• “Replace Code Generated from MATLAB Code” on page 23-10

23-7

23 Code Replacement for MATLAB Code

Choose a Code Replacement Library

In this section...

“About Choosing a Code Replacement Library” on page 23-8
“Explore Available Code Replacement Libraries” on page 23-8
“Explore Code Replacement Library Contents” on page 23-8

About Choosing a Code Replacement Library

By default, the code generator does not use a code replacement library.

If you are considering using a code replacement library:

1 Explore available libraries. Identify one that best meets your application needs.

• Consider the lists of application code replacement requirements and libraries that
MathWorks provides in “What Is Code Replacement?” on page 23-2.

• See “Explore Available Code Replacement Libraries” on page 23-8.
2 Explore the contents of the library. See “Explore Code Replacement Library

Contents” on page 23-8.

If you do not find a suitable library and you have an Embedded Coder license, you can
create a custom code replacement library. For more information, see “What Is Code
Replacement Customization?” in the Embedded Coder documentation.

Explore Available Code Replacement Libraries

You can select the code replacement library to use for code generation in a project, on the
Custom Code tab, by setting the Code replacement library parameter. Alternatively,
in a code configuration object, set the CodeReplacementLibrary parameter.

Explore Code Replacement Library Contents

Use the Code Replacement Viewer to explore the content of a code replacement library.

1 At the command prompt, type crviewer.
>> crviewer

23-8

 Choose a Code Replacement Library

The viewer opens. To view the content of a specific library, specify the name of the
library as an argument in single quotes. For example:
>> crviewer('GNU C99 extensions')

2 In the left pane, select the name of a library. The viewer displays information about
the library in the right pane.

3 In the left pane, expand the library, explore the list of tables it contains, and select a
table from the list. In the middle pane, the viewer displays the function and operator
entries that are in that table, along with abbreviated information for each entry.

4 In the middle pane, select a function or operator. The viewer displays information
from the table entry in the right pane.

If you select an operator entry that specifies net slope fixed-point parameters
(instantiated from entry class RTW.TflCOperationEntryGenerator or
RTW.TflCOperationEntryGenerator_NetSlope), the viewer displays an
additional tab that shows fixed-point settings.

See Code Replacement Viewer for details on what the viewer displays.

Related Examples
• “What Is Code Replacement?” on page 23-2
• “Replace Code Generated from MATLAB Code” on page 23-10

23-9

23 Code Replacement for MATLAB Code

Replace Code Generated from MATLAB Code

This example shows how to replace generated code using a code replacement library.
Code replacement is a technique for changing the code that the code generator produces
for functions and operators to meet application code requirements.

Prepare for Code Replacement

1 Make sure that you have installed required software. Required software is:

• MATLAB
• MATLAB Coder
• C compiler

Some code replacement libraries available in your development environment require
Embedded Coder.

For instructions on installing MathWorks products, see the MATLAB installation
documentation. If you have installed MATLAB and want to see which other
MathWorks products are installed, in the MATLAB Command Window, enter ver.

2 Identify an existing MATLAB function or create a new MATLAB function for which
you want the code generator to replace code.

Choose a Code Replacement Library

If you are not sure which library to use, explore available libraries.

Configure Code Generator To Use Code Replacement Library

1 Configure the code generator to apply a code replacement library during code
generation for the MATLAB function. Do one of the following:

• In a project, on the Custom Code tab, set the Code replacement library
parameter.

• In a code configuration object, set the CodeReplacementLibrary parameter.
2 Configure the code generator to produce only code. Before you build an executable,

verify your code replacements. Do one of the following:

• In a project, in the Generate dialog box, select the Generate code only check
box.

23-10

 Replace Code Generated from MATLAB Code

• In a code configuration object, set the GenCodeOnly parameter.

Include Code Replacement Information In Code Generation Report

If you have an Embedded Coder license, you can configure the code generator to include a
code replacement section in the code generation report. The additional information helps
you verify code replacements. For more information, see “Verify Code Replacements” in
the Embedded Coder documentation.

Generate Replacement Code

Generate C/C++ code from the MATLAB code. If you configured the code generator to
produce a report, generate a code generation report. For example, in the MATLAB Coder
app, on the Generate Code page, click Generate. Or, at the command prompt, enter:

codegen -report myFunction -args {5} -config cfg

The code generator produces the code and displays the report.

Verify Code Replacements

Verify code replacements by examining the generated code. Code replacement can
sometimes behave differently than you expect. For example, data types that you
observe in the code generator input might not match what the code generator uses as
intermediate data types during an operation.

Related Examples
• “What Is Code Replacement?” on page 23-2
• “Choose a Code Replacement Library” on page 23-8
• “Configure Build Settings” on page 21-26

23-11

24

Custom Toolchain Registration

• “Custom Toolchain Registration” on page 24-2
• “About coder.make.ToolchainInfo” on page 24-6
• “Create and Edit Toolchain Definition File” on page 24-8
• “Toolchain Definition File with Commentary” on page 24-10
• “Create and Validate ToolchainInfo Object” on page 24-16
• “Register the Custom Toolchain” on page 24-17
• “Use the Custom Toolchain” on page 24-19
• “Troubleshooting Custom Toolchain Validation” on page 24-20
• “Prevent Circular Data Dependencies with One-Pass or Single-Pass Linkers” on page

24-24

24 Custom Toolchain Registration

Custom Toolchain Registration

In this section...

“What Is a Custom Toolchain?” on page 24-2
“What Is a Factory Toolchain?” on page 24-2
“What is a Toolchain Definition?” on page 24-3
“Key Terms” on page 24-4
“Typical Workflow” on page 24-4

What Is a Custom Toolchain?

You can add support for software build tools to MATLAB Coder software. For example,
you can add support for a third-party compiler/linker/archiver (toolchain) to your
MATLAB Coder software. This customization can be useful when the added toolchain
has support and optimizations for a specific type of processor or hardware. These added
toolchains are called custom toolchains.

What Is a Factory Toolchain?

MATLAB Coder software includes factory-default support for a set of toolchains. These
toolchains are called factory toolchains to distinguish them from custom toolchains. If
you install factory toolchains on your host computer, MATLAB Coder can automatically
detect and use them. Support for factory toolchains depends on the host operating
system. Toolchains are identified by the compiler in the toolchain. A complete list of
supported toolchains (compilers) is available at http://www.mathworks.com/support/
compilers/.

24-2

http://www.mathworks.com/support/compilers/
http://www.mathworks.com/support/compilers/

 Custom Toolchain Registration

What is a Toolchain Definition?

A toolchain definition provides MATLAB Coder software with information about the
software build tools, such as the compiler, linker, archiver. MATLAB Coder software
uses this information, along with a configuration object or project, to build the generated
code. This approach can be used when generating static libraries, dynamic libraries, and
executables. MEX-file generation uses a different approach. To specify which compiler to
use for MEX-function generation, see “Setting Up the C or C++ Compiler”.

MATLAB Coder software comes with a set of registered factory toolchain definitions.
You can create and register custom toolchain definitions. You can customize and manage
toolchain definitions. You can share custom toolchain definitions with others running
MATLAB Coder software.

If you install toolchain software for one of the factory toolchains, MATLAB Coder
can automatically detect and use the toolchain software. For more information about

24-3

24 Custom Toolchain Registration

factory toolchains in MATLAB Coder software, see http://www.mathworks.com/support/
compilers/.

Key Terms

It is helpful to understand the following concepts:

• Toolchain — Software that can create a binary executable and libraries from source
code. A toolchain can include:

• Prebuild tools that set up the environment
• Build tools, such as an Assembler, C compiler, C++ Compiler, Linker, Archiver,

that build a binary executable from source code
• Postbuild tools that download and run the executable on the hardware, and clean

up the environment
• Custom toolchain — A toolchain that you define and register for use by MATLAB

Coder software
• Factory toolchains — Toolchains that are predefined and registered in MATLAB

Coder software
• Registered toolchains — The sum of custom and factory toolchain definitions

registered in MATLAB Coder software
• ToolchainInfo object — An instance of the coder.make.ToolchainInfo class that

contains a toolchain definition. You save the ToolchainInfo object as a MAT file,
register the file with MATLAB Coder. Then you can configure MATLAB Coder to load
the ToolchainInfo object during code generation.

• Toolchain definition file — A MATLAB file that defines the properties of a toolchain.
You use this file to create a ToolchainInfo object.

Note: This documentation also refers to the ToolchainInfo object as a
coder.make.ToolchainInfo object.

Typical Workflow

The typical workflow for creating and using a custom toolchain definition is:

1 “Create and Edit Toolchain Definition File” on page 24-8

24-4

http://www.mathworks.com/support/compilers/
http://www.mathworks.com/support/compilers/

 Custom Toolchain Registration

a Create a toolchain definition file that returns a coder.make.ToolchainInfo
object.

b Update the file with information about the custom toolchain.
2 “Create and Validate ToolchainInfo Object” on page 24-16

a Use the toolchain definition file to create a ToolchainInfo object in the
MATLAB workspace.

b Validate the ToolchainInfo object.
c Fix validation issues by updating the toolchain definition file, and creating/

validating the updated ToolchainInfo object.
d Create a valid ToolchainInfo object and save it to a MAT-file.

3 “Register the Custom Toolchain” on page 24-17

a Create an rtwTargetInfo.m file and update it with information about the MAT-
file.

b Register the custom toolchain in MATLAB Coder software using the
rtwTargetInfo.m file.

4 “Use the Custom Toolchain” on page 24-19

a Configure MATLAB Coder software to use the custom toolchain.
b Build and run an executable using the custom toolchain.

This workflow requires an iterative approach, with multiple cycles to arrive at a
finished version of the custom ToolchainInfo object. You will need access to detailed
information about the custom toolchain.

For a tutorial example of this workflow, see “Adding a Custom Toolchain”.

For more information about the ToolchainInfo object, see “About
coder.make.ToolchainInfo” on page 24-6.

24-5

24 Custom Toolchain Registration

About coder.make.ToolchainInfo

The following properties in coder.make.ToolchainInfo represent your custom
toolchain:

• coder.make.ToolchainInfo.PrebuildTools – Tools used before compiling the
source files into object files.

• coder.make.ToolchainInfo.BuildTools – Tools used for compiling source files
and linking/archiving them to form a binary.

• coder.make.ToolchainInfo.PostbuildTools – Tools used after the linker/
archiver is invoked.

• coder.make.ToolchainInfo.BuilderApplication – Tools used to call the
PrebuildTools, BuildTools, and PostbuildTools. For example: gmake, nmake.

Each configuration in coder.make.ToolchainInfo.BuildConfigurations
applies a set of options to the build tools specified by
coder.make.ToolchainInfo.BuildTools. By default, these configurations alter the
way the assembler, compiler, linker, and archiver operate to produce faster builds, faster
runs, and debug.

If you instantiate coder.make.ToolchainInfo to support building sources that involve
assembler, C, or C++ files, the coder.make.ToolchainInfo object contains the default
set of build tools shown here.

24-6

 About coder.make.ToolchainInfo

24-7

24 Custom Toolchain Registration

Create and Edit Toolchain Definition File

This example shows how to create a toolchain definition file by copying and pasting an
example file. You then update the relevant elements, and add or remove other elements
as needed for your custom toolchain. This is the first step in the typical workflow for
creating and using a custom toolchain definition. For more information about the
workflow, see “Typical Workflow” on page 24-4.

1 Review the list of registered toolchains. In the MATLAB Command Window, enter:

coder.make.getToolchains

The resulting output includes the list of factory toolchains for your host computer
environment, and previously-registered custom toolchains. For example, the
following output shows the factory toolchains for a host computer running 64-bit
Windows and no custom toolchains.

ans =

 'Microsoft Visual C++ 2012 v11.0 | nmake (64-bit Windows)'

 'Microsoft Visual C++ 2010 v10.0 | nmake (64-bit Windows)'

 'Microsoft Visual C++ 2008 v9.0 | nmake (64-bit Windows)'

 'Microsoft Windows SDK v7.1 | nmake (64-bit Windows)'

2 Create the folder of example files from the “Adding a Custom Toolchain” example by
entering the following command in the MATLAB Command Window:

coderdemo_setup('coderdemo_intel_compiler');

3 Copy the example toolchain definition file to another location and rename it. For
example:

copyfile('intel_tc.m','../newtoolchn_tc.m')

4 Open the new toolchain definition file in the MATLAB Editor. For example:

cd ../

edit newtoolchn_tc.m

5 Edit the contents of the new toolchain definition file, providing information for the
custom toolchain.

For expanded commentary on an example toolchain definition file, see “Toolchain
Definition File with Commentary” on page 24-10.

24-8

 Create and Edit Toolchain Definition File

For reference information about the class attributes and methods you can use in the
toolchain definition file, see coder.make.ToolchainInfo.

6 Save your changes to the toolchain definition file.

Next, create and validate a coder.make.ToolchainInfo object from the toolchain
definition file, as described in “Create and Validate ToolchainInfo Object” on page
24-16

24-9

24 Custom Toolchain Registration

Toolchain Definition File with Commentary
In this section...

“Steps Involved in Writing a Toolchain Definition File” on page 24-10
“Write a Function That Creates a ToolchainInfo Object” on page 24-10
“Setup” on page 24-11
“Macros” on page 24-11
“C Compiler” on page 24-12
“C++ Compiler” on page 24-12
“Linker” on page 24-13
“Archiver” on page 24-13
“Builder” on page 24-14
“Build Configurations” on page 24-14

Steps Involved in Writing a Toolchain Definition File

This example shows how to create a toolchain definition file and explains each of the
steps involved. The example is based on the definition file used in “Adding a Custom
Toolchain”. For more information about the workflow, see “Typical Workflow” on page
24-4.

Write a Function That Creates a ToolchainInfo Object
function tc = intel_tc

% INTEL_TC Creates a Intel v12.1 ToolchainInfo object.

% This can be used as a template to add other toolchains on Windows.

% Copyright 2012 The MathWorks,Inc.

tc = coder.make.ToolchainInfo('BuildArtifact','nmake makefile');

tc.Name = 'Intel v12.1 | nmake makefile (64-bit Windows)';

tc.Platform = 'win64';

tc.SupportedVersion = '12.1';

tc.addAttribute('TransformPathsWithSpaces');

tc.addAttribute('RequiresCommandFile');

tc.addAttribute('RequiresBatchFile');

The preceding code:

• Defines a function, intel_tc, that creates a coder.make.ToolchainInfo object
and assigns it to a handle, tc.

24-10

 Toolchain Definition File with Commentary

• Overrides the BuildArtifact property to create a makefile for nmake instead of for
gmake.

• Assigns values to the Name, Platform, and SupportedVersion properties for
informational and display purposes.

• Adds three custom attributes to Attributes property that are required by this
toolchain.

• 'TransformPathsWithSpaces' converts paths that contain spaces to short
Windows paths.

• 'RequiresCommandFile' generates a linker command file that calls the linker. This
avoids problems with calls that exceed the command line limit of 256 characters.

• 'RequiresBatchFile' creates a .bat file that calls the builder application.

Setup
% ------------------------------

% Setup

% ------------------------------

% Below we are using %ICPP_COMPILER12% as root folder where Intel Compiler is

% installed. You can either set an environment variable or give full path to the

% compilervars.bat file

tc.ShellSetup{1} = 'call %ICPP_COMPILER12%\bin\compilervars.bat intel64';

The preceding code:

• Assigns a system call to the ShellSetup property.
• The coder.make.ToolchainInfo.setup method runs these system calls before it

runs tools specified by PrebuildTools property.
• Calls compilervars.bat, which is shipped with the Intel compilers, to get the set of

environment variables for Intel compiler and linkers.

Macros

% ------------------------------

% Macros

% ------------------------------

tc.addMacro('MW_EXTERNLIB_DIR',['$(MATLAB_ROOT)\extern\lib\' tc.Platform '\microsoft']);

tc.addMacro('MW_LIB_DIR',['$(MATLAB_ROOT)\lib\' tc.Platform]);

tc.addMacro('CFLAGS_ADDITIONAL','-D_CRT_SECURE_NO_WARNINGS');

tc.addMacro('CPPFLAGS_ADDITIONAL','-EHs -D_CRT_SECURE_NO_WARNINGS');

tc.addMacro('LIBS_TOOLCHAIN','$(conlibs)');

tc.addMacro('CVARSFLAG','');

tc.addIntrinsicMacros({'ldebug','conflags','cflags'});

24-11

24 Custom Toolchain Registration

The preceding code:

• Uses coder.make.ToolchainInfo.addMacro method to define macros and assign
values to them.

• Uses coder.make.ToolchainInfo.addIntrinsicMacros to define macros whose
values are specified by the toolchain, outside the scope of your MathWorks software.

C Compiler
% ------------------------------

% C Compiler

% ------------------------------

tool = tc.getBuildTool('C Compiler');

tool.setName('Intel C Compiler');

tool.setCommand('icl');

tool.setPath('');

tool.setDirective('IncludeSearchPath','-I');

tool.setDirective('PreprocessorDefine','-D');

tool.setDirective('OutputFlag','-Fo');

tool.setDirective('Debug','-Zi');

tool.setFileExtension('Source','.c');

tool.setFileExtension('Header','.h');

tool.setFileExtension('Object','.obj');

tool.setCommandPattern('|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|');

The preceding code:

• Creates a build tool object for the C compiler
• Assigns values to the build tool object properties
• Creates directives and file extensions using name-value pairs
• Sets a command pattern.
• You can use setCommandPattern method to control the use of space characters in

commands. For example, the two bars in OUTPUT_FLAG<||>OUTPUT do not permit a
space character between the output flag and the output.

C++ Compiler
% ------------------------------

% C++ Compiler

% ------------------------------

tool = tc.getBuildTool('C++ Compiler');

24-12

 Toolchain Definition File with Commentary

tool.setName('Intel C++ Compiler');

tool.setCommand('icl');

tool.setPath('');

tool.setDirective('IncludeSearchPath','-I');

tool.setDirective('PreprocessorDefine','-D');

tool.setDirective('OutputFlag','-Fo');

tool.setDirective('Debug','-Zi');

tool.setFileExtension('Source','.cpp');

tool.setFileExtension('Header','.hpp');

tool.setFileExtension('Object','.obj');

tool.setCommandPattern('|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|');

The preceding code:

• Creates a build tool object for the C++ compiler
• Is very similar to the build tool object for the C compiler

Linker
% ------------------------------

% Linker

% ------------------------------

tool = tc.getBuildTool('Linker');

tool.setName('Intel C/C++ Linker');

tool.setCommand('xilink');

tool.setPath('');

tool.setDirective('Library','-L');

tool.setDirective('LibrarySearchPath','-I');

tool.setDirective('OutputFlag','-out:');

tool.setDirective('Debug','');

tool.setFileExtension('Executable','.exe');

tool.setFileExtension('Shared Library','.dll');

tool.DerivedFileExtensions = horzcat(tool.DerivedFileExtensions,{ ...

 ['_' tc.Platform '.lib'],...

 ['_' tc.Platform '.exp']});

tool.setCommandPattern('|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|');

The preceding code:

• Creates a build tool object for the linker
• Assigns values to the coder.make.BuildTool.DerivedFileExtensions

Archiver
% ------------------------------

24-13

24 Custom Toolchain Registration

% Archiver

% ------------------------------

tool = tc.getBuildTool('Archiver');

tool.setName('Intel C/C++ Archiver');

tool.setCommand('xilib');

tool.setPath('');

tool.setDirective('OutputFlag','-out:');

tool.setFileExtension('Static Library','.lib');

tool.setCommandPattern('|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|');

The preceding code:

• Creates a build tool object for the archiver.

Builder
% ------------------------------

% Builder

% ------------------------------

tc.setBuilderApplication(tc.Platform);

The preceding code:

• Gives the value of coder.make.ToolchainInfo.Platform as the argument for
setting the value of BuilderApplication. This sets the default values of the builder
application based on the platform. For example, when Platform is win64, this line
sets the delete command to 'del'; the display command to 'echo', the file separator
to '\', and the include directive to '!include'.

Build Configurations
% --

% BUILD CONFIGURATIONS

% --

optimsOffOpts = {'/c /Od'};

optimsOnOpts = {'/c /O2'};

cCompilerOpts = '$(cflags) $(CVARSFLAG) $(CFLAGS_ADDITIONAL)';

cppCompilerOpts = '$(cflags) $(CVARSFLAG) $(CPPFLAGS_ADDITIONAL)';

linkerOpts = {'$(ldebug) $(conflags) $(LIBS_TOOLCHAIN)'};

sharedLinkerOpts = horzcat(linkerOpts,'-dll -def:$(DEF_FILE)');

archiverOpts = {'/nologo'};

% Get the debug flag per build tool

debugFlag.CCompiler = '$(CDEBUG)';

debugFlag.CppCompiler = '$(CPPDEBUG)';

debugFlag.Linker = '$(LDDEBUG)';

24-14

 Toolchain Definition File with Commentary

debugFlag.Archiver = '$(ARDEBUG)';

cfg = tc.getBuildConfiguration('Faster Builds');

cfg.setOption('C Compiler',horzcat(cCompilerOpts,optimsOffOpts));

cfg.setOption('C++ Compiler',horzcat(cppCompilerOpts,optimsOffOpts));

cfg.setOption('Linker',linkerOpts);

cfg.setOption('Shared Library Linker',sharedLinkerOpts);

cfg.setOption('Archiver',archiverOpts);

cfg = tc.getBuildConfiguration('Faster Runs');

cfg.setOption('C Compiler',horzcat(cCompilerOpts,optimsOnOpts));

cfg.setOption('C++ Compiler',horzcat(cppCompilerOpts,optimsOnOpts));

cfg.setOption('Linker',linkerOpts);

cfg.setOption('Shared Library Linker',sharedLinkerOpts);

cfg.setOption('Archiver',archiverOpts);

cfg = tc.getBuildConfiguration('Debug');

cfg.setOption('C Compiler',horzcat(cCompilerOpts,optimsOffOpts,debugFlag.CCompiler));

cfg.setOption ...

('C++ Compiler',horzcat(cppCompilerOpts,optimsOffOpts,debugFlag.CppCompiler));

cfg.setOption('Linker',horzcat(linkerOpts,debugFlag.Linker));

cfg.setOption('Shared Library Linker',horzcat(sharedLinkerOpts,debugFlag.Linker));

cfg.setOption('Archiver',horzcat(archiverOpts,debugFlag.Archiver));

tc.setBuildConfigurationOption('all','Download','');

tc.setBuildConfigurationOption('all','Execute','');

tc.setBuildConfigurationOption('all','Make Tool','-f $(MAKEFILE)');

The preceding code:

• Creates each build configuration object.
• Sets the value of each option for a given build configuration object.

24-15

24 Custom Toolchain Registration

Create and Validate ToolchainInfo Object

This example shows how to create and validate a coder.make.ToolchainInfo object from
the toolchain definition file.

Before you create and validate a ToolchainInfo object, create and edit a toolchain
definition file, as described in “Create and Edit Toolchain Definition File” on page 24-8.

1 Use the function defined by the toolchain definition file to create a
coder.make.ToolchainInfo object and assign the object to a handle. For
example, the MATLAB Command Window, enter:

tc = newtoolchn_tc

2 Use the coder.make.ToolchainInfo.validate method with the
coder.make.ToolchainInfo object. For example, enter:

tc.validate

If the coder.make.ToolchainInfo object contains errors, the validation method
displays error messages in the MATLAB Command Window.

3 Search the toolchain definition file for items named in the error message (without
quotes) and update the values.

4 Repeat the process of creating and validating the ToolchainInfo object until there
are no more errors.

Next, register the custom toolchain, as described in “Register the Custom Toolchain” on
page 24-17.

For more information, see “Troubleshooting Custom Toolchain Validation” on page
24-20.

24-16

 Register the Custom Toolchain

Register the Custom Toolchain

Before you register the custom toolchain, create and validate the ToolchainInfo object,
as described in “Create and Validate ToolchainInfo Object” on page 24-16.

1 Use the save function to create a MATLAB-formatted binary file (MAT-file) from
the coder.make.ToolchainInfo object in the MATLAB workspace variables. For
example, enter:

save newtoolchn_tc tc

The new .mat file appears in the Current Folder.
2 Create a new MATLAB function called rtwTargetInfo.m.
3 Copy and paste the following text into rtwTargetInfo.m:

function rtwTargetInfo(tr)

% RTWTARGETINFO Target info callback

tr.registerTargetInfo(@loc_createToolchain);

end

% ---

% Create the ToolchainInfoRegistry entries

% ---

function config = loc_createToolchain

 config(1) = coder.make.ToolchainInfoRegistry;

 config(1).Name = '<mytoolchain v#.#> | <buildartifact (platform)>';

 config(1).FileName = fullfile('<yourdir>','<mytoolchain_tc.mat>');

 config(1).TargetHWDeviceType = {'<devicetype>'};

 config(1).Platform = {'<win64>'};

% To register more custom toolchains:

% 1) Copy and paste the five preceding 'config' lines.

% 2) Increment the index of config().

% 3) Replace the values between angle brackets.

% 4) Remove the angle brackets.

end

4 Replace the items between angle brackets with real values, and remove the angle
brackets:

• Name — Provide a unique name for the toolchain definition file using the
recommended format: name, version number, build artifact, and platform.

• FileName — The full path and name of the MAT-file.
• TargetHWDeviceType — The platform or platforms supported by the custom

toolchain.

24-17

24 Custom Toolchain Registration

• Platform — The host operating system supported by the custom toolchain. For
all platforms, use the following wildcard: '*'

For more information, refer to the corresponding ToolchainInfo properties in
“Properties”.

Here are some example entries for an Intel toolchain that uses nmake, based on
“Adding a Custom Toolchain”:
config(1) = coder.make.ToolchainInfoRegistry;

config(1).Name = 'Intel v12.1 | nmake makefile (64-bit Windows)';

config(1).FileName = fullfile(fileparts(mfilename('fullpath')),'intel_tc.mat');

config(1).TargetHWDeviceType = {'ARM9','ARM10','ARM11'};

config(1).Platform = {computer('arch')};

5 Save the new rtwTargetInfo.m file to a folder that is on the MATLAB path.
6 List all of the rtwTargetInfo.m files on the MATLAB path. Using the MATLAB

Command Window, enter:

which -all rtwTargetInfo

7 Verify that the rtwTargetInfo.m file you just created appears in the list of files.
8 Reset TargetRegistry so it picks up the custom toolchain from the

rtwTargetInfo.m file:

RTW.TargetRegistry.getInstance('reset');

Next, use the custom toolchain, as described in “Use the Custom Toolchain” on page
24-19.

24-18

 Use the Custom Toolchain

Use the Custom Toolchain

You can use a custom toolchain when generating a static or dynamic library or an
executable. You cannot use one to generate MEX functions. To specify which compiler to
use for MEX-function generation, see “Setting Up the C or C++ Compiler”).

Before using the custom toolchain, register the custom toolchain, as described in
“Register the Custom Toolchain” on page 24-17.

1 Use coder.config to create a configuration object. For example:

cfg = coder.config('exe');

2 Get the value of config(end).Name from the rtwTargetInfo.m file. Then assign
that value to the cfg.Toolchain property:

cfg.Toolchain = 'mytoolchain v#.#' | 'buildartifact (platform)'

With the “Adding a Custom Toolchain” example, this would look like:
cfg.Toolchain = 'Intel v12.1 | nmake makefile (64-bit Windows)';

3 Perform other steps required to generate code, as described in “Deployment”. For
example, specify the path and file name of the source code:

cfg.CustomSource = 'filename_main.c';

cfg.CustomInclude = pwd;

4 When you generate code using the codegen function, specify the configuration object
that uses the custom toolchain. For example:

codegen -config cfg filename

You have completed the full workflow of creating and using a custom toolchain described
in “Custom Toolchain Registration” on page 24-2.

24-19

24 Custom Toolchain Registration

Troubleshooting Custom Toolchain Validation

In this section...

“Build Tool Command Path Incorrect” on page 24-20
“Build Tool Not in System Path” on page 24-20
“Tool Path Does Not Exist” on page 24-21
“Unsupported Platform” on page 24-21
“Toolchain is Not installed” on page 24-22
“Project or Configuration is Using the Template Makefile” on page 24-22
“Skipped Validation of Build Tool “Download” or “Execute”” on page 24-23

Build Tool Command Path Incorrect

If the path or command file name are not correct, validation displays:

Cannot find file 'path+command'. The file does not exist.

Consider the following two lines from an example toolchain definition file:

tool.setCommand('abc');

tool.setPath('/toolchain/');

To correct this issue:

• Check that the build tool is installed.
• Review the arguments given for the tool.setCommand and tool.setPath lines in

toolchain definition file.

Build Tool Not in System Path

When the build tool’s path is not provided and the command file is not in the system
path, validation displays:

Cannot find 'command'. It is not in the system path.

Consider the following two lines from an example toolchain definition file:

tool.setCommand('icl');

24-20

 Troubleshooting Custom Toolchain Validation

tool.setPath('');

Because the argument for setPath() is '' instead of an absolute path, the build tool
must be on the system path.

To correct this issue:

• Use coder.make.ToolchainInfo.ShellSetup property to add the path to the
toolchain installation.

• Use your system setup to add the toolchain installation directory to system
environment path.

Otherwise, replace '' with the absolute path of the command file.

Tool Path Does Not Exist

If the path of the build tool path is provided, but does not exist, validation displays:

Path 'toolpath' does not exist.

To correct this issue:

• Check the actual path of the build tool. Then, update the value of
coder.make.BuildTool.setPath in the toolchain definition file.

• Use your system setup to add the toolchain installation directory to system
environment path. Then, set the value of coder.make.BuildTool.setPath to ''.

Unsupported Platform

If the toolchain is not supported on the host computer platform, validation displays:
Toolchain 'tlchn' is supported on a 'pltfrma' platform. However, you are running on a 'pltfrmb' platform.

To correct this issue:

• Check the coder.make.ToolchainInfo.Platform property in your toolchain
definition file for errors.

• Update or replace the toolchain definition file with one that supports your host
computer platform.

• Change host computer platforms.

24-21

24 Custom Toolchain Registration

Toolchain is Not installed

If the toolchain is not installed, validation displays:

Toolchain is not installed

To correct this issue, install the expected toolchain, or verify that you selected the correct
toolchain, as described in “Use the Custom Toolchain” on page 24-19.

Project or Configuration is Using the Template Makefile

By default, MATLAB Coder tries to use the selected build toolchain to build the
generated code. However, if the makefile configuration options detailed in the following
sections are not set to their default value, MATLAB Coder cannot use the toolchain and
reverts to using the template makefile approach for building the generated code.

MATLAB Coder Project Settings

Project Settings Dialog Box All Settings
Parameter Name

Default Setting

Generate makefile Yes

Make command make_rtw

Template makefile default_tmf

Compiler optimization level Off

Command-line Configuration Parameters for the codegen function

coder.CodeConfig or
coder.EmbeddedCodeConfig Parameter Name

Default Value

GenerateMakefile 'true'

MakeCommand 'make_rtw'

TemplateMakefile 'default_tmf'

CCompilerOptimization 'Off'

To use the toolchain approach, reset your configuration options to these default values
manually or:

• To reset settings for project project_name, at the MATLAB command line, enter:

24-22

 Troubleshooting Custom Toolchain Validation

coder.make.upgradeMATLABCoderProject(project_name)

• To reset command-line settings for configuration object config, create an updated
configuration object new_config and then use new_config with the codegen
function in subsequent builds. At the MATLAB command line, enter:

new_config = coder.make.upgradeCoderConfigObject(config);

Skipped Validation of Build Tool “Download” or “Execute”

Even though the Validation Report states “Toolchain Validation Result: Passed” it
includes one or both of the following notes:

Validation of build tool "Download"

Skipped. No "Download" build tool is specified.

Validation of build tool "Execute"

Skipped. "Execute" build tool "$(PRODUCT)" cannot be validated.

To correct this issue, update the toolchain definition file and re-register the updated
toolchain. For more information, see:

• “Create and Edit Toolchain Definition File” on page 24-8
• “Create and Validate ToolchainInfo Object” on page 24-16
• “Register the Custom Toolchain” on page 24-17

24-23

24 Custom Toolchain Registration

Prevent Circular Data Dependencies with One-Pass or Single-Pass
Linkers

Symptom: During a software build, a build error occurs; variables don't resolve correctly.

If your toolchain uses a one-pass or single-pass linker, prevent circular data
dependencies by adding the StartLibraryGroup and EndLibraryGroup linker directives
to the toolchain definition file.

For example, if the linker is like GNU gcc, then the directives are '-Wl,--start-
group' and '-Wl,--end-group', as shown here:

% ------------------------------

% Linker

% ------------------------------

tool = tc.getBuildTool('Linker');

tool.setName('GNU Linker');

tool.setCommand('gcc');

tool.setPath('');

tool.setDirective('Library', '-l');

tool.setDirective('LibrarySearchPath', '-L');

tool.setDirective('OutputFlag', '-o');

tool.setDirective('Debug', '-g');

tool.addDirective('StartLibraryGroup', {'-Wl,--start-group'});

tool.addDirective('EndLibraryGroup', {'-Wl,--end-group'});

tool.setFileExtension('Executable', '');

tool.setFileExtension('Shared Library', '.so');

24-24

25

Deploying Generated Code

• “Using C/C++ Code That MATLAB Coder Generates” on page 25-2
• “C Compiler Considerations for Signed Integer Overflows” on page 25-3
• “Call a Generated C Static Library Function from C Code” on page 25-4
• “Call a C/C++ Static Library Function from MATLAB Code” on page 25-6
• “Call Generated C/C++ Functions” on page 25-8
• “Use a C Dynamic Library in a Microsoft Visual Studio Project” on page 25-11
• “Specify External File Locations” on page 25-14
• “Code Generation of Matrices and Arrays” on page 25-18
• “Incorporate Generated Code Using an Example Main Function” on page 25-20
• “Use an Example C Main in an Application” on page 25-23
• “Package Code for Other Development Environments” on page 25-46
• “Structure of Generated Example C/C++ Main Function” on page 25-51
• “Troubleshoot Failures in Deployed Code” on page 25-55

25 Deploying Generated Code

Using C/C++ Code That MATLAB Coder Generates

With MATLAB Coder, you can generate C/C++ source code, a static library, a
dynamically linked library, or an executable. How you use the generated code depends on
your goal.

Goal See

Package generated files into a zip file
for relocation to another development
environment.

“Package Code for Other Development
Environments” on page 25-46

Call generated code from MATLAB code. “External Code Integration for Code
Generation” on page 28-2

Generate an example C/C++ main function.
Use that function to integrate generated
code into a C application.

“Use an Example C Main in an
Application” on page 25-23

Integrate generated code into a C/C++
application.

“Use a C Dynamic Library in a Microsoft
Visual Studio Project” on page 25-11

Integrate generated code that uses
emxArrays.

• “Use an Example C Main in an
Application” on page 25-23

• “C Code Interface for Arrays” on page
7-17

Generate a C/C++ Executable. “Generating Standalone C/C++ Executables
from MATLAB Code” on page 21-14

25-2

 C Compiler Considerations for Signed Integer Overflows

C Compiler Considerations for Signed Integer Overflows

The code generator reduces memory usage and enhances performance of code that it
produces by assuming that signed integer C operations wrap on overflow. A signed
integer overflow occurs when the result of an arithmetic operation is outside the range
of values that the output data type can represent. The C programming language does
not define the results of such operations. Some C compilers aggressively optimize signed
operations for in-range values at the expense of overflow conditions. Other compilers
preserve the full wrap-on-overflow behavior. For example, the gcc and MinGW compilers
provide an option to reliably wrap overflow on signed integer overflows.

When you generate code, if you use a supported compiler with the default options
configured by the code generator, the compiler preserves the full wrap-on-overflow
behavior. If you change the compiler options or compile the code in another development
environment, it is possible that the compiler does not preserve the full wrap-on-overflow
behavior. In this case, the executable program can produce unpredictable results.

If this issue is a concern for your application, consider one or more of the following
actions:

• Verify that the compiled code produces the expected results.
• If your compiler has an option to force wrapping behavior, turn it on. For example,

for the gcc compiler or a compiler based on gcc, such as MinGW, configure the build
process to use the compiler option -fwrapv.

• Choose a compiler that wraps on integer overflow.
• If you have Embedded Coder installed, develop and apply a custom code replacement

library to replace code generated for signed integers. For more information, see “Code
Replacement Customization”.

More About
• “Setting Up the C or C++ Compiler”
• Supported and Compatible Compilers

25-3

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

25 Deploying Generated Code

Call a Generated C Static Library Function from C Code
This example shows how to call a generated C library function from C code. It uses the C
static library function absval described in “Call a C/C++ Static Library Function from
MATLAB Code” on page 25-6.

1 Write a main function in C that does the following:

• Includes the generated header file, which contains the function prototypes for the
library function.

• Calls the initialize function before calling the library function for the first time.
• Calls the terminate function after calling the library function for the last time.

Here is an example of a C main function that calls the library function absval:

/*

** main.c

*/

#include <stdio.h>

#include <stdlib.h>

#include "absval.h"

int main(int argc, char *argv[])

{

 absval_initialize();

 printf("absval(-2.75)=%g\n", absval(-2.75));

 absval_terminate();

 return 0;

}

2 Configure your target to integrate this custom C main function with your generated
code, as described in “Specify External File Locations” on page 25-14.

For example, you can define a configuration object that points to the custom C code:

a Create a configuration object. At the MATLAB prompt, enter:

cfg = coder.config('exe');

b Set custom code properties on the configuration object, as in these example
commands:

25-4

 Call a Generated C Static Library Function from C Code

cfg.CustomSource = 'main.c';

cfg.CustomInclude = 'c:\myfiles';

3 Generate the C executable. Use the -args option to specify that the input is a real,
scalar double. At the MATLAB prompt, enter:

codegen -config cfg absval -args {0}

4 Call the executable. For example:

absval(-2.75)

More About
• “Call Generated C/C++ Functions” on page 25-8
• “Generating Standalone C/C++ Executables from MATLAB Code” on page 21-14

25-5

25 Deploying Generated Code

Call a C/C++ Static Library Function from MATLAB Code

This example shows how to call a C/C++ library function from MATLAB code that is
suitable for code generation.

Suppose you have a MATLAB file absval.m that contains the following function:

function y = absval(u) %#codegen

 y = abs(u);

end

To generate a C static library function and call it from MATLAB code:

1 Generate the C library for absval.m.

codegen -config:lib absval -args {0.0}

Here are key points about this command:

• The -config:lib option instructs MATLAB Coder to generate absval as a C
static library function.

The default target language is C. To change the target language to C++, see
“Specify a Language for Code Generation” on page 21-28.

• MATLAB Coder creates the library absval.lib (or absval.a on Linus
Torvalds' Linux) and header file absval.h in the folder /emcprj/
rtwlib/absval. It also generates the functions absval_initialize and
absval_terminate in the C library.

• The -args option specifies the class, size, and complexity of the primary function
input u by example, as described in “Define Input Properties by Example at the
Command Line” on page 21-51.

2 Write a MATLAB function to call the generated library:

%#codegen

function y = callabsval

% Call the initialize function before

% calling the C function for the first time

coder.ceval('absval_initialize');

y = -2.75;

y = coder.ceval('absval',y);

25-6

 Call a C/C++ Static Library Function from MATLAB Code

% Call the terminate function after

% calling the C function for the last time

coder.ceval('absval_terminate');

The MATLAB function callabsval uses the interface coder.ceval to call the
generated C functions absval_initialize, absval, and absval_terminate.
You must use this function to call C functions from generated code. For more
information, see “Call Generated C/C++ Functions” on page 25-8.

3 Convert the code in callabsval.m to a MEX function so that you can call the C
library function absval directly from the MATLAB prompt.

a Generate the MEX function using codegen as follows:

• Create a code generation configuration object for a MEX function:

cfg = coder.config

• On Microsoft Windows platforms, use this command:

codegen -config cfg callabsval codegen/lib/absval/absval.lib

 codegen/lib/absval/absval.h

By default, this command creates, in the current folder, a MEX function
named callabsval_mex

On the Linus Torvalds' Linux platform, use this command:

codegen -config cfg callabsval codegen/lib/absval/absval.a

 codegen/lib/absval/absval.h

b At the MATLAB prompt, call the C library by running the MEX function. For
example, on Windows:

callabsval_mex

25-7

25 Deploying Generated Code

Call Generated C/C++ Functions

In this section...

“Conventions for Calling Functions in Generated Code” on page 25-8
“How to Call C/C++ Functions from MATLAB Code” on page 25-8
“Calling Initialize and Terminate Functions” on page 25-9
“Calling C/C++ Functions with Multiple Outputs” on page 25-10
“Calling C/C++ Functions that Return Arrays” on page 25-10

Conventions for Calling Functions in Generated Code

When generating code, MATLAB Coder uses the following calling conventions:

• Passes arrays by reference as inputs.
• Returns arrays by reference as outputs.
• Unless you optimize your code by using the same variable as both input and output,

passes scalars by value as inputs. In that case, MATLAB Coder passes the scalar by
reference.

• Returns scalars by value for single-output functions.
• Returns scalars by reference:

• For functions with multiple outputs.
• When you use the same variable as both input and output.

For more information about optimizing your code by using the same variable as both
input and output, see “Eliminate Redundant Copies of Function Inputs” on page
29-7.

How to Call C/C++ Functions from MATLAB Code

You can call the C/C++ functions generated for libraries as custom C/C++ code from
MATLAB functions that are suitable for code generation. For static libraries, you must
use the coder.ceval function to wrap the function calls, as in this example:

function y = callmyCFunction %#codegen

25-8

 Call Generated C/C++ Functions

 y = 1.5;

 y = coder.ceval('myCFunction',y);

end

Here, the MATLAB function callmyCFunction calls the custom C function
myCFunction, which takes one input argument.

For dynamically-linked libraries, you can also use coder.ceval.

There are additional requirements for calling C/C++ functions from the MATLAB code in
the following situations:

• You want to call generated C/C++ libraries or executables from a MATLAB function.
Call housekeeping functions generated by MATLAB Coder, as described in “Calling
Initialize and Terminate Functions” on page 25-9.

• You want to call C/C++ functions that are generated from MATLAB functions that
have more than one output, as described in “Calling C/C++ Functions with Multiple
Outputs” on page 25-10.

• You want to call C/C++ functions that are generated from MATLAB functions that
return arrays, as described in “Calling C/C++ Functions that Return Arrays” on page
25-10.

Calling Initialize and Terminate Functions

When you convert a MATLAB function to a C/C++ library function or a C/C++
executable, MATLAB Coder automatically generates two housekeeping functions that
you must call along with the C/C++ function.

Housekeeping Function When to Call

primary_function_name_initialize Before you call your C/C++ executable
or library function for the first time

primary_function_name_terminate After you call your C/C++ executable
or library function for the last time

From C/C++ code, you can call these functions directly. However, to call them from
MATLAB code that is suitable for code generation, you must use the coder.ceval
function. coder.ceval is a MATLAB Coder function, but is not supported by the
native MATLAB language. Therefore, if your MATLAB code uses this function, use
coder.target to disable these calls in MATLAB and replace them with equivalent
functions.

25-9

25 Deploying Generated Code

Calling C/C++ Functions with Multiple Outputs

Although MATLAB Coder can generate C/C++ code from MATLAB functions that have
multiple outputs, the generated C/C++ code cannot return multiple outputs directly
because the C/C++ language does not support multiple return values. Instead, you can
achieve the effect of returning multiple outputs from your C/C++ function by using
coder.wref with coder.ceval.

Calling C/C++ Functions that Return Arrays

Although MATLAB Coder can generate C/C++ code from MATLAB functions that
return values as arrays, the generated code cannot return arrays by value because the
C/C++ language is limited to returning single, scalar values. Instead, you can return
arrays from your C/C++ function by reference as pointers by using coder.wref with
coder.ceval.

25-10

 Use a C Dynamic Library in a Microsoft Visual Studio Project

Use a C Dynamic Library in a Microsoft Visual Studio Project

This example shows how to create and configure a simple Microsoft Visual Studio Win32
Console Application project that calls a dynamic library (DLL) that MATLAB Coder
generates. This example uses Microsoft Visual Studio 2013. In other versions of Microsoft
Visual Studio, you might encounter a different procedure.

Generate a C Dynamic Library

1 Create a MATLAB function foo.

function c = foo(a) %#codegen

 c = sqrt(a);

end

2 Save it as foo.m in a local writable folder, for example, c:\dll_test.
3 Generate a DLL for the MATLAB function foo. Use the -args option to specify that

the input a is a real double.

codegen -report -config:dll foo -args {0}

On Microsoft Windows systems, codegen generates a C dynamic library, foo.dll,
and supporting files in the default folder, codegen/dll/foo.

Create a Microsoft Visual Studio Project

In Microsoft Visual Studio, create an empty Win32 Console Application project. In
Microsoft Visual Studio 2013:

1 On the Start page window, select File > New > Project.
2 In the New Product dialog box, select Installed > Templates > Visual C++ >

Win32 > Win32 Console Application and enter a name.
3 In the Win32 Application Wizard, select Application Settings. Select the Empty

project check box.
4 Click Finish.

Configure the Platform

Verify that the project configuration specifies the architecture that matches your
computer. By default, MATLAB Coder builds a DLL for the platform that you are
working on, but Microsoft Visual Studio builds for Win32. In Microsoft Visual Studio
2013:

25-11

25 Deploying Generated Code

1 Select Build > Configuration Manager.
2 In the Configuration Manager, set Active solution platform to match your

platform.

Configure the Solution Version

Configure the project to use the release version of the C run-time library. By default,
the Microsoft Visual Studio project uses the debug version of the C run-time library.
However, by default, the DLL that MATLAB Coder generates uses the release version. In
Microsoft Visual Studio 2013:

1 Select Build > Configuration Manager.
2 In the Configuration Manager, set Active solution configuration to Release.

Configure Additional Directories and Dependencies

1 Select Project > Properties.
2 Under Configuration Properties > C/C++ > General, add the folder c:

\dll_test\codegen\dll\foo to Additional Include Directories.
3 Under Configuration Properties > Linker > General, add the folder c:

\dll_test\codegen\dll\foo to Additional Library Directories.
4 Under Configuration Properties > Linker > Input, add foo.lib to Additional

Dependencies.

Create a main.c File

Create a main.c file that calls foo.dll. The main.c function must:

• Include the generated header file, which contains the function prototypes for the
library function.

• Call the initialize function before calling the library function for the first time.
• Call the terminate function after calling the library function for the last time.

For example:

#include "foo.h"

#include "foo_initialize.h"

#include "foo_terminate.h"

#include <stdio.h>

25-12

 Use a C Dynamic Library in a Microsoft Visual Studio Project

int main()

{

 foo_initialize();

 printf("%f\n", foo(25));

 foo_terminate();

 getchar();

 return 0;

}

Add the main.c File to the Project

1 Select Project > Add Existing Item.
2 Navigate to the folder that contains the main.c file.
3 Select the main.c file.

Build and Run the Executable

1 Build the executable. Select Build > Build Solution.
2 Make the .dll accessible to the executable. Either copy foo.dll to the folder

containing the executable or add the folder containing foo.dll to your path.
3 Run the executable.

More About
• “Call Generated C/C++ Functions” on page 25-8
• “Generating C/C++ Dynamically Linked Libraries from MATLAB Code” on page

21-9

25-13

25 Deploying Generated Code

Specify External File Locations

In this section...

“External File Locations for External Code Integration” on page 25-14
“Specify External Files in a Class Derived from coder.ExternalDependency” on page
25-14
“Specify External Files in MATLAB Code Using coder.updateBuildInfo” on page
25-14
“Specify External Files Using the MATLAB Coder App” on page 25-15
“Specify External Files at the Command Line” on page 25-15
“Specify External Files with Configuration Objects” on page 25-16

External File Locations for External Code Integration

To integrate external code with generated C/C++ code, you must specify the locations of
your external source files, header files, and libraries to MATLAB Coder.

You can specify the file locations:

• In a class definition file, when you derive a class from coder.ExternalDependency
• In your MATLAB code using the coder.updateBuildInfo function
• In the project settings dialog box
• From the command line
• In the configuration object

Specify External Files in a Class Derived from coder.ExternalDependency

When you derive a class from coder.ExternalDependency, you write a method
updateBuildInfo that specifies the locations of the external files required for the build.
See coder.ExternalDependency.

Specify External Files in MATLAB Code Using coder.updateBuildInfo

In your MATLAB code, you can call coder.updateBuildInfo to specify the locations of
external files. See coder.updateBuildInfo.

25-14

 Specify External File Locations

Specify External Files Using the MATLAB Coder App

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 In the Generate dialog box, set the Build Type to one of the following:

• Source Code

• Static Library

• Dynamic Library

• Executable

3 Click More Settings.
4 On the Custom Code tab, under Custom C-code to include in generated files,

specify Source file and Header file. Source file specifies that the code appear at
the top of generated C/C++ source files. Header file specifies that the code appear at
the top of generated header files.

Custom Code Property Description

Under Additional files and directories to be built, provide an absolute path or a path relative
to the project folder.
Include directories Specifies a list of folders that contain custom header, source,

object, or library files. Separate list items with a semicolon.
Source files Specifies additional custom C/C++ files to be compiled with the

MATLAB file. Separate list items with a semicolon.
Libraries Specifies the names of object or library files to be linked with the

generated code. Separate list items with a semicolon.
Under Custom C-code to include in generated files
Source file Specifies code to appear at the top of generated C/C++ source

files.
Header file Specifies custom code to appear at the top of generated header

files

Specify External Files at the Command Line

When you compile MATLAB function with MATLAB Coder, you can specify custom C/
C++ files — such as source, header, and library files — on the command line along with

25-15

25 Deploying Generated Code

your MATLAB file. For example, suppose you want to generate an embeddable C code
executable that integrates a custom C function myCfcn with a MATLAB function myMfcn
that has no input parameters. The custom source and header files for myCfcn reside in
the folder C:\custom. You can use the following command to generate the code:

codegen C:\custom\myCfcn.c C:\custom\myCfcn.h myMfcn

Specify External Files with Configuration Objects

You can specify custom C/C++ files by setting custom code properties on configuration
objects.

1 Define a configuration object, as described in “Creating Configuration Objects” on
page 21-35.

For example:

cc = coder.config('lib');

2 Set one or more of the custom code properties.

Custom Code Property Description

CustomInclude Specifies a list of folders that contain custom header, source,
object, or library files.

Note: If your folder path name contains spaces, you must enclose
it in double quotes:

cc.CustomInclude = '"C:\Program Files\MATLAB\work"'

CustomSource Specifies additional custom C/C++ files to be compiled with the
MATLAB file.

CustomLibrary Specifies the names of object or library files to be linked with the
generated code.

CustomSourceCode Specifies code to insert at the top of each generated C/C++ source
file.

CustomHeaderCode Specifies custom code to insert at the top of each generated C/C++
header file.

For example:

25-16

 Specify External File Locations

cc.CustomInclude = 'C:\custom\src C:\custom\lib';

cc.CustomSource = 'cfunction.c';

cc.CustomLibrary = 'chelper.obj clibrary.lib';

cc.CustomSourceCode = '#include "cgfunction.h"';

3 Compile the MATLAB code specifying the code generation configuration object.

Note: If you generate code for a function that has input parameters, you must specify
the inputs. “Primary Function Input Specification” on page 21-46

codegen -config cc myFunc

4 Call custom C/C++ functions.

From... Call...

C/C++ source code Custom C/C++ functions directly
MATLAB code, compiled on the
MATLAB Coder path

Custom C/C++ functions using
coder.ceval.

For example, from MATLAB code:

...

y = 2.5;

y = coder.ceval('myFunc',y);

...

25-17

25 Deploying Generated Code

Code Generation of Matrices and Arrays

MATLAB and MATLAB Coder software store matrix data and arrays (1-D, 2-D, ...) in
column-major format as a vector. Column-major format orders elements in a matrix
starting from the first column, top to bottom, and then moving to the next column. For
example, in the following 3x3 matrix:

A =

 1 2 3

 4 5 6

 7 8 9

translates to an array of length 9 in the following order:

A(1) = A(1,1) = 1;

A(2) = A(2,1) = 4;

A(3) = A(3,1) = 7;

A(4) = A(1,2) = 2;

A(5) = A(2,2) = 5;

and so on.

In column-major format, the software accesses the next element of an array in memory
by incrementing the first index of the array. For example, the software stores these
element pairs sequentially in memory:

• A(i) and A(i+1)
• B(i,j) and B(i+1,j)
• C(i,j,k) and C(i+1,j,k)

For more information on the internal representation of MATLAB data, see “MATLAB
Data” in the MATLAB External Interfaces document.

The code generator uses column-major format because:

• Much of the software that supports signal and array processing uses column-major
format: MATLAB, LAPack, Fortran90, DSP libraries.

• A column is equivalent to a channel in frame-based processing. In this case, column-
major storage is more efficient than row-major storage.

• A column-major array is self-consistent with its component submatrices:

• A column-major 2-D array is a simple concatenation of 1-D arrays.
• A column-major 3-D array is a simple concatenation of 2-D arrays.

25-18

 Code Generation of Matrices and Arrays

• The stride is the number of memory locations to index to the next element in the
same dimension. The stride of the first dimension is one element. The stride of the
nth dimension element is the product of sizes of the lower dimensions.

• Row-major n-D arrays have their stride of 1 for the highest dimension. Submatrix
manipulations typically access a scattered data set in memory, which does not
allow for efficient indexing.

C typically uses row-major format. MATLAB uses column-major format. You cannot
configure the code generator to produce code with row-major ordering. If you are
integrating legacy C code with the generated code, consider transposing the row-major
data in your legacy C code into column-major format as a 1-D array.

25-19

25 Deploying Generated Code

Incorporate Generated Code Using an Example Main Function

In this section...

“Workflow for Using an Example Main Function” on page 25-20
“Control Example Main Generation Using the MATLAB Coder App” on page 25-21
“Control Example Main Generation Using the Command-Line Interface” on page
25-21

When you build an application that uses generated C/C++ code, you must provide a C/C+
+ main function that calls the generated code.

By default, for code generation of C/C++ source code, static libraries, dynamic libraries,
and executables, MATLAB Coder generates an example C/C++ main function. This
function is a template that can help you incorporate generated C/C++ code into your
application. The example main function declares and initializes data, including
dynamically allocated data. It calls entry-point functions but does not use values that the
entry point functions return.

MATLAB Coder generates source and header files for the example main function in the
examples subfolder of the build folder. For C code generation, it generates the files
main.c and main.h. For C++ code generation, it generates the files main.cpp and
main.h.

Do not modify the files main.c and main.h in the examples subfolder. If you do, when
you regenerate code, MATLAB Coder does not regenerate the example main files. It
warns you that it detects changes to the generated files. Before using the example main
function, copy the example main source and header files to a location outside of the build
folder. Modify the files in the new location to meet the requirements of your application.

The packNGo function and the Package option of the MATLAB Coder app do not
package the example main source and header files when you generate the files using
the default configuration settings. To package the example main files, configure code
generation to generate and compile the example main function, generate your code, and
then package the build files.

Workflow for Using an Example Main Function

1 Prepare your MATLAB code for code generation.
2 Check for run-time issues.

25-20

 Incorporate Generated Code Using an Example Main Function

3 Make sure that example main generation is enabled.
4 Generate C/C++ code for the entry-point functions.
5 Copy the example main files from the examples subfolder to a different folder.
6 Modify the example main files in the new folder to meet the requirements of your

application.
7 Deploy the example main and generated code for the platform that you want.
8 Build the application.

For an example that shows how to generate an example main and use it to build an
executable, see “Use an Example C Main in an Application” on page 25-23.

Control Example Main Generation Using the MATLAB Coder App

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 In the Generate dialog box, set the Build Type to one of the following:

• Source Code

• Static Library

• Dynamic Library

• Executable

3 Click More Settings.
4 On the All Settings tab, under Advanced, set Generate example main to one of

the following:

Set To For

Do not generate an example main

function

Not generating an example C/C++ main
function

Generate, but do not compile,

an example main function (default)
Generating an example C/C++ main
function but not compiling it

Generate and compile an example

main function

Generating an example C/C++ main
function and compiling it

Control Example Main Generation Using the Command-Line Interface

1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

25-21

25 Deploying Generated Code

cfg = coder.config('lib'); % or dll or exe

2 Set the GenerateExampleMain property.

Set To For

'DoNotGenerate' Not generating an example C/C++ main
function

'GenerateCodeOnly' (default) Generating an example C/C++ main
function but not compiling it

'GenerateCodeAndCompile' Generating an example C/C++ main
function and compiling it

For example:

cfg.GenerateExampleMain = 'GenerateCodeOnly';

Related Examples
• “Structure of Generated Example C/C++ Main Function” on page 25-51
• “Call a Generated C Static Library Function from C Code” on page 25-4

More About
• “Specifying main Functions for C/C++ Executables” on page 21-24

25-22

 Use an Example C Main in an Application

Use an Example C Main in an Application

This example shows how to build a C executable from MATLAB code that implements a
simple Sobel filter to perform edge detection on images. The executable reads an image
from the disk, applies the Sobel filtering algorithm, and then saves the modified image.

The example shows how to generate and modify an example main function that you can
use when you build the executable.

In this section...

“Prerequisites” on page 25-23
“Create a Folder and Copy Relevant Files” on page 25-24
“Run the Sobel Filter on the Image” on page 25-26
“Generate and Test a MEX Function” on page 25-28
“Generate an Example Main Function for sobel.m” on page 25-28
“Copy the Example Main Files” on page 25-31
“Modify the Generated Example Main Function” on page 25-31
“Generate the Sobel Filter Application” on page 25-44
“Run the Sobel Filter Application” on page 25-44
“Display the Resulting Image” on page 25-44

Prerequisites

To complete this example, install the following products:

• MATLAB
• MATLAB Coder
• C compiler (for most platforms, a default C compiler is supplied with MATLAB).

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler”.

25-23

25 Deploying Generated Code

Create a Folder and Copy Relevant Files

The files you use in this example are:

File Name File Type Description

sobel.m Function code MATLAB implementation of
a Sobel filtering algorithm.
sobel.m takes an image
(represented as a double
matrix) and a threshold
value as inputs. The
algorithm detects edges in
the image (based on the
threshold value). sobel.m
returns a modified image
displaying the edges.

hello.jpg Image file Image that the Sobel filter
modifies.

Contents of File sobel.m

function edgeImage = sobel(originalImage, threshold) %#codegen

% edgeImage = sobel(originalImage, threshold)

% Sobel edge detection. Given a normalized image (with double values)

% return an image where the edges are detected w.r.t. threshold value.

assert(all(size(originalImage) <= [1024 1024]));

assert(isa(originalImage, 'double'));

assert(isa(threshold, 'double'));

k = [1 2 1; 0 0 0; -1 -2 -1];

H = conv2(double(originalImage),k, 'same');

V = conv2(double(originalImage),k','same');

E = sqrt(H.*H + V.*V);

edgeImage = uint8((E > threshold) * 255);

25-24

 Use an Example C Main in an Application

Contents of hello.jpg

To copy the example files to a local working folder:

1 Create a local working folder. For example, c:\coder\edge_detection.
2 Navigate to the working folder.
3 Copy the files sobel.m and hello.jpg from the examples folder sobel to your

working folder.

copyfile(fullfile(docroot, 'toolbox', 'coder', 'examples', 'sobel'))

25-25

25 Deploying Generated Code

Run the Sobel Filter on the Image

1 Read the original image into a MATLAB matrix and display it.

im = imread('hello.jpg');

2 Display the image as a basis for comparison to the result of the Sobel filter.

image(im);

3 The Sobel filtering algorithm operates on grayscale images. Convert the color image
to an equivalent grayscale image with normalized values (0.0 for black, 1.0 for
white).

gray = (0.2989 * double(im(:,:,1)) + 0.5870 * double(im(:,:,2)) + 0.1140 * double(im(:,:,3)))/255;

25-26

 Use an Example C Main in an Application

4 To run the MATLAB function for the Sobel filter, pass the grayscale image matrix
gray and a threshold value to the function sobel. This example uses 0.7 for a
threshold value.

edgeIm = sobel(gray, 0.7);

5 To display the modified image, reformat the matrix edgeIm with the function
repmat so that you can pass it to the image command.

im3 = repmat(edgeIm, [1 1 3]);

image(im3);

25-27

25 Deploying Generated Code

Generate and Test a MEX Function

1 To test that generated code is functionally equivalent to the original MATLAB code
and that run-time errors do not occur, generate a MEX function.

codegen -report sobel

codegen generates a MEX function named sobel_mex in the current working
folder.

2 To run the MEX function for the Sobel filter, pass the grayscale image matrix gray
and a threshold value to the function sobel_mex. This example uses 0.7 for a
threshold value.

edgeImMex = sobel_mex(gray, 0.7);

3 To display the modified image, reformat the matrix edgeImMex with the function
repmat so that you can pass it to the image command.

im3Mex = repmat(edgeImMex, [1 1 3]);

image(im3Mex);

This image is the same as the image created using the MATLAB function.

Generate an Example Main Function for sobel.m

Although you can write a custom main function for your application, an example main
function provides a template to help you incorporate the generated code.

To generate an example main function for the Sobel filter:

1 Create a configuration object for a C static library.

cfg = coder.config('lib');

For configuration objects for C/C++ source code, static libraries, dynamic libraries,
and executables, the setting GenerateExampleMain controls generation of the
example main function. The setting is set to 'GenerateCodeOnly' by default,
which generates the example main function but does not compile it. For this
example, do not change the value of the GenerateExampleMain setting.

2 Generate a C static library using the configuration object.

codegen -report -config cfg sobel

25-28

 Use an Example C Main in an Application

The generated files for the static library are in the folder codegen/lib/sobel. The
example main files are in the subfolder codegen/lib/sobel/examples.

Contents of Example Main File main.c

/*

 * main.c

 *

 * Code generation for function 'main'

 *

 */

/***/

/* This automatically generated example C main file shows how to call */

/* entry-point functions that MATLAB Coder generated. You must customize */

/* this file for your application. Do not modify this file directly. */

/* Instead, make a copy of this file, modify it, and integrate it into */

/* your development environment. */

/* */

/* This file initializes entry-point function arguments to a default */

/* size and value before calling the entry-point functions. It does */

/* not store or use any values returned from the entry-point functions. */

/* If necessary, it does pre-allocate memory for returned values. */

/* You can use this file as a starting point for a main function that */

/* you can deploy in your application. */

/* */

/* After you copy the file, and before you deploy it, you must make the */

/* following changes: */

/* * For variable-size function arguments, change the example sizes to */

/* the sizes that your application requires. */

/* * Change the example values of function arguments to the values that */

/* your application requires. */

/* * If the entry-point functions return values, store these values or */

/* otherwise use them as required by your application. */

/* */

/***/

/* Include files */

#include "rt_nonfinite.h"

#include "sobel.h"

#include "main.h"

#include "sobel_terminate.h"

#include "sobel_emxAPI.h"

#include "sobel_initialize.h"

25-29

25 Deploying Generated Code

/* Function Declarations */

static emxArray_real_T *argInit_d1024xd1024_real_T(void);

static double argInit_real_T(void);

static void main_sobel(void);

/* Function Definitions */

static emxArray_real_T *argInit_d1024xd1024_real_T(void)

{

 emxArray_real_T *result;

 static int iv2[2] = { 2, 2 };

 int b_j0;

 int b_j1;

 /* Set the size of the array.

 Change this size to the value that the application requires. */

 result = emxCreateND_real_T(2, iv2);

 /* Loop over the array to initialize each element. */

 for (b_j0 = 0; b_j0 < result->size[0U]; b_j0++) {

 for (b_j1 = 0; b_j1 < result->size[1U]; b_j1++) {

 /* Set the value of the array element.

 Change this value to the value that the application requires. */

 result->data[b_j0 + result->size[0] * b_j1] = argInit_real_T();

 }

 }

 return result;

}

static double argInit_real_T(void)

{

 return 0.0;

}

static void main_sobel(void)

{

 emxArray_uint8_T *edgeImage;

 emxArray_real_T *originalImage;

 emxInitArray_uint8_T(&edgeImage, 2);

 /* Initialize function 'sobel' input arguments. */

 /* Initialize function input argument 'originalImage'. */

 originalImage = argInit_d1024xd1024_real_T();

25-30

 Use an Example C Main in an Application

 /* Call the entry-point 'sobel'. */

 sobel(originalImage, argInit_real_T(), edgeImage);

 emxDestroyArray_uint8_T(edgeImage);

 emxDestroyArray_real_T(originalImage);

}

int main(int argc, const char * const argv[])

{

 (void)argc;

 (void)argv;

 /* Initialize the application.

 You do not need to do this more than one time. */

 sobel_initialize();

 /* Invoke the entry-point functions.

 You can call entry-point functions multiple times. */

 main_sobel();

 /* Terminate the application.

 You do not need to do this more than one time. */

 sobel_terminate();

 return 0;

}

/* End of code generation (main.c) */

Copy the Example Main Files

Do not modify the files main.c and main.h in the examples subfolder. If you do, when
you regenerate code, MATLAB Coder does not regenerate the example main files. It
warns you that it detects changes to the generated files.

Copy the files main.c and main.h from the folder codegen/lib/sobel/examples to
another location. For this example, copy the files to the current working folder. Modify
the files in the new location.

Modify the Generated Example Main Function

• “Modify the Function main” on page 25-32
• “Modify the Initialization Function argInit_d1024xd1024_real_T” on page 25-34

25-31

25 Deploying Generated Code

• “Write the Function saveImage” on page 25-36
• “Modify the Function main_sobel” on page 25-38
• “Modify the Function Declarations” on page 25-39
• “Modify the Include Files” on page 25-39
• “Contents of Modified File main.c” on page 25-40

The example main function declares and initializes data, including dynamically allocated
data, to zero values. It calls entry-point functions with arguments set to zero values, but
it does not use values returned from the entry-point functions.

The C main function must meet the requirements of your application. This example
modifies the example main function to meet the requirements of the Sobel filter
application.

This example modifies the file main.c so that the Sobel filter application:

• Reads in the grayscale image from a binary file.
• Applies the Sobel filtering algorithm.
• Saves the modified image to a binary file.

Modify the Function main

Modify the function main to:

• Accept the file containing the grayscale image data and a threshold value as input
arguments.

• Call the function main_sobel with the address of the grayscale image data stream
and the threshold value as input arguments.

In the function main:

1 Remove the declarations void(argc) and (void)argv.
2 Declare the variable filename to hold the name of the binary file containing the

grayscale image data.

const char *filename;

3 Declare the variable threshold to hold the threshold value.

double threshold;

25-32

 Use an Example C Main in an Application

4 Declare the variable fd to hold the address of the grayscale image data that the
application reads in from filename.

FILE *fd;

5 Add an if statement that checks for three arguments.

if (argc != 3) {

 printf("Expected 2 arguments: filename and threshold\n");

 exit(-1);

}

6 Assign the input argument argv[1] for the file containing the grayscale image data
to filename.

filename = argv[1];

7 Assign the input argument argv[2] for the threshold value to threshold,
converting the input from a string to a numeric double.

threshold = atof(argv[2]);

8 Open the file containing the grayscale image data whose name is specified in
filename. Assign the address of the data stream to fd.

fd = fopen(filename, "rb");

9 To verify that the executable can open filename, write an if-statement that exits
the program if the value of fd is NULL.

if (fd == NULL) {

 exit(-1);

}

10 Replace the function call for main_sobel by calling main_sobel with input
arguments fd and threshold.

main_sobel(fd, threshold);

11 Close the grayscale image file after calling sobel_terminate.

fclose(fd);

Modified Function main

int main(int argc, const char * const argv[])

{

 const char *filename;

 double threshold;

25-33

25 Deploying Generated Code

 FILE *fd;

 if (argc != 3) {

 printf("Expected 2 arguments: filename and threshold\n");

 exit(-1);

 }

 filename = argv[1];

 threshold = atof(argv[2]);

 fd = fopen(filename, "rb");

 if (fd == NULL) {

 exit(-1);

 }

 /* Initialize the application.

 You do not need to do this more than one time. */

 sobel_initialize();

 /* Invoke the entry-point functions.

 You can call entry-point functions multiple times. */

 main_sobel(fd, threshold);

 /* Terminate the application.

 You do not need to do this more than one time. */

 sobel_terminate();

 fclose(fd);

 return 0;

}

Modify the Initialization Function argInit_d1024xd1024_real_T

In the example main file, the function argInit_d1024xd1024_real_T creates a
dynamically allocated variable-size array (emxArray) for the image that you pass to the
Sobel filter. This function initializes the emxArray to a default size and the elements of
the emxArray to 0. It returns the initialized emxArray.

For the Sobel filter application, modify the function to read the grayscale image data
from a binary file into the emxArray.

In the function argInit_d1024xd1024_real_T:

1 Replace the input argument void with the argument FILE *fd. This variable
points to the grayscale image data that the function reads in.

25-34

 Use an Example C Main in an Application

static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd)

2 Change the values of the variable iv2 to match the dimensions of the grayscale
image matrix gray. iv2 holds the size values for the dimensions of the emxArray
that argInit_d1024xd1024_real_T creates.

static int iv2[2] = { 484, 648 };

MATLAB stores matrix data in column-major format, while C stores matrix data in
row-major format. Declare the dimensions accordingly.

3 Define a variable element to hold the values read in from the grayscale image data.

double element;

4 Change the for-loop construct to read data points from the normalized image into
element by adding an fread command to the inner for-loop.

fread(&element, 1, sizeof(element), fd);

5 Inside the for-loop, assign element as the value set for the emxArray data.

result->data[b_j0 + result->size[0] * b_j1] = element;

Modified Initialization Function argInit_d1024xd1024_real_T

static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd)

{

 emxArray_real_T *result;

 static int iv2[2] = { 484, 648 };

 int b_j0;

 int b_j1;

 double element;

 /* Set the size of the array.

 Change this size to the value that the application requires. */

 result = emxCreateND_real_T(2, iv2);

 /* Loop over the array to initialize each element. */

 for (b_j0 = 0; b_j0 < result->size[0U]; b_j0++) {

 for (b_j1 = 0; b_j1 < result->size[1U]; b_j1++) {

 /* Set the value of the array element.

 Change this value to the value that the application requires. */

 fread(&element, 1, sizeof(element), fd);

 result->data[b_j0 + result->size[0] * b_j1] = element;

25-35

25 Deploying Generated Code

 }

 }

 return result;

}

Write the Function saveImage

The MATLAB function sobel.m interfaces with MATLAB arrays, but the Sobel filter
application interfaces with binary files.

To save the image modified by the Sobel filtering algorithm to a binary file, create a
function saveImage. The function saveImage writes data from an emxArray into
a binary file. It uses a construction that is similar to the one used by the function
argInit_d1024xd1024_real_T.

In the file main.c:

1 Define the function saveImage that takes the address of emxArray edgeImage as
an input and has output type void.

static void saveImage(emxArray_uint8_T *edgeImage)

{

}

2 Define the variables b_j0 and b_j1 like they are defined in the function
argInit_d1024xd1024_real_T.

int b_j0;

int b_j1;

3 Define the variable element to store data read from the emxArray.

uint8_T element;

4 Open a binary file edge.bin for writing the modified image. Assign the address of
edge.bin to FILE *fd.

FILE *fd = fopen("edge.bin", "wb");

5 To verify that the executable can open edge.bin, write an if-statement that exits
the program if the value of fd is NULL.

if (fd == NULL) {

 exit(-1);

}

25-36

 Use an Example C Main in an Application

6 Write a nested for-loop construct like the one in the function
argInit_d1024xd1024_real_T.

for (b_j0 = 0; b_j0 < edgeImage->size[0U]; b_j0++)

{

 for (b_j1 = 0; b_j1 < edgeImage->size[1U]; b_j1++)

 {

 }

}

7 Inside the inner for-loop, assign the values from the modified image data to
element.

element = edgeImage->data[b_j0 + edgeImage->size[0] * b_j1];

8 After the assignment for element, write the value from element to the file
edge.bin.

fwrite(&element, 1, sizeof(element), fd);

9 After the for-loop construct, close fd.

fclose(fd);

Function saveImage

static void saveImage(emxArray_uint8_T *edgeImage)

{

 int b_j0;

 int b_j1;

 uint8_T element;

 FILE *fd = fopen("edge.bin", "wb");

 if (fd == NULL) {

 exit(-1);

 }

 /* Loop over the array to save each element. */

 for (b_j0 = 0; b_j0 < edgeImage->size[0U]; b_j0++) {

 for (b_j1 = 0; b_j1 < edgeImage->size[1U]; b_j1++) {

 element = edgeImage->data[b_j0 + edgeImage->size[0] * b_j1];

 fwrite(&element, 1, sizeof(element), fd);

 }

 }

 fclose(fd);

}

25-37

25 Deploying Generated Code

Modify the Function main_sobel

In the example main function, the function main_sobel creates emxArrays
for the data for the grayscale and modified images. It calls the function
argInit_d1024xd1024_real_T to initialize the emxArray for the grayscale
image. main_sobel passes both emxArrays and the threshold value of 0 that the
initialization function argInit_real_T returns to the function sobel. When the
function main_sobel ends, it discards the result of the function sobel.

For the Sobel filter application, modify the function main_sobel to:

• Take the address of the grayscale image data and the threshold value as inputs.
• Read the data from the address using argInit_d1024xd1024_real_T.
• Pass the data to the Sobel filtering algorithm with the threshold value threshold.
• Save the result using saveImage.

In the function main_sobel:

1 Replace the input arguments to the function with the arguments FILE *fd and
double threshold.

static void main_sobel(FILE *fd, double threshold)

2 Pass the input argument fd to the function call for
argInit_d1024xd1024_real_T.

originalImage = argInit_d1024xd1024_real_T(fd);

3 Replace the threshold value input in the function call to sobel with threshold.

sobel(originalImage, threshold, edgeImage);

4 After calling the function sobel, call the function saveImage with the input
edgeImage.

saveImage(edgeImage);

Modified Function main_sobel

static void main_sobel(FILE *fd, double threshold)

{

 emxArray_uint8_T *edgeImage;

 emxArray_real_T *originalImage;

 emxInitArray_uint8_T(&edgeImage, 2);

25-38

 Use an Example C Main in an Application

 /* Initialize function 'sobel' input arguments. */

 /* Initialize function input argument 'originalImage'. */

 originalImage = argInit_d1024xd1024_real_T(fd);

 /* Call the entry-point 'sobel'. */

 sobel(originalImage, threshold, edgeImage);

 saveImage(edgeImage);

 emxDestroyArray_uint8_T(edgeImage);

 emxDestroyArray_real_T(originalImage);

}

Modify the Function Declarations

To match the changes that you made to the function definitions, make the following
changes to the function declarations:

1 Change the input of the function *argInit_d1024xd1024_real_T to FILE *fd.

static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd);

2 Change the inputs of the function main_sobel to FILE *fd and double
threshold.

static void main_sobel(FILE *fd, double threshold);

3 Add the function saveImage.

static void saveImage(emxArray_uint8_T *edgeImage);

Modified Function Declarations

/* Function Declarations */

static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd);

static void saveImage(emxArray_uint8_T *edgeImage);

static double argInit_real_T(void);

static void main_sobel(FILE *fd, double threshold);

Modify the Include Files

For input/output functions that you use in main.c, add the header file stdio.h to the
included files list.

#include <stdio.h>

25-39

25 Deploying Generated Code

Modified Include Files

/* Include Files */

#include <stdio.h>

#include "rt_nonfinite.h"

#include "sobel.h"

#include "main.h"

#include "sobel_terminate.h"

#include "sobel_emxAPI.h"

#include "sobel_initialize.h"

Contents of Modified File main.c

main.c

/*

 * main.c

 *

 * Code generation for function 'main'

 *

 */

/***/

/* This automatically generated example C main file shows how to call */

/* entry-point functions that MATLAB Coder generated. You must customize */

/* this file for your application. Do not modify this file directly. */

/* Instead, make a copy of this file, modify it, and integrate it into */

/* your development environment. */

/* */

/* This file initializes entry-point function arguments to a default */

/* size and value before calling the entry-point functions. It does */

/* not store or use any values returned from the entry-point functions. */

/* If necessary, it does pre-allocate memory for returned values. */

/* You can use this file as a starting point for a main function that */

/* you can deploy in your application. */

/* */

/* After you copy the file, and before you deploy it, you must make the */

/* following changes: */

/* * For variable-size function arguments, change the example sizes to */

/* the sizes that your application requires. */

/* * Change the example values of function arguments to the values that */

/* your application requires. */

/* * If the entry-point functions return values, store these values or */

/* otherwise use them as required by your application. */

25-40

 Use an Example C Main in an Application

/* */

/***/

/* Include Files */

#include <stdio.h>

#include "rt_nonfinite.h"

#include "sobel.h"

#include "main.h"

#include "sobel_terminate.h"

#include "sobel_emxAPI.h"

#include "sobel_initialize.h"

/* Function Declarations */

static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd);

static void saveImage(emxArray_uint8_T *edgeImage);

static double argInit_real_T(void);

static void main_sobel(FILE *fd, double threshold);

/* Function Definitions */

static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd)

{

 emxArray_real_T *result;

 static int iv2[2] = { 484, 648 };

 int b_j0;

 int b_j1;

 double element;

 /* Set the size of the array.

 Change this size to the value that the application requires. */

 result = emxCreateND_real_T(2, iv2);

 /* Loop over the array to initialize each element. */

 for (b_j0 = 0; b_j0 < result->size[0U]; b_j0++) {

 for (b_j1 = 0; b_j1 < result->size[1U]; b_j1++) {

 /* Set the value of the array element.

 Change this value to the value that the application requires. */

 fread(&element, 1, sizeof(element), fd);

 result->data[b_j0 + result->size[0] * b_j1] = element;

 }

 }

 return result;

25-41

25 Deploying Generated Code

}

static void saveImage(emxArray_uint8_T *edgeImage)

{

 int b_j0;

 int b_j1;

 uint8_T element;

 FILE *fd = fopen("edge.bin", "wb");

 if (fd == NULL) {

 exit(-1);

 }

 /* Loop over the array to save each element. */

 for (b_j0 = 0; b_j0 < edgeImage->size[0U]; b_j0++) {

 for (b_j1 = 0; b_j1 < edgeImage->size[1U]; b_j1++) {

 element = edgeImage->data[b_j0 + edgeImage->size[0] * b_j1];

 fwrite(&element, 1, sizeof(element), fd);

 }

 }

 fclose(fd);

}

/*

 * Arguments : void

 * Return Type : double

 */

static double argInit_real_T(void)

{

 return 0.0;

}

static void main_sobel(FILE *fd, double threshold)

{

 emxArray_uint8_T *edgeImage;

 emxArray_real_T *originalImage;

 emxInitArray_uint8_T(&edgeImage, 2);

 /* Initialize function 'sobel' input arguments. */

 /* Initialize function input argument 'originalImage'. */

 originalImage = argInit_d1024xd1024_real_T(fd);

 /* Call the entry-point 'sobel'. */

 sobel(originalImage, threshold, edgeImage);

25-42

 Use an Example C Main in an Application

 saveImage(edgeImage);

 emxDestroyArray_uint8_T(edgeImage);

 emxDestroyArray_real_T(originalImage);

}

int main(int argc, const char * const argv[])

{

 const char *filename;

 double threshold;

 FILE *fd;

 if (argc != 3) {

 printf("Expected 2 arguments: filename and threshold\n");

 exit(-1);

 }

 filename = argv[1];

 threshold = atof(argv[2]);

 fd = fopen(filename, "rb");

 if (fd == NULL) {

 exit(-1);

 }

 /* Initialize the application.

 You do not need to do this more than one time. */

 sobel_initialize();

 /* Invoke the entry-point functions.

 You can call entry-point functions multiple times. */

 main_sobel(fd, threshold);

 /* Terminate the application.

 You do not need to do this more than one time. */

 sobel_terminate();

 fclose(fd);

 return 0;

}

/* End of code generation (main.c) */

25-43

25 Deploying Generated Code

Generate the Sobel Filter Application

1 Navigate to the working folder if you are not currently in it.
2 Create a configuration object for a C standalone executable.

cfg = coder.config('exe');

3 Generate a C standalone executable for the Sobel filter using the configuration object
and the modified main function.

codegen -report -config cfg sobel main.c main.h

By default, if you are running MATLAB on a Windows platform, the executable
sobel.exe is generated in the current working folder. If you are running MATLAB on a
platform other than Windows, the file extension is the corresponding extension for that
platform. By default, the code generated for the executable is in the folder codegen/
exe/sobel.

Run the Sobel Filter Application

1 Create the MATLAB matrix gray if it is not currently in your MATLAB workspace:

im = imread('hello.jpg');

gray = (0.2989 * double(im(:,:,1)) + 0.5870 * double(im(:,:,2)) + 0.1140 * double(im(:,:,3)))/255;

2 Write the matrix gray into a binary file using the fopen and fwrite commands.
The application reads in this binary file.

fid = fopen('gray.bin', 'w');

fwrite(fid, gray, 'double');

fclose(fid);

3 Run the executable, passing to it the file gray.bin and the threshold value 0.7.

To run the example in MATLAB on a Windows platform:

system('sobel.exe gray.bin 0.7');

The executable generates the file edge.bin.

Display the Resulting Image

1 Read the file edge.bin into a MATLAB matrix edgeImExe using the fopen and
fread commands.

25-44

 Use an Example C Main in an Application

fd = fopen('edge.bin', 'r');

edgeImExe = fread(fd, size(gray), 'uint8');

fclose(fd);

2 Pass the matrix edgeImExe to the function repmat and display the image.

im3Exe = repmat(edgeImExe, [1 1 3]);

image(im3Exe);

The image matches the images from the MATLAB and MEX functions.

Related Examples
• “Structure of Generated Example C/C++ Main Function” on page 25-51
• “Incorporate Generated Code Using an Example Main Function” on page 25-20
• “Call a Generated C Static Library Function from C Code” on page 25-4

25-45

25 Deploying Generated Code

Package Code for Other Development Environments

In this section...

“When to Package Code” on page 25-46
“Package Generated Code Using the MATLAB Coder App” on page 25-46
“Package Generated Code at the Command Line” on page 25-48
“Specify packNGo Options” on page 25-49

When to Package Code

To relocate the generated code files to another development environment, such as a
system or an integrated development environment (IDE) that does not include MATLAB,
use the packNGo function at the command line or the Package option in the MATLAB
Coder app. The files are packaged in a compressed file that you can relocate and unpack
using a standard zip utility.

See “Package Generated Code Using the MATLAB Coder App” on page 25-46 and
“Package Generated Code at the Command Line” on page 25-48.

Package Generated Code Using the MATLAB Coder App

This example shows how to package generated code into a zip file for relocation using the
Package option in the MATLAB Coder app. By default, MATLAB Coder creates the zip
file in the current working folder.

1 In a local writable folder, for example c:\work, write a function foo that takes two
double inputs.

function y = foo(A,B)

 y = A + B;

end

2 Open the MATLAB Coder app. On the MATLAB Toolstrip Apps tab, under Code
Generation, click the MATLAB Coder app icon.

3 On the Select Source Files page, enter the name of the entry-point function foo.
Click Next to go to the Define Input Types page.

4 Specify that inputs A and B are scalar doubles. Click Next to go to the Check for
Run-Time Issues page.

25-46

 Package Code for Other Development Environments

5 Check for run-time issues. In the Check for Run-Time Issues dialog box, enter
code that calls foo with scalar double inputs. For example:

foo(1,2)

Click Check for Issues.

To check for run-time issues, the app generates and runs a MEX function. The app
does not find issues for foo. Click Next to go to the Generate Code page.

6 In the Generate dialog box, set the Build Type to Source Code, Static
Library, Dynamic Library, or Executable. You cannot package the code
generated for MEX targets.

7 Click Generate. Click Next to go to the Finish Workflow page.
8 On the Finish Workflow page, click Package.
9 In the Package dialog box, specify the package file name and packaging type. By

default, the app derives the name of the package file from the project name. The
app saves the file in the current working folder. By default, the app packages the
generated files as a single, flat folder. For this example, use the default values, and
then click Save.

This zip file contains the C code and header files required for relocation. It does not
contain:

• Compile flags
• Defines
• Makefiles
• Example main files, unless you configure code generation to generate and compile

the example main function. See “Incorporate Generated Code Using an Example
Main Function” on page 25-20.

10 Inspect the contents of foo_pkg.zip in your working folder to verify that it is ready
for relocation to the destination system. Depending on the zip tool that you use, you
can potentially open and inspect the file without unpacking it.

You can now relocate the resulting zip file to the desired development environment
and unpack the file.

25-47

25 Deploying Generated Code

Package Generated Code at the Command Line

This example shows how to package generated code into a zip file for relocation using the
packNGo function at the command line.

1 In a local writable folder, for example c:\work, write a function foo that takes two
double inputs.

function y = foo(A,B)

 y = A + B;

end

2 Generate a static library for function foo. (packNGo does not package MEX function
code.)

codegen -report -config:lib foo -args {0,0}

codegen generates code in the c:\work\codegen\lib\foo folder.
3 Load the buildInfo object.

load('c:\work\codegen\lib\foo\buildInfo.mat')

4 Create the zip file.

packNGo(buildInfo, 'fileName', 'foo.zip');

Alternatively, use the notation:

buildInfo.packNGo('fileName', 'foo.zip');

The packNGo function creates a zip file, foo.zip, in the current working folder.
This zip file contains the C code and header files required for relocation. It does not
contain:

• Compile flags
• Defines
• Makefiles
• Example main files, unless you configure code generation to generate and compile

the example main function. See “Incorporate Generated Code Using an Example
Main Function” on page 25-20.

In this example, you specify only the file name. Optionally, you can specify additional
packaging options. See “Specify packNGo Options” on page 25-49.

25-48

 Package Code for Other Development Environments

5 Inspect the contents of foo.zip to verify that it is ready for relocation to the
destination system. Depending on the zip tool that you use, you can potentially
open and inspect the file without unpacking it. If you need to unpack the file and
you packaged the generated code files as a hierarchical structure, you will need to
unpack the primary and secondary zip files. When you unpack the secondary zip
files, relative paths of the files are preserved.

You can now relocate the resulting zip file to the desired development environment
and unpack the file.

Specify packNGo Options

You can specify options for the packNGo function.

To Specify

Change the structure of the file
packaging to hierarchical

packNGo(buildInfo, {'packType'

'hierarchical'});

Change the structure of the file
packaging to hierarchical and
rename the primary zip file

packNGo(buildInfo, {'packType'

'hierarchical'...

'fileName' 'zippedsrcs'});

Include all header files found on
the include path in the zip file
(rather than the minimal header
files required to build the code)

packNGo(buildInfo, {'minimalHeaders'

false});

Generate warnings for parse
errors and missing files

packNGo(buildInfo, {'ignoreParseError'

true...

'ignoreFileMissing' true});

For more information, see packNGo in “Build Information Methods” on page 21-139.

Choose a Structure for the Zip File

Before you generate and package the files, decide whether you want to package the files
in a flat or hierarchical folder structure. By default, the packNGo function packages the
files in a single, flat folder structure. This approach is the simplest and might be the
optimal choice.

If Use

You are relocating files to an IDE that does
not use the generated makefile, or the code

A single, flat folder structure

25-49

25 Deploying Generated Code

If Use
is not dependent on the relative location of
required static files
The target development environment must
maintain the folder structure of the source
environment because it uses the generated
makefile, or the code is dependent on the
relative location of files

A hierarchical structure

If you use a hierarchical structure, the packNGo function creates two levels of zip files.
There is a primary zip file, which in turn contains the following secondary zip files:

• mlrFiles.zip — files in your matlabroot folder tree
• sDirFiles.zip — files in and under your build folder where you initiated code

generation
• otherFiles.zip — required files not in the matlabroot or start folder trees

Paths for the secondary zip files are relative to the root folder of the primary zip file,
maintaining the source development folder structure.

25-50

 Structure of Generated Example C/C++ Main Function

Structure of Generated Example C/C++ Main Function

In this section...

“Contents of the File main.c or main.cpp” on page 25-51
“Contents of the File main.h” on page 25-54

When you build an application that uses generated C/C++ code, you must provide a C/C+
+ main function that calls the generated code.

By default, for code generation of C/C++ source code, static libraries, dynamic libraries,
and executables, MATLAB Coder generates an example C/C++ main function. This
function is a template that can help you incorporate generated C/C++ code into your
application. The example main function declares and initializes data, including
dynamically allocated data. It calls entry-point functions but does not use values that the
entry point functions return. To use the example main function, copy the example main
source and header files to a location outside of the build folder, and then modify the files
in the new location to meet the requirements of your application.

MATLAB Coder generates source and header files for the example main function in the
examples subfolder of the build folder. For C code generation, it generates the files
main.c and main.h. For C++ code generation, it generates the files main.cpp and
main.h.

Contents of the File main.c or main.cpp

For the example main source file main.c or main.cpp, MATLAB Coder generates the
following sections:

• “Include Files” on page 25-52
• “Function Declarations” on page 25-52
• “Argument Initialization Functions” on page 25-52
• “Entry-Point Functions” on page 25-53
• “Main Function” on page 25-53

By default, MATLAB Coder also generates comments in the example main source file
that can help you modify the example main function to use in your application.

25-51

25 Deploying Generated Code

Include Files

This section includes the header files required to call code that is not in the example
main source file. If you call external functions when you modify the example main source
file, include any other required header files.

Function Declarations

This section declares the function prototypes for the argument initialization and entry-
point functions that are defined in the example main source file. Modify the function
prototypes to match modifications that you make in the function definitions. Declare new
function prototypes for functions that you define in the example main source file.

Argument Initialization Functions

This section defines an initialization function for each data type that the entry-point
functions use as an argument. The argument initialization function initializes the size
of the argument to a default value and the values of the data to zero. The function then
returns the initialized data. Change these size and data values to meet the requirements
of your application.

For an argument with dimensions of size <dimSizes> and MATLAB C/C++ data type
<baseType>, the example main source file defines an initialization function with the
name argInit_<dimSizes>_<baseType>. For example, for a 5-by-5 array with data of
MATLAB type double, the example main source file defines the argument initialization
function argInit_5x5_real_T.

MATLAB Coder alters the name of the argument initialization functions as follows:

• If any of the dimensions are variable-size, MATLAB Coder designates the size of
these dimensions as d<maxSize>, where <maxSize> is the maximum size of that
dimension. For example, for an array with data of MATLAB type double with a
first dimension of static size 2 and a second dimension that can vary in size up
to 10, the example main source file defines the argument initialization function
argInit_2xd10_real_T.

• If any of the dimensions are unbounded, MATLAB Coder designates the size of these
dimensions as Unbounded.

• If the return type of the initialization function is an emxArray, MATLAB Coder
defines the function as returning a pointer to the emxArray.

• If the length of the initialization function name exceeds the maximum number of
characters set for function names in the configuration settings, MATLAB Coder

25-52

 Structure of Generated Example C/C++ Main Function

prepends an identifier to the front of the function name. MATLAB Coder then
truncates the function name to the maximum allowed number of characters for
identifier length.

Note: By default, the maximum number of characters allowed for generated
identifiers is 31. To specify the value set for the maximum identifier length using
the MATLAB Coder app, select the Maximum identifier length value on the
Code Appearance tab of the code generation settings. To specify the value set for
the maximum identifier using the command-line interface, change the value of the
MaxIdLength configuration object setting.

Entry-Point Functions

This section defines a function for each MATLAB entry-point function. For a MATLAB
function foo.m, the example main source file defines an entry-point function main_foo.
This function creates the variables and calls the data initialization functions that the C/
C++ source function foo.c or foo.cpp requires. It calls this C/C++ source function but
does not return the result. Modify main_foo so that it takes inputs and returns outputs
as required by your application.

Main Function

This section defines a main function that does the following:

• If your output language is C, it declares and names the variables argc and argv
but casts them to void. If your output language is C++, the generated example main
declares, but does not name, the variables argc and argv.

• Calls the initialize function foo_initialize, which is named for the alphabetically
first entry-point function foo declared for code generation. Call the initialize function
only once, even if you have multiple entry-point functions called in the function main.

• Calls each of the entry-point functions once.
• Calls the terminate function foo_terminate, which is named for the alphabetically

first entry-point function foo declared for code generation. Call the terminate
function only once, even if you have multiple entry-point functions called in the
function main.

• Returns zero.

Modify the function main, including the inputs and outputs of main and of the entry-
point functions, to meet the requirements of your application.

25-53

25 Deploying Generated Code

Contents of the File main.h

For the example main header file main.h, MATLAB Coder generates the following:

• “Include Guard” on page 25-54
• “Include Files” on page 25-54
• “Function Declarations” on page 25-54

By default, MATLAB Coder also generates comments in main.h that can help you
modify the example main function to use in your application.

Include Guard

main.h uses an include guard to prevent the contents of the file from being included
multiple times. The include guard contains the include files and function declarations
within an #ifndef construct.

Include Files

main.h includes the header files required to call code that is not defined within it.

Function Declarations

main.h declares the function prototype for the main function that is defined in the
example main source file main.c or main.cpp.

Related Examples
• “Incorporate Generated Code Using an Example Main Function” on page 25-20
• “Use an Example C Main in an Application” on page 25-23

More About
• “How MATLAB Coder Infers C/C++ Data Types” on page 27-9

25-54

 Troubleshoot Failures in Deployed Code

Troubleshoot Failures in Deployed Code

If your deployed code fails, consider regenerating the code with run-time error detection
enabled. When you enable run-time error detection, the generated code includes code
that detects and reports errors, such as out-of-bounds array indexing. If the code detects
one of these errors, it reports a message and terminates the program. Running the code
that includes the error checks helps you to see if one of these errors caused the failure.

Run-time error detection can affect the performance of the generated code. If
performance is a consideration for your application, when you finish troubleshooting,
regenerate the code with run-time error detection disabled.

See “Run-Time Error Detection and Reporting in Standalone C/C++ Code” on page 22-28
and “Generate Standalone Code That Detects and Reports Run-Time Errors” on page
22-30.

25-55

26

Accelerating MATLAB Algorithms

• “Workflow for Accelerating MATLAB Algorithms” on page 26-2
• “Best Practices for Using MEX Functions to Accelerate MATLAB Algorithms” on page

26-4
• “Edge Detection on Images” on page 26-7
• “Accelerate MATLAB Algorithms” on page 26-13
• “Modifying MATLAB Code for Acceleration” on page 26-14
• “Control Run-Time Checks” on page 26-15
• “Algorithm Acceleration Using Parallel for-Loops (parfor)” on page 26-18
• “Control Compilation of parfor-Loops” on page 26-24
• “Reduction Assignments in parfor-Loops” on page 26-25
• “Classification of Variables in parfor-Loops” on page 26-26
• “Accelerate MATLAB Algorithms That Use Parallel for-Loops (parfor)” on page

26-35
• “Specify Maximum Number of Threads in parfor-Loops” on page 26-36
• “Troubleshooting parfor-Loops” on page 26-37
• “Accelerating Simulation of Bouncing Balls” on page 26-38
• “Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler”

on page 26-43

26 Accelerating MATLAB Algorithms

Workflow for Accelerating MATLAB Algorithms

26-2

 Workflow for Accelerating MATLAB Algorithms

See Also

• “Set Up a MATLAB Coder Project” on page 18-2
• “Workflow for Preparing MATLAB Code for Code Generation” on page 19-2
• “Workflow for Testing MEX Functions in MATLAB” on page 20-3
• “Modifying MATLAB Code for Acceleration” on page 26-14

26-3

26 Accelerating MATLAB Algorithms

Best Practices for Using MEX Functions to Accelerate MATLAB
Algorithms

In this section...

“Accelerate Code That Dominates Execution Time” on page 26-4
“Include Loops Inside MEX Function” on page 26-4
“Avoid Generating MEX Functions from Unsupported Functions” on page 26-5
“Avoid Generating MEX Functions if Built-In MATLAB Functions Dominate Run Time”
on page 26-6
“Minimize MEX Function Calls” on page 26-6

When you choose a section of MATLAB code to accelerate, the following practices are
recommended.

Accelerate Code That Dominates Execution Time

Find the section of MATLAB code that dominates run time. Accelerate this section of the
code using a MEX function as follows:

1 Place this section of the code inside a separate MATLAB function.
2 From this MATLAB function, generate a MEX function.
3 From your original MATLAB code, call the MEX function.

To find the execution time of each MATLAB instruction, use MATLAB Profiler.

• To open the Profiler from the command line, type profile viewer.
• To open Profiler from the MATLAB Editor window, under the Editor tab, click Run

and Time.

For more information about using the Profiler to measure run time of MATLAB code, see
“Profile to Improve Performance”.

Include Loops Inside MEX Function

Instead of calling a MEX function inside a loop in the MATLAB code, include the loop
inside the MEX function. Including the loop eliminates the overheads in calling the MEX
function for every run of the loop.

26-4

 Best Practices for Using MEX Functions to Accelerate MATLAB Algorithms

For example, the following code finds the greatest element in every row of a 1000–by–
1000 matrix, mat. You can accelerate sections 1,2, and 3 using a MEX function.:

% Section 1 begins

for i = 1:10000

 % Section 2 begins

 max = mat(i,0); % Initialize max

 for j = 1:10000

 % Section 3 begins

 if (mat(i,j) > max)

 max = mat(i,j) % Store the current maximum

 end

 % Section 3 ends

 end

 % Section 2 ends

end

% Section 1 ends

Accelerate section 1 using a MEX function. Accelerate section 1 first so that the MEX
function is called only once.. If you cannot accelerate section 1 first, then accelerate
sections 2 or 3, in that order. If section 2 (or 3) is accelerated using a MEX function, the
function is called 10000 (or 10000 × 10000) times.

Avoid Generating MEX Functions from Unsupported Functions

Check that the section of MATLAB code that you accelerate does not contain many
functions and language features that are unsupported by MATLAB Coder. For a list of
supported functions, see “Functions and Objects Supported for C/C++ Code Generation —
Alphabetical List” on page 4-2.

Note: In certain situations, you might have to accelerate sections of code even though
they contain a few unsupported functions. Declare an unsupported function as extrinsic
to invoke the original MATLAB function instead of the code generated for the function.
You can declare a function as extrinsic by using coder.extrinsic or wrapping it in an
feval statement. See “Extrinsic Functions” on page 14-11.

26-5

26 Accelerating MATLAB Algorithms

Avoid Generating MEX Functions if Built-In MATLAB Functions Dominate
Run Time

Use MEX functions to accelerate MATLAB code only if user-generated code dominates
the run time.

Avoid generating MEX functions if computationally intensive, built-in MATLAB
functions dominate the run time. These functions are pre-compiled and optimized, so the
MATLAB code is not accelerated significantly using a MEX function. Examples of such
functions include svd, eig ,fft, qr, lu.

Tip You can invoke computationally intensive, built-in MATLAB functions from your
MEX function. Declare the MATLAB function as extrinsic using coder.extrinsic or
wrap it in an feval statement. For more information, see “Extrinsic Functions” on page
14-11.

Minimize MEX Function Calls

Accelerate as much of the MATLAB code as possible using one MEX function instead of
several MEX functions called at lower levels. This minimizes the overheads in calling the
MEX functions.

For example, consider the function,testfunc,which calls two functions,testfunc_1 and
testfunc_2:

function [y1,y2] = testfunc(x1,x2)

 y1 = testfunc_1(x1,x2);

 y2 = testfunc_2(x1,x2);

end

Instead of generating MEX functions individually for testfunc_1 and testfunc_2, and
then calling the MEX functions in testfunc, generate a MEX function for testfunc
itself.

26-6

 Edge Detection on Images

Edge Detection on Images

This example shows how to generate a standalone C library from MATLAB code that
implements a simple Sobel filter that performs edge detection on images. The example
also shows how to generate and test a MEX function in MATLAB prior to generating C
code to verify that the MATLAB code is suitable for code generation.

Prerequisites

There are no prerequisites for this example.

Create a New Folder and Copy Relevant Files

The following code will create a folder in your current working folder (pwd). The new
folder will only contain the files that are relevant for this example. If you do not want to
affect the current folder (or if you cannot generate files in this folder), you should change
your working folder.

Run Command: Create a New Folder and Copy Relevant Files

coderdemo_setup('coderdemo_edge_detection');

About the 'sobel' Function

The sobel.m function takes an image (represented as a double matrix) and a threshold
value and returns an image with the edges detected (based on the threshold value).

type sobel

% edgeImage = sobel(originalImage, threshold)

% Sobel edge detection. Given a normalized image (with double values)

% return an image where the edges are detected w.r.t. threshold value.

function edgeImage = sobel(originalImage, threshold) %#codegen

assert(all(size(originalImage) <= [1024 1024]));

assert(isa(originalImage, 'double'));

assert(isa(threshold, 'double'));

k = [1 2 1; 0 0 0; -1 -2 -1];

H = conv2(double(originalImage),k, 'same');

V = conv2(double(originalImage),k','same');

E = sqrt(H.*H + V.*V);

edgeImage = uint8((E > threshold) * 255);

26-7

26 Accelerating MATLAB Algorithms

Generate the MEX Function

Generate a MEX function using the 'codegen' command.

codegen sobel

Before generating C code, you should first test the MEX function in MATLAB to ensure
that it is functionally equivalent to the original MATLAB code and that no run-time
errors occur. By default, 'codegen' generates a MEX function named 'sobel_mex' in the
current folder. This allows you to test the MATLAB code and MEX function and compare
the results.

Read in the Original Image

Use the standard 'imread' command.

im = imread('hello.jpg');

image(im);

26-8

 Edge Detection on Images

Convert Image to a Grayscale Version

Convert the color image (shown above) to an equivalent grayscale image with normalized
values (0.0 for black, 1.0 for white).

gray = (0.2989 * double(im(:,:,1)) + 0.5870 * double(im(:,:,2)) + 0.1140 * double(im(:,:,3)))/255;

Run the MEX Function (The Sobel Filter)

Pass the normalized image and a threshold value.

edgeIm = sobel_mex(gray, 0.7);

26-9

26 Accelerating MATLAB Algorithms

Display the Result

im3 = repmat(edgeIm, [1 1 3]);

image(im3);

Generate Standalone C Code

codegen -config coder.config('lib') sobel

Using 'codegen' with the '-config coder.config('lib')' option produces a standalone C
library. By default, the code generated for the library is in the folder codegen/lib/sobel/

Inspect the Generated Function

type codegen/lib/sobel/sobel.c

26-10

 Edge Detection on Images

/*

 * File: sobel.c

 *

 * MATLAB Coder version : 3.2

 * C/C++ source code generated on : 23-Jul-2016 01:12:11

 */

/* Include Files */

#include "rt_nonfinite.h"

#include "sobel.h"

#include "sobel_emxutil.h"

#include "sqrt.h"

#include "conv2.h"

/* Function Definitions */

/*

 * Arguments : const emxArray_real_T *originalImage

 * double threshold

 * emxArray_uint8_T *edgeImage

 * Return Type : void

 */

void sobel(const emxArray_real_T *originalImage, double threshold,

 emxArray_uint8_T *edgeImage)

{

 emxArray_real_T *H;

 emxArray_real_T *V;

 int b_H;

 int c_H;

 emxInit_real_T(&H, 2);

 emxInit_real_T(&V, 2);

 /* edgeImage = sobel(originalImage, threshold) */

 /* Sobel edge detection. Given a normalized image (with double values) */

 /* return an image where the edges are detected w.r.t. threshold value. */

 conv2(originalImage, H);

 b_conv2(originalImage, V);

 b_H = H->size[0] * H->size[1];

 emxEnsureCapacity((emxArray__common *)H, b_H, (int)sizeof(double));

 b_H = H->size[0];

 c_H = H->size[1];

 c_H *= b_H;

 for (b_H = 0; b_H < c_H; b_H++) {

26-11

26 Accelerating MATLAB Algorithms

 H->data[b_H] = H->data[b_H] * H->data[b_H] + V->data[b_H] * V->data[b_H];

 }

 emxFree_real_T(&V);

 b_sqrt(H);

 b_H = edgeImage->size[0] * edgeImage->size[1];

 edgeImage->size[0] = H->size[0];

 edgeImage->size[1] = H->size[1];

 emxEnsureCapacity((emxArray__common *)edgeImage, b_H, (int)sizeof(unsigned

 char));

 c_H = H->size[0] * H->size[1];

 for (b_H = 0; b_H < c_H; b_H++) {

 edgeImage->data[b_H] = (unsigned char)((H->data[b_H] > threshold) * 255U);

 }

 emxFree_real_T(&H);

}

/*

 * File trailer for sobel.c

 *

 * [EOF]

 */

Cleanup

Remove files and return to original folder

Run Command: Cleanup

cleanup

26-12

 Accelerate MATLAB Algorithms

Accelerate MATLAB Algorithms

For many applications, you can generate MEX functions to accelerate MATLAB
algorithms. If you have a Fixed-Point Designer license, you can generate MEX functions
to accelerate fixed-point MATLAB algorithms. After generating a MEX function, test
it in MATLAB to verify that its operation is functionally equivalent to the original
MATLAB algorithm. Then compare the speed of execution of the MEX function with that
of the MATLAB algorithm. If the MEX function speed is not sufficiently fast, you might
improve it using one of the following methods:

• Choosing a different C/C++ compiler.

It is important that you use a C/C++ compiler that is designed to generate high
performance code.

Note: The default MATLAB compiler for Windows 64-bit platforms, lcc, is designed
to generate code quickly. It is not designed to generate high performance code.

• “Modifying MATLAB Code for Acceleration” on page 26-14
• “Control Run-Time Checks” on page 26-15

26-13

26 Accelerating MATLAB Algorithms

Modifying MATLAB Code for Acceleration

How to Modify Your MATLAB Code for Acceleration

You might improve the efficiency of the generated code using one of the following
optimizations:

• “Unroll for-Loops” on page 29-37
• “Inline Code” on page 29-10
• “Eliminate Redundant Copies of Function Inputs” on page 29-7

26-14

 Control Run-Time Checks

Control Run-Time Checks

In this section...

“Types of Run-Time Checks” on page 26-15
“When to Disable Run-Time Checks” on page 26-15
“How to Disable Run-Time Checks” on page 26-16

Types of Run-Time Checks

The code generated for your MATLAB functions includes the following run-time checks
and external calls to MATLAB functions.

• Memory integrity checks

These checks detect violations of memory integrity in code generated for MATLAB
functions and stop execution with a diagnostic message.

Caution These checks are enabled by default. Without memory integrity checks,
violations result in unpredictable behavior.

• Responsiveness checks in code generated for MATLAB functions

These checks enable periodic checks for Ctrl+C breaks in code generated for MATLAB
functions. Enabling responsiveness checks also enables graphics refreshing.

Caution These checks are enabled by default. Without these checks, the only way to
end a long-running execution might be to terminate MATLAB.

• Extrinsic calls to MATLAB functions

Extrinsic calls to MATLAB functions, for example to display results, are enabled by
default for debugging purposes. For more information about extrinsic functions, see
“Declaring MATLAB Functions as Extrinsic Functions” on page 14-12.

When to Disable Run-Time Checks

Generally, generating code with run-time checks enabled results in more generated
code and slower MEX function execution than generating code with the checks disabled.

26-15

26 Accelerating MATLAB Algorithms

Similarly, extrinsic calls are time consuming and increase memory usage and execution
time. Disabling run-time checks and extrinsic calls usually results in streamlined
generated code and faster MEX function execution. The following table lists issues to
consider when disabling run-time checks and extrinsic calls.

Consider disabling... Only if...

Memory integrity checks You have already verified that array
bounds and dimension checking is
unnecessary.

Responsiveness checks You are sure that you will not need to stop
execution of your application using Ctrl+C.

Extrinsic calls You are using extrinsic calls only for
functions that do not affect application
results.

How to Disable Run-Time Checks

You can disable run-time checks explicitly from the project settings dialog box, the
command line, or a MEX configuration dialog box.

Disabling Run-Time Checks Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Set Build type to MEX.
3 Click More Settings.
4 On the Speed tab, clear Ensure memory integrity, Enable responsiveness to

CTRL+C and graphics refreshing, or Keep Extrinsic calls, as applicable.

Disabling Run-Time Checks From the Command Line

1 In the MATLAB workspace, define the MEX configuration object:

mexcfg = coder.config('mex');

2 At the command line, set the IntegrityChecks, ExtrinsicCalls, or
ResponsivenessChecks properties to false, as applicable:

mexcfg.IntegrityChecks = false;

26-16

 Control Run-Time Checks

mexcfg.ExtrinsicCalls = false;

mexcfg.ResponsivenessChecks = false;

26-17

26 Accelerating MATLAB Algorithms

Algorithm Acceleration Using Parallel for-Loops (parfor)
In this section...

“Parallel for-Loops (parfor) in Generated Code” on page 26-18
“How parfor-Loops Improve Execution Speed” on page 26-19
“When to Use parfor-Loops” on page 26-19
“When Not to Use parfor-Loops” on page 26-19
“parfor-Loop Syntax” on page 26-20
“parfor Restrictions” on page 26-20

Parallel for-Loops (parfor) in Generated Code

To potentially accelerate execution, you can generate MEX functions or C/C++ code from
MATLAB code that contains parallel for-loops (parfor-loops).

A parfor-loop, like the standard MATLAB for-loop, executes a series of statements
(the loop body) over a range of values. Unlike the for-loop, however, the iterations of the
parfor-loop can run in parallel on multiple cores on the target hardware.

Running the iterations in parallel might significantly improve execution speed of the
generated code. For more information, see “How parfor-Loops Improve Execution Speed”
on page 26-19.

Note: The parallel execution occurs only in generated MEX functions or C/C++ code;
not the original MATLAB code. To accelerate your MATLAB code, generate a MEX
function from the parfor-loop. Then, call the MEX function from your code. For more
information, see “Workflow for Accelerating MATLAB Algorithms” on page 26-2.

MATLAB Coder software uses the Open Multiprocessing (OpenMP) application
interface to support shared-memory, multicore code generation. If you want distributed
parallelism, use the Parallel Computing Toolbox™ product. By default, MATLAB Coder
uses up to as many cores as it finds available. If you specify the number of threads to
use, MATLAB Coder uses at most that number of cores for the threads, even if additional
cores are available. For more information, see parfor.

Because the loop body can execute in parallel on multiple threads, it must conform
to certain restrictions. If MATLAB Coder software detects loops that do not conform

26-18

 Algorithm Acceleration Using Parallel for-Loops (parfor)

to parfor specifications, it produces an error. For more information, see “parfor
Restrictions” on page 26-20.

How parfor-Loops Improve Execution Speed

A parfor-loop might provide better execution speed than its analogous for-loop because
several threads can compute concurrently on the same loop.

Each execution of the body of a parfor-loop is called an iteration. The threads evaluate
iterations in arbitrary order and independently of each other. Because each iteration is
independent, they do not have to be synchronized. If the number of threads is equal to
the number of loop iterations, each thread performs one iteration of the loop. If there are
more iterations than threads, some threads perform more than one loop iteration.

For example, when a loop of 100 iterations runs on 20 threads, each thread executes five
iterations of the loop simultaneously. If your loop takes a long time to run because of
the large number of iterations or individual iterations being lengthy, you can reduce the
run time significantly using multiple threads. In this example, you might not, however,
get 20 times improvement in speed because of parallelization overheads, such as thread
creation and deletion.

When to Use parfor-Loops

Use parfor when you have:

• Many iterations of a simple calculation. parfor divides the loop iterations into
groups so that each thread executes one group of iterations.

• A loop iteration that takes a long time to execute. parfor executes the iterations
simultaneously on different threads. Although this simultaneous execution does not
reduce the time spent on an individual iteration, it might significantly reduce overall
time spent on the loop.

When Not to Use parfor-Loops

Do not use parfor when:

• An iteration of your loop depends on other iterations. Running the iterations in
parallel can lead to erroneous results.

To help you avoid using parfor when an iteration of your loop depends on other
iterations, MATLAB Coder specifies a rigid classification of variables. For more

26-19

26 Accelerating MATLAB Algorithms

information, see “Classification of Variables in parfor-Loops” on page 26-26. If
MATLAB Coder detects loops that do not conform to the parfor specifications, it does
not generate code and produces an error.

Reductions are an exception to the rule that loop iterations must be independent. A
reduction variable accumulates a value that depends on all the iterations together,
but is independent of the iteration order. For more information, see “Reduction
Variables” on page 26-28.

• There are only a few iterations that perform some simple calculations.

Note: For small number of loop iterations, you might not accelerate execution due
to parallelization overheads. Such overheads include time taken for thread creation,
data synchronization between threads, and thread deletion.

parfor-Loop Syntax

• For a parfor-loop, use this syntax:

parfor i = InitVal:EndVal

parfor (i = InitVal:EndVal)

• To specify the maximum number of threads, use this syntax:

parfor (i = InitVal:EndVal,NumThreads)

For more information, see parfor.

parfor Restrictions

• The parfor loop does not support the syntax:

parfor (i=initVal:step:endVal)

parfor i=initVal:step:endVal

• You must use a compiler that supports the Open Multiprocessing (OpenMP)
application interface. See http://www.mathworks.com/support/compilers/
current_release/. If you use a compiler that does not support OpenMP, MATLAB
Coder treats the parfor-loops as for-loops. In the generated MEX function or C/C++
code, the loop iterations run on a single thread.

• The OpenMP application interface is not compatible with JIT MEX compilation. See
“JIT Compilation Does Not Support OpenMP” on page 31-3.

26-20

 Algorithm Acceleration Using Parallel for-Loops (parfor)

• The type of the loop index must be representable by an integer type on the target
hardware. Use a type that does not require a multiword type in the generated code.

• parfor for standalone code generation requires the toolchain approach for building
executables or libraries. Do not change settings that cause the code generator to use
the template makefile approach. See “Project or Configuration is Using the Template
Makefile” on page 24-22.

• Do not use the following constructs in the body of a parfor loop:

• Nested parfor-loops

You can have a parfor loop inside another parfor-loop. However, the inner
parfor loop will be executed on a single thread as an ordinary for-loop.

Inside a parfor loop, you can call a function that contains another parfor-loop.
• Break and return statements

You cannot use break or return statements inside a parfor-loop.
• Global variables

You cannot write to a global variable inside a parfor-loop.
• Reductions on MATLAB classes

You cannot use reductions on MATLAB classes inside a parfor-loop.
• Reductions on char variables

You cannot use reductions on char variables inside a parfor-loop.

For example, you cannot generate C code for the following MATLAB code:

c = char(0);

parfor i=1:10

 c = c + char(1);

end

In the parfor-loop, MATLAB makes c a double. For code generation, c cannot
change type.

• Reductions using external C code

You cannot use coder.ceval in reductions inside a parfor-loop.. For example,
you cannot generate code for the following parfor-loop:

26-21

26 Accelerating MATLAB Algorithms

parfor i=1:4

 y=coder.ceval('myCFcn',y,i);

end

Instead, write a local function that calls the C code using coder.ceval and call
this function in the parfor-loop. For example:

parfor i=1:4

 y = callMyCFcn(y,i);

end

...

function y = callMyCFcn(y,i)

 y = coder.ceval('mCyFcn', y , i);

end

• Extrinsic function calls

You cannot call extrinsic functions using coder.extrinsic inside a parfor-loop.
Calls to functions that contain extrinsic calls result in a run-time error.

• Inlining functions

MATLAB Coder does not inline functions into parfor-loops, including functions
that use coder.inline('always').

• Unrolling loops

You cannot use coder.unroll inside a parfor-loop.

If a loop is unrolled inside a parfor-loop, MATLAB Coder cannot classify the
variable. For example:

for j=coder.unroll(3:6)

 y(i,j)=y(i,j)+i+j;

end

This code is unrolled to:

y(i,3)=y(i,3)+i+3;

...

y(i,6)=y(i,6)+i+6;

In the unrolled code, MATLAB Coder cannot classify the variable y because y is
indexed in different ways inside the parfor-loop.

MATLAB Coder does not support variables that it cannot classify. For more
information, see “Classification of Variables in parfor-Loops” on page 26-26.

26-22

 Algorithm Acceleration Using Parallel for-Loops (parfor)

• varargin/varargout

You cannot use varargin or varargout inside a parfor-loop.

26-23

26 Accelerating MATLAB Algorithms

Control Compilation of parfor-Loops

By default, MATLAB Coder generates code that can run the parfor-loop on multiple
threads. To treat the parfor-loops as for-loops that run on a single thread, disable
parfor:

• By using the codegen function with -O disable:openmp option at the command
line.

• By setting Enable OpenMP library if possible to No under All Settings tab in the
project settings dialog box.

When to Disable parfor

Disable parfor if you want to:

• Compare the execution times of the serial and parallel versions of the generated code.
• Investigate failures. If the parallel version of the generated code fails, disable parfor

and generate a serial version to facilitate debugging.
• Use C compilers that do not support OpenMP.

26-24

 Reduction Assignments in parfor-Loops

Reduction Assignments in parfor-Loops

What are Reduction Assignments?

Reduction assignments, or reductions, are an exception to the rule that loop iterations
must be independent. A reduction variable accumulates a value that depends on all the
loop iterations together, but is independent of the iteration order. For a list of supported
reduction variables see “Reduction Variables” on page 26-28.

Multiple Reductions in a parfor-Loop

You can perform the same reduction assignment multiple times within a parfor-loop
provided that you use the same data type each time.

For example, in the following parfor-loop, u(i) and v(i) must be the same type.

parfor i = 1:10;

 X = X + u(i);

 X = X + v(i);

end

Similarly, the following example is valid provided that u(i) and v(i) are the same type.

parfor i=1:10

 r = foo(r,u(i));

 r = foo(r,v(i));

end

26-25

26 Accelerating MATLAB Algorithms

Classification of Variables in parfor-Loops

In this section...

“Overview” on page 26-26
“Sliced Variables” on page 26-27
“Broadcast Variables” on page 26-28
“Reduction Variables” on page 26-28
“Temporary Variables” on page 26-33

Overview

MATLAB Coder classifies variables inside a parfor-loop into one of the categories in
the following table. It does not support variables that it cannot classify. If a parfor-
loop contains variables that cannot be uniquely categorized or if a variable violates its
category restrictions, the parfor-loop generates an error.

Classification Description

Loop Serves as a loop index for arrays
Sliced An array whose segments are operated on by different iterations of

the loop
Broadcast A variable defined before the loop whose value is used inside the loop,

but not assigned inside the loop
Reduction Accumulates a value across iterations of the loop, regardless of

iteration order
Temporary A variable created inside the loop, but unlike sliced or reduction

variables, not available outside the loop

Each of these variable classifications appears in this code fragment:

a=0;

c=pi;

z=0;

r=rand(1,10);

parfor i=1:10

 a=i; % 'a' is a temporary variable

 z=z+i; % 'z' is a reduction variable

 b(i)=r(i); % 'b' is a sliced output variable;

26-26

 Classification of Variables in parfor-Loops

 % 'r' a sliced input variable

 if i<=c % 'c' is a broadcast variable

 d=2*a; % 'd' is a temporary variable

 end

end

Sliced Variables

A sliced variable is one whose value can be broken up into segments, or slices, which are
then operated on separately by different threads. Each iteration of the loop works on a
different slice of the array.

In the next example, a slice of A consists of a single element of that array:

parfor i = 1:length(A)

 B(i) = f(A(i));

end

Characteristics of a Sliced Variable

A variable in a parfor-loop is sliced if it has the following characteristics:

• Type of First-Level Indexing — The first level of indexing is parentheses, ().
• Fixed Index Listing — Within the first-level parenthesis, the list of indices is the

same for all occurrences of a given variable.
• Form of Indexing — Within the list of indices for the variable, exactly one index

involves the loop variable.
• Shape of Array — In assigning to a sliced variable, the right-hand side of the

assignment is not [] or '' (these operators indicate deletion of elements).

Type of First-Level Indexing. For a sliced variable, the first level of indexing is enclosed
in parentheses, (). For example, A(...). If you reference a variable using dot notation,
A.x, the variable is not sliced.

Variable A on the left is not sliced; variable A on the right is sliced:

A.q(i,12) A(i,12).q

Fixed Index Listing. Within the first-level parentheses of a sliced variable's indexing, the
list of indices is the same for all occurrences of a given variable.

Variable B on the left is not sliced because B is indexed by i and i+1 in different places.
Variable B on the right is sliced.

26-27

26 Accelerating MATLAB Algorithms

parfor i = 1:10

 B(i) = B(i+1) + 1;

end

parfor i = 1:10

 B(i+1) = B(i+1) + 1;

end

Form of Indexing. Within the list of indices for a sliced variable, one index is of the form
i, i+k, i-k, k+i, or k-i.

• i is the loop variable.
• k is a constant or a simple (nonindexed) variable.
• Every other index is a constant, a simple variable, colon, or end.

When you use other variables along with the loop variable to index an array, you cannot
set these variables inside the loop. These variables are constant over the execution of the
entire parfor statement. You cannot combine the loop variable with itself to form an
index expression.

In the following examples, i is the loop variable, j and k are nonindexed variables.

Variable A Is Not Sliced Variable A Is Sliced

A(i+f(k),j,:,3)

A(i,20:30,end)

A(i,:,s.field1)

A(i+k,j,:,3)

A(i,:,end)

A(i,:,k)

Shape of Array. A sliced variable must maintain a constant shape. In the following
examples, the variable A is not sliced:

A(i,:) = [];

A(end + 1) = i;

Broadcast Variables

A broadcast variable is a variable other than the loop variable or a sliced variable that is
not modified inside the loop.

Reduction Variables

A reduction variable accumulates a value that depends on all the iterations together, but
is independent of the iteration order.

This example shows a parfor-loop that uses a scalar reduction assignment. It uses the
reduction variable x to accumulate a sum across 10 iterations of the loop. The execution
order of the iterations on the threads does not matter.

26-28

 Classification of Variables in parfor-Loops

x = 0;

parfor i = 1:10

 x = x + i;

end

x

Where expr is a MATLAB expression, reduction variables appear on both sides of an
assignment statement.

X = X + expr X = expr + X

X = X - expr See “Reduction Assignments, Associativity,
and Commutativity of Reduction Functions”
on page 26-32

X = X .* expr X = expr .* X

X = X * expr X = expr * X

X = X & expr X = expr & X

X = X | expr X = expr | X

X = min(X, expr) X = min(expr, X)

X = max(X, expr) X = max(expr, X)

X=f(X, expr)

Function f must be a user-defined
function.

X = f(expr, X)

See “Reduction Assignments, Associativity,
and Commutativity of Reduction Functions”
on page 26-32

Each of the allowed statements is referred to as a reduction assignment. A reduction
variable can appear only in assignments of this type.

The following example shows a typical usage of a reduction variable X:

X = ...; % Do some initialization of X

parfor i = 1:n

 X = X + d(i);

end

This loop is equivalent to the following, where each d(i) is calculated by a different
iteration:

X = X + d(1) + ... + d(n)

26-29

26 Accelerating MATLAB Algorithms

If the loop were a regular for-loop, the variable X in each iteration would get its value
either before entering the loop or from the previous iteration of the loop. However, this
concept does not apply to parfor-loops.

In a parfor-loop, the value of X is not updated directly inside each thread. Rather,
additions of d(i) are done in each thread, with i ranging over the subset of 1:n being
performed on that thread. The software then accumulates the results into X.

Similarly, the reduction:

r=r<op> x(i)

is equivalent to:

r=r<op>x(1)] <op>x(2)...<op>x(n)

The operation <op> is first applied to x(1)...x(n), then the partial result is applied to
r.

If operation <op> takes two inputs, it should meet one of the following criteria:

• Take two arguments of typeof(x(i)) and return typeof(x(i))
• Take one argument of typeof(r) and one of typeof(x(i)) and return typeof(r)

Rules for Reduction Variables

Use the same reduction function or operation in all reduction assignments

For a reduction variable, you must use the same reduction function or operation in all
reduction assignments for that variable. In the following example, the parfor-loop on
the left is not valid because the reduction assignment uses + in one instance, and * in
another.

Invalid Use of Reduction Variable Valid Use of Reduction Variable

parfor i = 1:n

 if A > 5*k

 A = A + 1;

 else

 A = A * 2;

 end

parfor i = 1:n

 if A > 5*k

 A = A * 3;

 else

 A = A * 2;

 end

Restrictions on reduction function parameter and return types

A reduction r=r<op> x(i), should take arguments of typeof(x(i)) and return
typeof(x(i)) or take arguments of typeof(r) and typeof(x(i)) and return
typeof(r).

26-30

 Classification of Variables in parfor-Loops

In the following example, in the invalid loop, r is a fixed-point type and 2 is not. To fix
this issue, cast 2 to be the same type as r.

Invalid Use of Reduction Variable Valid Use of Reduction Variable

function r = fiops(in)

r=fi(in,'WordLength',20,...

 'FractionLength',14,...

 'SumMode','SpecifyPrecision',...

 'SumWordLength',20,...

 'SumFractionLength',14,...

 'ProductMode', 'SpecifyPrecision',...

 'ProductWordLength',20,...

 'ProductFractionLength',14);

parfor i = 1:10

 r = r*2;

end

r=fi(in,'WordLength',20,...

 'FractionLength',14,...

 'SumMode','SpecifyPrecision',...

 'SumWordLength',20,...

 'SumFractionLength',14,...

 'ProductMode','SpecifyPrecision',...

 'ProductWordLength',20,...

 'ProductFractionLength',14);

T = r.numerictype;

F = r.fimath;

parfor i = 1:10

 r = r*fi(2,T,F);

end

26-31

26 Accelerating MATLAB Algorithms

In the following example, the reduction function fcn is invalid because it does not
handle the case when input u is fixed point. (The + and * operations are automatically
polymorphic.) You must write a polymorphic version of fcn to handle the expected input
types.

Invalid Use of Reduction Variable Valid Use of Reduction Variable

function [y0, y1, y2] = pfuserfcn(u)

 y0 = 0;

 y1 = 1;

 [F, N] = fiprops();

 y2 = fi(1,N,F);

 parfor (i=1:numel(u),12)

 y0 = y0 + u(i);

 y1 = y1 * u(i);

 y2 = fcn(y2, u(i));

 end

end

function y = fcn(u, v)

 y = u * v;

end

function [y0, y1, y2] = pfuserfcn(u)

 y0 = 0;

 y1 = 1;

 [F, N] = fiprops();

 y2 = fi(1,N,F);

 parfor (i=1:numel(u),12)

 y0 = y0 + u(i);

 y1 = y1 * u(i);

 y2 = fcn(y2, u(i));

 end

end

% fcn handles inputs of type double

% and fi

function y = fcn(u, v)

 if isa(u,'double')

 y = u * v;

 else

 [F, N] = fiprops();

 y = u * fi(v,N,F);

 end

end

function [F, N] = fiprops()

 N = numerictype(1,96,30);

 F = fimath('ProductMode',...

 'SpecifyPrecision',...

 'ProductWordLength',96);

end

Reduction Assignments, Associativity, and Commutativity of Reduction Functions

Reduction Assignments. MATLAB Coder does not allow reduction variables to be read
anywhere in the parfor-loop except in reduction statements. In the following example,
the call foo(r) after the reduction statement r=r+i causes the loop to be invalid.

function r = temp %#codegen

 r = 0;

26-32

 Classification of Variables in parfor-Loops

 parfor i=1:10

 r = r + i;

 foo(r);

 end

end

Associativity in Reduction Assignments. If you use a user-defined function f in the
definition of a reduction variable, to get deterministic behavior of parfor-loops, the
reduction function f must be associative.

Note: If f is not associative, MATLAB Coder does not generate an error. You must write
code that meets this recommendation.

To be associative, the function f must satisfy the following for all a, b, and c:

f(a,f(b,c)) = f(f(a,b),c)

Commutativity in Reduction Assignments. Some associative functions, including +, .,
min, and max, are also commutative. That is, they satisfy the following for all a and b:

f(a,b) = f(b,a)

The function f of a reduction assignment must be commutative. If f is not commutative,
different executions of the loop might result in different answers.

Unless f is a known noncommutative built-in, the software assumes that it is
commutative.

Temporary Variables

A temporary variable is a variable that is the target of a direct, nonindexed assignment,
but is not a reduction variable. In the following parfor-loop, a and d are temporary
variables:

a = 0;

z = 0;

r = rand(1,10);

parfor i = 1:10

 a = i; % Variable a is temporary

 z = z + i;

 if i <= 5

26-33

26 Accelerating MATLAB Algorithms

 d = 2*a; % Variable d is temporary

 end

end

In contrast to the behavior of a for-loop, before each iteration of a parfor-loop,
MATLAB Coder effectively clears temporary variables. Because the iterations must
be independent, the values of temporary variables cannot be passed from one iteration
of the loop to another. Therefore, temporary variables must be set inside the body of a
parfor-loop, so that their values are defined separately for each iteration.

A temporary variable in the context of the parfor statement is different from a variable
with the same name that exists outside the loop.

Uninitialized Temporaries

Because temporary variables are cleared at the beginning of every iteration, MATLAB
Coder can detect certain cases in which an iteration through the loop uses the temporary
variable before it is set in that iteration. In this case, MATLAB Coder issues a static
error rather than a run-time error, because there is little point in allowing execution to
proceed if a run-time error will occur. For example, suppose you write:

 b = true;

 parfor i = 1:n

 if b && some_condition(i)

 do_something(i);

 b = false;

 end

 ...

 end

This loop is acceptable as an ordinary for-loop, but as a parfor-loop, b is a temporary
variable because it occurs directly as the target of an assignment inside the loop.
Therefore, it is cleared at the start of each iteration, so its use in the condition of the
if is uninitialized. (If you change parfor to for, the value of b assumes sequential
execution of the loop, so that do_something(i) is executed for only the lower values of
i until b is set false.)

26-34

 Accelerate MATLAB Algorithms That Use Parallel for-Loops (parfor)

Accelerate MATLAB Algorithms That Use Parallel for-Loops (parfor)

This example shows how to generate a MEX function for a MATLAB algorithm that
contains a parfor-loop.

1 Write a MATLAB function that contains a parfor-loop. For example:

function a = test_parfor %#codegen

a=ones(10,256);

r=rand(10,256);

parfor i=1:10

 a(i,:)=real(fft(r(i,:)));

end

2 Generate a MEX function for test_parfor. At the MATLAB command line, enter:

codegen test_parfor

codegen generates a MEX function, test_parfor_mex, in the current folder.
3 Run the MEX function. At the MATLAB command line, enter:

test_parfor_mex

Because you did not specify the maximum number of threads to use, the generated
MEX function executes the loop iterations in parallel on the maximum number of
available cores.

26-35

26 Accelerating MATLAB Algorithms

Specify Maximum Number of Threads in parfor-Loops

This example shows how to specify the maximum number of threads to use for a parfor-
loop. Because you specify the maximum number of threads to use, the generated MEX
function executes the loop iterations in parallel on as many cores as available, up to the
maximum number that you specify. If you specify more threads than there are cores
available, the MEX function uses the available cores.

1 Write a MATLAB function, specify_num_threads, that uses one input to specify
the maximum number of threads to execute a parfor-loop in the generated MEX
function. For example:

function y = specify_num_threads(u) %#codegen

 y = ones(1,100);

 % u specifies maximum number of threads

 parfor (i = 1:100,u)

 y(i) = i;

 end

end

2 Generate a MEX function for specify_num_threads. Use -args {0} to specify
that input u is a scalar double. Use -report to generate a code generation report. At
the MATLAB command line, enter:

codegen -report specify_num_threads -args {0}

codegen generates a MEX function, specify_num_threads_mex, in the current
folder.

3 Run the MEX function, specifying that it try to run in parallel on four threads. At
the MATLAB command line, enter:

specify_num_threads_mex(4)

The generated MEX function runs on up to four cores. If less than four cores are
available, the MEX function runs on the maximum number of cores available at the
time of the call.

26-36

 Troubleshooting parfor-Loops

Troubleshooting parfor-Loops

Global or Persistent Declarations in parfor-Loop

The body of a parfor-loop cannot contain a global or persistent variable
declaration.

Compiler Does Not Support OpenMP

The MATLAB Coder software uses the Open Multiprocessing (OpenMP) application
interface to support shared-memory, multicore code generation. To generate a loop that
runs in parallel on shared-memory, multicore platforms, use a compiler that supports
OpenMP. OpenMP is enabled by default. If your compiler does not support OpenMP,
MATLAB Coder generates a warning.

Install a compiler that supports OpenMP. See http://www.mathworks.com/support/
compilers/current_release/.

26-37

26 Accelerating MATLAB Algorithms

Accelerating Simulation of Bouncing Balls

This example shows how to accelerate MATLAB algorithm execution using a generated
MEX function. It uses the 'codegen' command to generate a MEX function for a
complicated application that uses multiple MATLAB files. You can use 'codegen' to check
that your MATLAB code is suitable for code generation and, in many cases, to accelerate
your MATLAB algorithm. You can run the MEX function to check for run-time errors.

Prerequisites

There are no prerequisites for this example.

Create a New Folder and Copy Relevant Files

The following code will create a folder in your current working folder (pwd). The new
folder will contain only the files that are relevant for this example. If you do not want
to affect the current folder (or if you cannot generate files in this folder), change your
working folder.

Run Command: Create a New Folder and Copy Relevant Files

coderdemo_setup('coderdemo_bouncing_balls');

About the 'run_balls' Function

The run_balls.m function takes a single input to specify the number of bouncing balls to
simulate. The simulation runs and plots the balls bouncing until there is no energy left
and returns the state (positions) of all the balls.

type run_balls

% balls = run_balls(n)

% Given 'n' number of balls, run a simulation until the balls come to a

% complete halt (or when the system has no more kinetic energy).

function balls = run_balls(n) %#codegen

coder.extrinsic('fprintf');

% Copyright 2010-2013 The MathWorks, Inc.

% Seeding the random number generator will guarantee that we get

% precisely the same simulation every time we call this function.

old_settings = rng(1283,'V4');

26-38

 Accelerating Simulation of Bouncing Balls

% The 'cdata' variable is a matrix representing the colordata bitmap which

% will be rendered at every time step.

cdata = zeros(400,600,'uint8');

% Setup figure windows

im = setup_figure_window(cdata);

% Get the initial configuration for 'n' balls.

balls = initialize_balls(cdata, n);

energy = 2; % Something greater than 1

iteration = 1;

while energy > 1

 % Clear the bitmap

 cdata(:,:) = 0;

 % Apply one iteration of movement

 [cdata,balls,energy] = step_function(cdata,balls);

 % Render the current state

 cdata = draw_balls(cdata, balls);

 iteration = iteration + 1;

 if mod(iteration,10) == 0

 fprintf(1, 'Iteration %d\n', iteration);

 end

 refresh_image(im, cdata);

end

fprintf(1, 'Completed iterations: %d\n', iteration);

% Restore RNG settings.

rng(old_settings);

Generate the MEX Function

First, generate a MEX function using the command codegen followed by the name of the
MATLAB file to compile. Pass an example input (-args 0) to indicate that the generated
MEX function will be called with an input of type double.

codegen run_balls -args 0

The 'run_balls' function calls other MATLAB functions, but you need to specify only the
entry-point function when calling 'codegen'.

By default, 'codegen' generates a MEX function named 'run_balls_mex' in the current
folder. This allows you to test the MATLAB code and MEX function and compare the
results.

26-39

26 Accelerating MATLAB Algorithms

Compare Results

Run and time the original 'run_balls' function followed by the generated MEX function.

tic, run_balls(50); t1 = toc;

tic, run_balls_mex(50); t2 = toc;

Iteration 10

Iteration 20

Iteration 30

Iteration 40

Iteration 50

Iteration 60

Iteration 70

Iteration 80

Iteration 90

Iteration 100

Iteration 110

Iteration 120

Iteration 130

Iteration 140

Iteration 150

Iteration 160

Iteration 170

Iteration 180

Iteration 190

Iteration 200

Iteration 210

Iteration 220

Iteration 230

Iteration 240

Iteration 250

Iteration 260

Iteration 270

Iteration 280

Completed iterations: 281

Iteration 10

Iteration 20

Iteration 30

Iteration 40

Iteration 50

Iteration 60

Iteration 70

Iteration 80

Iteration 90

26-40

 Accelerating Simulation of Bouncing Balls

Iteration 100

Iteration 110

Iteration 120

Iteration 130

Iteration 140

Iteration 150

Iteration 160

Iteration 170

Iteration 180

Iteration 190

Iteration 200

Iteration 210

Iteration 220

Iteration 230

Iteration 240

Iteration 250

Iteration 260

Iteration 270

Iteration 280

Completed iterations: 281

26-41

26 Accelerating MATLAB Algorithms

Estimated speed up is:

fprintf(1, 'Speed up: x ~%2.1f\n', t1/t2);

Speed up: x ~6.4

Clean Up

Remove files and return to original folder

Run Command: Cleanup

cleanup

26-42

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

Use Generated Code to Accelerate an Application Deployed with
MATLAB Compiler

This example shows how to use generated code to accelerate an application that you
deploy with MATLAB® Compiler. The example accelerates an algorithm by using
MATLAB® Coder™ to generate a MEX version of the algorithm. It uses MATLAB
Compiler to deploy a standalone application that calls the MEX function. The deployed
application uses the MATLAB® Runtime which enables royalty-free deployment to
someone who does not have MATLAB.

This workflow is useful when:

• You want to deploy an application to a platform that the MATLAB Runtime supports.
• The application includes a computationally intensive algorithm that is suitable for

code generation.
• The generated MEX for the algorithm is faster than the original MATLAB algorithm.
• You do not need to deploy readable C/C++ source code for the application.

The example application uses a DSP algorithm that requires the DSP System Toolbox™.

Create the MATLAB Application

For acceleration, it is a best practice to separate the computationally intensive algorithm
from the code that calls it.

In this example, myRLSFilterSystemIDSim implements the algorithm.
myRLSFilterSystemIDApp provides a user interface that calls
myRLSFilterSystemIDSim.

myRLSFilterSystemIDSim simulates system identification by using recursive least-
squares (RLS) adaptive filtering. It uses dsp.VariableBandwidthFIRFilter to model
the unidentified system and dsp.RLSFilter to identify the FIR filter.

myRLSFilterSystemIDApp provides a user interface that you use to dynamically tune
simulation parameters. It runs the simulation for a specified number of time steps or
until you stop the simulation. It plots the results on scopes.

For details about this application, see “System Identification Using RLS Adaptive
Filtering” in the DSP System Toolbox documentation.

26-43

26 Accelerating MATLAB Algorithms

In a writable folder, create myRLSFilterSystemIDSim and
myRLSFilterSystemIDApp. Alternatively, to access these files, click Open Script.

myRLSFilterSystemIDSim

function [tfe,err,pauseSim,stopSim,cutoffFreq,ff] = ...

 myRLSFilterSystemIDSim()

% myRLSFilterSystemIDSim implements the algorithm used in

% myRLSFilterSystemIDApp.

% This functions instantiates, initializes and steps through the System

% objects used in the algorithm.

%

% You can tune the cutoff frequency of the desired system and the

% forgetting factor of the RLS filter through the GUI that appears when

% myRLSFilterSystemIDApp is executed.

% Copyright 2013-2016 The MathWorks, Inc.

%#codegen

% Instantiate and initialize System objects. The objects are declared

% persistent so that they are not recreated every time the function is

% called inside the simulation loop.

persistent rlsFilt sine unknownSys transferFunctionEstimator

if isempty(rlsFilt)

 % FIR filter models the unidentified system

 unknownSys = dsp.VariableBandwidthFIRFilter('SampleRate',1e4,...

 'FilterOrder',30,...

 'CutoffFrequency',.48 * 1e4/2);

 % RLS filter is used to identify the FIR filter

 rlsFilt = dsp.RLSFilter('ForgettingFactor',.99,...

 'Length',28);

 % Sine wave used to generate input signal

 sine = dsp.SineWave('SamplesPerFrame',1024,...

 'SampleRate',1e4,...

 'Frequency',50);

 % Transfer function estimator used to estimate frequency responses of

 % FIR and RLS filters.

 transferFunctionEstimator = dsp.TransferFunctionEstimator(...

 'FrequencyRange','centered',...

 'SpectralAverages',10,...

 'FFTLengthSource','Property',...

 'FFTLength',1024,...

26-44

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

 'Window','Kaiser');

end

[paramNew, simControlFlags] = HelperUnpackUDP();

tfe = 0;

err = 0;

cutoffFreq = 0;

ff = 0;

pauseSim = simControlFlags.pauseSim;

stopSim = simControlFlags.stopSim;

if simControlFlags.stopSim

 return; % Stop the simulation

end

if simControlFlags.pauseSim

 return; % Pause the simulation (but keep checking for commands from GUI)

end

% Generate input signal - sine wave plus Gaussian noise

inputSignal = sine() + .1 * randn(1024,1);

% Filter input though FIR filter

desiredOutput = unknownSys(inputSignal);

% Pass original and desired signals through the RLS Filter

[rlsOutput , err] = rlsFilt(inputSignal,desiredOutput);

% Prepare system input and output for transfer function estimator

inChans = repmat(inputSignal,1,2);

outChans = [desiredOutput,rlsOutput];

% Estimate transfer function

tfe = transferFunctionEstimator(inChans,outChans);

% Save the cutoff frequency and forgetting factor

cutoffFreq = unknownSys.CutoffFrequency;

ff = rlsFilt.ForgettingFactor;

% Tune FIR cutoff frequency and RLS forgetting factor

if ~isempty(paramNew)

 unknownSys.CutoffFrequency = paramNew(1);

 rlsFilt.ForgettingFactor = paramNew(2);

 if simControlFlags.resetObj % reset System objects

26-45

26 Accelerating MATLAB Algorithms

 reset(rlsFilt);

 reset(unknownSys);

 reset(transferFunctionEstimator);

 reset(sine);

 end

end

end

myRLSFilterSystemIDApp

function scopeHandles = myRLSFilterSystemIDApp(numTSteps)

% myRLSFilterSystemIDApp initialize and execute RLS Filter

% system identification example. Then, display results using

% scopes. The function returns the handles to the scope and UI objects.

%

% Input:

% numTSteps - number of time steps

% Outputs:

% scopeHandles - Handle to the visualization scopes .

% Copyright 2013-2016 The MathWorks, Inc.

if nargin == 0

 numTSteps = Inf; % Run until user stops simulation.

end

% Create scopes

tfescope = dsp.ArrayPlot('PlotType','Line',...

 'Position',[8 696 520 420],...

 'YLimits',[-80 30],...

 'SampleIncrement',1e4/1024,...

 'YLabel','Amplitude (dB)',...

 'XLabel','Frequency (Hz)',...

 'Title','Desired and Estimated Transfer Functions',...

 'ShowLegend',true,...

 'XOffset',-5000);

msescope = dsp.TimeScope('SampleRate',1e4,'TimeSpan',.01,...

 'Position',[8 184 520 420],...

 'YLimits',[-300 10],'ShowGrid',true,...

 'YLabel','Mean-Square Error (dB)',...

26-46

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

 'Title','RLSFilter Learning Curve');

screen = get(0,'ScreenSize');

outerSize = min((screen(4)-40)/2, 512);

tfescope.Position = [8, screen(4)-outerSize+8, outerSize+8,...

 outerSize-92];

msescope.Position = [8, screen(4)-2*outerSize+8, outerSize+8, ...

 outerSize-92];

% Create UI to tune FIR filter cutoff frequency and RLS filter

% forgetting factor

Fs = 1e4;

param = struct([]);

param(1).Name = 'Cutoff Frequency (Hz)';

param(1).InitialValue = 0.48 * Fs/2;

param(1).Limits = Fs/2 * [1e-5, .9999];

param(2).Name = 'RLS Forgetting Factor';

param(2).InitialValue = 0.99;

param(2).Limits = [.3, 1];

hUI = HelperCreateParamTuningUI(param, 'RLS FIR Demo');

set(hUI,'Position',[outerSize+32, screen(4)-2*outerSize+8, ...

 outerSize+8, outerSize-92]);

clear HelperUnpackUDP

% Execute algorithm

while(numTSteps>=0)

 drawnow limitrate; % needed to process UI callbacks

 [tfe,err,pauseSim,stopSim] = myRLSFilterSystemIDSim();

 if stopSim % If "Stop Simulation" button is pressed

 break;

 end

 if pauseSim

 continue;

 end

 % Plot transfer functions

 tfescope(20*log10(abs(tfe)));

 % Plot learning curve

 msescope(10*log10(sum(err.^2)));

 numTSteps = numTSteps - 1;

26-47

26 Accelerating MATLAB Algorithms

end

if ishghandle(hUI) % If parameter tuning UI is open, then close it.

 delete(hUI);

 drawnow;

 clear hUI

end

scopeHandles.tfescope = tfescope;

scopeHandles.msescope = msescope;

end

Test the MATLAB Application

Run the system identification application for 100 time steps.

myRLSFilterSystemIDApp(100);

26-48

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

26-49

26 Accelerating MATLAB Algorithms

The application runs the simulation for 100 time steps or until you click Stop
Simulation. It plots the results on scopes.

Prepare Algorithm for Acceleration

When you use MATLAB Coder to accelerate a MATLAB algorithm, the code must be
suitable for code generation.

26-50

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

1. Make sure that myRLSFilterSystemIDSim.m includes the %#codegen directive after
the function signature.

This directive indicates that you intend to generate code for the function. In the
MATLAB Editor, it enables the code analyzer to detect code generation issues.

2. Screen the algorithm for unsupported functions or constructs.

coder.screener('myRLSFilterSystemIDSim');

The code generation readiness tool does not find code generation issues in this algorithm.

Accelerate the Algorithm

To accelerate the algorithm, this example use the MATLAB Coder codegen command.
Alternatively, you can use the MATLAB Coder app.

Generate a MEX function for myRLSFilterSystemIDSim.

codegen myRLSFilterSystemIDSim;

codegen creates the MEX function myRLSFilterSystemIDSim_mex in the current
folder.

Compare MEX Function and MATLAB Function Performance

1. Time 100 executions of myRLSFilterSystemIDSim.

clear myRLSFilterSystemIDSim

26-51

26 Accelerating MATLAB Algorithms

disp('Running the MATLAB function ...')

tic

nTimeSteps = 100;

for ind = 1:nTimeSteps

 myRLSFilterSystemIDSim();

end

tMATLAB = toc;

Running the MATLAB function ...

2. Time 100 executions of myRLSFilterSystemIDSim_mex.

clear myRLSFilterSystemIDSim

disp('Running the MEX function ...')

tic

for ind = 1:nTimeSteps

 myRLSFilterSystemIDSim_mex();

end

tMEX = toc;

disp('RESULTS:')

disp(['Time for original MATLAB function: ', num2str(tMATLAB),...

 ' seconds']);

disp(['Time for MEX function: ', num2str(tMEX), ' seconds']);

disp(['The MEX function is ', num2str(tMATLAB/tMEX),...

 ' times faster than the orignal MATLAB function.']);

Running the MEX function ...

RESULTS:

Time for original MATLAB function: 4.4065 seconds

Time for MEX function: 0.35445 seconds

The MEX function is 12.4318 times faster than the orignal MATLAB function.

Optimize the MEX code

You can sometimes generate faster MEX by using a different C/C++ compiler or by using
certain options or optimizations. See “Accelerate MATLAB Algorithms”.

For this example, the MEX is sufficiently fast without further optimization.

Modify the Application to Call the MEX Function

Modify myRLSFilterSystemIDApp so that it calls myRLSFilterSystemIDSim_mex
instead of myRLSFilterSystemIDSim.

26-52

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

Save the modified function in myRLSFilterSystemIDApp_acc.m.

Test the Application with the Accelerated Algorithm

clear myRLSFilterSystemIDSim_mex;

myRLSFilterSystemIDApp_acc(100);

26-53

26 Accelerating MATLAB Algorithms

The behavior of the application that calls the MEX function is the same as the behavior
of the application that calls the original MATLAB function. However, the plots update
more quickly because the simulation is faster.

Create the Standalone Application

1. To open the Application Compiler App, on the Apps tab, under Application
Deployment, click the app icon.

26-54

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

2. Specify that the main file is myRLSFilterSystemIDApp_acc.

The app determines the required files for this application. The app can find the MATLAB
files and MEX-files that an application uses. You must add other types of files, such as
MAT-files or images, as required files.

3. In the Packaging Options section of the toolstrip, make sure that the Runtime
downloaded from web check box is selected.

This option creates an application installer that downloads and installs the MATLAB
Runtime with the deployed MATLAB application.

4. Click Package and save the project.

5. In the Package window, make sure that the Open the output folder when the
process completes check box is selected.

26-55

26 Accelerating MATLAB Algorithms

When the packaging is complete, the output folder opens.

Install the Application

1. Open the for_redistribution folder.

2. Run MyAppInstaller_web.

3. If you connect to the internet by using a proxy server, enter the server settings.

4. Advance through the pages of the installation wizard.

• On the Installation Options page, use the default installation folder.
• On the Required Software page, use the default installation folder.
• On the License agreement page, read the license agreement and accept the license.
• On the Confirmation page, click Install.

If the MATLAB Runtime is not already installed, the installer installs it.

5. Click Finish.

Run the Application

1. Open a terminal window.

2. Navigate to the folder where the application is installed.

26-56

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

• For Windows®, navigate to C:\Program Files\myRLSFilterSystemIDApp_acc.
• For MAC OS x, navigate to /Applicatons/myRLSFilterSystemIDApp_acc.
• For Linux, navigate to /usr/myRLSFilterSystemIDApp_acc.

3. Run the application by using the appropriate command for your platform.

• For Windows, use application\myRLSFilterSystemIDApp_acc.
• For Mac OS x, use myRLSFilterSystemIDApp_acc.app/Contents/MacOS/

myRLSFilterSystemIDApp_acc.
• For Linux, use /myRLSFilterSystemIDApp_acc.

Starting the application takes approximately the same amount of time as starting
MATLAB.

More About
• “System Identification Using RLS Adaptive Filtering”
• “Workflow for Accelerating MATLAB Algorithms” on page 26-2
• “Accelerate MATLAB Algorithms” on page 26-13
• “Create Standalone Application from MATLAB”
• “About the MATLAB Runtime”
• MATLAB Compiler Support for MATLAB and toolboxes.

26-57

http://www.mathworks.com/products/compiler/supported/compiler_support.html;jsessionid=452f743d96e4913b142ef83d8d66

27

Calling C/C++ Functions from
Generated Code

• “External Function Calls from Generated Code” on page 27-2
• “Call External Functions with coder.ceval” on page 27-6
• “Return Multiple Values from C Functions” on page 27-8
• “How MATLAB Coder Infers C/C++ Data Types” on page 27-9

27 Calling C/C++ Functions from Generated Code

External Function Calls from Generated Code

In this section...

“Calling External Functions from Generated Code” on page 27-2
“Why Call External Functions from Generated Code?” on page 27-2
“How To Call External Functions” on page 27-2
“Pass Arguments by Reference to External Functions” on page 27-3
“Manipulate C Data” on page 27-4

Calling External Functions from Generated Code

You can call external functions from generated code. The external functions must have a
C programming interface. The code generator provides functions for:

• Calling external functions from generated code.
• Passing arguments by reference to external code.
• Manipulating C/C++ data.

By using these functions, you gain unrestricted access to external code. Misuse of
these functions or errors in your code can destabilize MATLAB when generating MEX
functions.

Why Call External Functions from Generated Code?

Call external functions from generated code when you want to:

• Use legacy code.
• Use your own optimized functions instead of generated code.
• Interface your libraries and hardware with MATLAB functions.

How To Call External Functions

To call external functions, use one of the following methods:

• The coder.ceval function in your MATLAB code. coder.ceval passes function
input and output arguments to C/C++ functions by value or by reference.

27-2

 External Function Calls from Generated Code

• The coder.ExternalDependency class to define methods that call the functions. These
methods use the coder.ceval function. In your MATLAB code, use these methods to
call external functions.

Define the called functions in external C/C++ source files, object files, or libraries. You
must then include C/C++ source files, libraries, object files, and header files in the build
configuration. See “Specify External File Locations” on page 25-14.

Pass Arguments by Reference to External Functions

By default, coder.ceval passes arguments by value to the C/C++ function whenever
C/C++ supports passing arguments by value. You can pass MATLAB variables as
arguments by reference to external C/C++ functions with the following constructs:

• coder.ref — pass value by reference.
• coder.rref — pass read-only value by reference.
• coder.wref — pass write-only value by reference.

These constructs offer the following benefits:

• Passing values by reference optimizes memory use.

When you pass arguments by value, MATLAB Coder passes a copy of the value of
each argument to the C/C++ function to preserve the original values. When you pass
arguments by reference, MATLAB Coder does not copy values. If you need to pass
large matrices to the C/C++ function, the memory savings can be significant.

Passing write-only values by reference allows you to return multiple outputs.

Use coder.wref to return multiple outputs from your C/C++ function, including
arrays and matrices. Otherwise, the C/C++ function can return only a single scalar
value through its return statement.

Do not store pointers that you pass to C/C++ functions because MATLAB Coder
optimizes the code based on the assumption that you do not store the addresses of
these variables. Storing the addresses might invalidate our optimizations leading to
incorrect behavior. For example, if a MATLAB function passes a pointer to an array
using coder.ref, coder.rref, or coder.wref, then the C/C++ function can modify
the data in the array—but you should not store the pointer for future use.

When you pass arguments by reference using coder.rref, coder.wref, and
coder.ref, the corresponding C/C++ function signature must declare these variables

27-3

27 Calling C/C++ Functions from Generated Code

as pointers of the same data type. Otherwise, the C/C++ compiler generates a type
mismatch error.

For example, suppose your MATLAB function calls an external C function ctest:

function y = fcn()

u = pi;

y = 0;

y = coder.ceval('ctest',u);

Now suppose the C function signature is:

double ctest(double *a)

When you compile the code, you get a type mismatch error because coder.ceval calls
ctest with an argument of type double when ctest expects a pointer to a double-
precision, floating-point value.

Match the types of arguments in coder.ceval with their counterparts in the C function.
For instance, you can fix the error in the previous example by passing the argument by
reference:

y = coder.ceval('ctest', coder.rref(u));

You can pass a reference to an element of a matrix. For example, to pass the second
element of the matrix v, you can use the following code:

y = coder.ceval('ctest', coder.ref(v(1,2)));

Manipulate C Data

The construct coder.opaque allows you to manipulate C/C++ data that a MATLAB
function does not recognize. You can store the opaque data in a variable or structure field
and pass it to, or return it from, a C/C++ function using coder.ceval.

Declaring Opaque Data

The following example uses coder.opaque to declare a variable f as a FILE * type.
% This example returns its own source code by using

% fopen/fread/fclose.

function buffer = filetest

%#codegen

27-4

 External Function Calls from Generated Code

% Declare 'f' as an opaque type 'FILE *'

f = coder.opaque('FILE *', 'NULL');

% Open file in binary mode

f = coder.ceval('fopen', cstring('filetest.m'), cstring('rb'));

% Read from file until end of file is reached and put

% contents into buffer

n = int32(1);

i = int32(1);

buffer = char(zeros(1,8192));

while n > 0

 % By default, MATLAB converts constant values

 % to doubles in generated code

 % so explicit type conversion to in32 is inserted.

 n = coder.ceval('fread', coder.ref(buffer(i)), int32(1), ...

 int32(numel(buffer)), f);

 i = i + n;

end

coder.ceval('fclose',f);

buffer = strip_cr(buffer);

% Put a C termination character '\0' at the end of MATLAB character vector

function y = cstring(x)

 y = [x char(0)];

% Remove character 13 (CR) but keep character 10 (LF)

function buffer = strip_cr(buffer)

j = 1;

for i = 1:numel(buffer)

 if buffer(i) ~= char(13)

 buffer(j) = buffer(i);

 j = j + 1;

 end

end

buffer(i) = 0;

27-5

27 Calling C/C++ Functions from Generated Code

Call External Functions with coder.ceval

In this section...

“Workflow for Calling External Functions” on page 27-6
“Best Practices for Calling External Code from Generated Code” on page 27-7

Workflow for Calling External Functions

To call external C/C++ functions from generated code:

1 Write your C/C++ functions in external source files or libraries.
2 Create header files, if required.

The header file defines the data types used by the C/C++ functions that MATLAB
Coder generates in code, as described in “Mapping MATLAB Types to C/C++ Types”
on page 27-9.

Tip One way to add these type definitions is to include the header file tmwtypes.h,
which defines general data types supported by MATLAB. This header file is in
matlabroot/extern/include. Check the definitions in tmwtypes.h to determine
if they are compatible with your target. If not, define these types in your own header
files.

3 In your MATLAB function, add calls to coder.ceval to invoke your external C/C++
functions.

You need one coder.ceval statement for each call to a C/C++ function. In your
coder.ceval statements, use coder.ref, coder.rref, and coder.wref
constructs as required (see “Pass Arguments by Reference to External Functions” on
page 27-3).

4 Include the custom C/C++ functions in the build. See “Specify External File
Locations” on page 25-14.

5 Check for compilation warnings about data type mismatches.

Perform this check so that you catch type mismatches between C/C++ and MATLAB
(see “How MATLAB Coder Infers C/C++ Data Types” on page 27-9).

6 Generate code and fix errors.

27-6

 Call External Functions with coder.ceval

7 Run your application.

Best Practices for Calling External Code from Generated Code

The following are recommended practices when calling C/C++ code from generated code.

• Start small. — Create a test function and learn how coder.ceval and its related
constructs work.

• Use separate files. — Create a file for each C/C++ function that you call. Make sure
that you call the C/C++ functions with suitable types.

• In a header file, declare a function prototype for each function that you call, and
include this header file in the generated code. For more information, see “Specify
External File Locations” on page 25-14.

27-7

27 Calling C/C++ Functions from Generated Code

Return Multiple Values from C Functions

The C language restricts functions from returning multiple outputs; instead, they return
only a single, scalar value. The constructs coder.ref and coder.wref allow MATLAB
functions to exchange multiple outputs with the external C functions that they call.

For example, suppose you write a MATLAB function foo that takes two inputs x and y
and returns three outputs a, b, and c. In MATLAB, you call this function as follows:

[a, b, c] = foo (x, y)

If you rewrite foo as a C function, you cannot return a, b, and c through the return
statement. You can create a C function with multiple pointer type input arguments, and
pass the output parameters by reference. For example:

foo(double x, double y, double *a, double *b, double *c)

Then you can call the C function with multiple outputs from a MATLAB function using
coder.wref constructs:

coder.ceval ('foo', x, y, ...

 coder.wref(a), coder.wref(b), coder.wref(c));

Similarly, suppose that one of the outputs a is also an input argument. In this case,
create a C function with multiple pointer type input arguments, and pass the output
parameters by reference. For example:

foo(double *a, double *b, double *c)

Then call the C function from a MATLAB function using coder.wref and coder.rref
constructs:

coder.ceval ('foo', coder.ref(a), coder.wref(b), coder.wref(c));

27-8

 How MATLAB Coder Infers C/C++ Data Types

How MATLAB Coder Infers C/C++ Data Types
In this section...

“Mapping MATLAB Types to C/C++ Types” on page 27-9
“Mapping 64-Bit Integer Types to C/C++” on page 27-10
“Mapping Fixed-Point Types to C/C++” on page 27-11
“Mapping Arrays to C/C++” on page 27-11
“Mapping Complex Values to C/C++” on page 27-12
“Mapping Structures to C/C++ Structures” on page 27-13
“Mapping MATLAB Character Vectors to C/C++ Character Arrays” on page 27-13
“Mapping Multiword Types to C/C++” on page 27-14

Mapping MATLAB Types to C/C++ Types

The C/C++ type associated with a MATLAB variable or expression is based on the
following properties:

• Class
• Size
• Complexity

By default, the MATLAB Coder software tries to use built-in C/C++ types in the
generated code. If the target hardware supports the built-in C type, the software
generates a built-in C type for these MATLAB types.

int8 uint8 double

int16 uint16 single

int32 uint32 char

int64 uint64

The built-in C/C++ type that the code generator uses depends on the target hardware.
You have the option to use MathWorks C/C++ data types instead of built-in C/C++ types.
For information about setting this option, see “Specify Data Types Used in Generated
Code” on page 21-38.

The following translation table shows how the MATLAB Coder software maps MATLAB
types to MathWorks C/C++ data types.

27-9

27 Calling C/C++ Functions from Generated Code

MATLAB Type MATLAB C/C++ Data Type Reference Type for MATLAB C/
C++ Data Type

int8 int8_T int8_T *

int16 int16_T int16_T *

int32 int32_T int32_T *

int64 See “Mapping 64-Bit Integer Types to C/C++” on page
27-10.

uint8 uint8_T uint8_T *

uint16 uint16_T uint16_T *

uint32 uint32_T uint32_T *

uint64 See “Mapping 64-Bit Integer Types to C/C++” on page
27-10.

double real_T real_T *

single real32_T real32_T *

char char_T char *

logical boolean_T boolean_T *

fi numerictype also influences the C/C++ type. Integer
type varies according to the MATLAB fixed-point type,
as described in “Mapping Fixed-Point Types to C/C++” on
page 27-11.

struct The MATLAB Coder software maps structures to C/C+
+ types field-by-field. See “Mapping Structures to C/C++
Structures” on page 27-13 .

complex See “Mapping Complex Values to C/C++” on page
27-12.

Multiword types See “Mapping Multiword Types to C/C++” on page
27-14.

Mapping 64-Bit Integer Types to C/C++

The C/C++ data type associated with a 64-bit integer MATLAB type depends on the sizes
of the integer types on the target hardware. If a type wide enough for a 64-bit type does
not exist, then a 64-bit type maps to a multiword type.

27-10

 How MATLAB Coder Infers C/C++ Data Types

By default, MATLAB Coder software tries to map int64 and uint64 types to built-in C
types. For a multiword type, the software uses a built-in C type for the array in the struct
that represents the multiword type. You have the option to use MATLAB C/C++ data
types instead of built-in types. The following table shows how 64 bit integer types map to
MATLAB C/C++ data types.

MATLAB Type MATLAB C/C++ Type Multiword MATLAB C/C++
Type

int64 int64_T int64m_T

uint64 uint64_T uint64m_T

complex int64 cint64_T cint64m_T

complex uint64 cuint64_T cuint64m_T

See “Mapping Multiword Types to C/C++” on page 27-14.

Mapping Fixed-Point Types to C/C++

The numerictype properties of a fi object determine the C/C++ data type. By default,
the code generator tries to use built-in C/C++ types. However, you can choose to use
MATLAB C/C++ data types instead. The following table shows how the Signedness,
WordLength, and FractionLength properties determine the MATLAB C/C++ data
type. The MATLAB C/C++ data type is the next larger target word size that can store the
fixed-point value, based on its word length. The sign of the integer type matches the sign
of the fixed-point type.

Signedness Word Length Fraction Length MATLAB C/C++
Data Type

Reference Type
for MATLAB C/
C++ Data Type

1 16 15 int16_T int16_T *

1 13 10 int16_T int16_T *

0 19 15 uint32_T uint32_T *

1 8 7 int8_T int8_T *

Mapping Arrays to C/C++

By default, the code generator tries to use built-in C/C++ types for arrays in the
generated code. However, you can choose to use MATLAB C/C++ data types instead. The

27-11

27 Calling C/C++ Functions from Generated Code

following translation table shows how MATLAB Coder software maps arrays to MATLAB
C/C++ data types. In the first column, the arrays are specified by the MATLAB function
zeros:

zeros(number of rows, number of columns, data type)

MATLAB array data is laid out in column major order.

Array MATLAB C/C++ Data Type Reference Type for MATLAB
C/C++ Data Type

zeros(10, 5, 'int8') int8_T int8_T *

zeros(5, 10, 'int8') int8_T int8_T *

zeros(3, 7) real_T real_T *

zeros(10, 1, 'single') real32_T real32_T *

Mapping Complex Values to C/C++

The following translation table shows how the MATLAB Coder software infers complex
values in generated code.

Complex MATLAB C/C++ Data Type Reference Type for MATLAB C/
C++ Data Type

complex int8 cint8_T cint8_T *

complex int16 cint16_T cint16_T *

complex int32 cint32_T cint32_T *

complex int64 See “Mapping 64-Bit Integer Types to C/C++” on page
27-10.

complex uint8 cuint8_T cuint8_T *

complex uint16 cuint16_T cuint16_T *

complex uint32 cuint32_T cuint32_T *

complex uint64 See “Mapping 64-Bit Integer Types to C/C++” on page
27-10.

complex double creal_T creal_T *

complex single creal32_T creal32_T *

27-12

 How MATLAB Coder Infers C/C++ Data Types

The MATLAB Coder software defines each complex value as a structure with a real
component re and an imaginary component im, as in this example from tmwtypes.h:

typedef struct {

 real32_T re;/* Real component*/

 real32_T im;/* Imaginary component*/

} creal32_T;

MATLAB Coder uses the names re and im in generated code to represent the
components of complex numbers. For example, suppose you define a variable x of
type creal32_T. The generated code references the real component as x.re and the
imaginary component as x.im.

If your C/C++ library requires a different representation, you can define your own
versions of MATLAB Coder complex types. However, you must use the names re for the
real components and im for the imaginary components in your definitions.

The MATLAB Coder software represents a matrix of complex numbers as an array of
structures.

Mapping Structures to C/C++ Structures

The MATLAB Coder software maps structures to C/C++ types field-by-field. The order
of the field items is preserved as the order in MATLAB. To control the name of the
generated C/C++ structure type, or provide a definition, use the coder.cstructname
function.

Note: If you are not using dynamic memory allocation, arrays in structures translate into
single-dimension arrays, not pointers.

Mapping MATLAB Character Vectors to C/C++ Character Arrays

The MATLAB Coder software maps MATLAB character vectors to C/C++ character
arrays. These character arrays are not C/C++ strings because they are not null-
terminated. If you pass a MATLAB character vector to external C/C++ code that
expects a C/C++ string, the generated C/C++ character array must be null-terminated.
To generate a null-terminated C/C++ character array, append a zero to the end of
the MATLAB character vector. For example, ['sample text' 0]. Otherwise, the
generated code can crash without compiler errors or warnings.

A single character maps to a C/C++ char type, not a C/C++ string.

27-13

27 Calling C/C++ Functions from Generated Code

Mapping Multiword Types to C/C++

The MATLAB Coder software maps multiword types to structure types that contain an
array of integers. The array dimensions depend on the size of the widest integer type on
the target hardware. For example, for a 128-bit fixed-point type, if the widest integer
type on the target hardware is 32-bits, the software generates a structure with an array
of four 32-bit integers.

typedef struct

{

 unsigned int chunks[4];

} uint128m_T;

If the widest integer type on the target hardware is long with a size of 64-bits, MATLAB
Coder generates a structure with an array of two 64-bit long integers.

typedef struct

{

 unsigned long chunks[2];

} uint128m_T;

27-14

28

External Code Integration

• “External Code Integration for Code Generation” on page 28-2
• “Encapsulating the Interface to External Code” on page 28-3
• “Best Practices for Using coder.ExternalDependency” on page 28-4
• “Encapsulate Interface to an External C Library” on page 28-6
• “Update Build Information from MATLAB code” on page 28-9
• “Call External Functions Encapsulated by coder.ExternalDependency” on page

28-10

28 External Code Integration

External Code Integration for Code Generation

You can integrate external code with MATLAB code intended for code generation. The
external code can be external libraries, object files, or C/C++ source code.

The basic workflow is:

1 Create the external code.
2 Call the external code from MATLAB code.
3 Specify the external file locations.
4 Generate code from the MATLAB code.

Call the external code and specify the file locations in one of the following ways:

• Use coder.ExternalDependency to encapsulate the interface to the external code.
The updateBuildInfo method specifies file locations and other build information.
Write methods that define the programming interface to the external functions. In
your MATLAB code, use these methods to call the external functions.

• Use coder.ceval to call external functions from your MATLAB code. When you
generate code, define the locations of external files.

• Use coder.ceval to call external functions from your MATLAB code. Use
coder.updateBuildInfo to specify external file locations and update build
information.

See Also
coder.ceval | coder.ExternalDependency | coder.updateBuildInfo

More About
• “Encapsulating the Interface to External Code” on page 28-3
• “Specify External File Locations” on page 25-14
• “External Function Calls from Generated Code” on page 27-2

28-2

 Encapsulating the Interface to External Code

Encapsulating the Interface to External Code

Use the coder.ExternalDependency class to encapsulate the interface between
external code and MATLAB code intended for code generation. With the encapsulation,
you can separate the details of the interface from your MATLAB code. The methods of
coder.ExternalDependency:

• specify the location of external files
• update build information
• define the programming interface for external functions

In your MATLAB code, you can call the external code without providing build
information.

The workflow is:

1 Write a class definition file for a class that derives from
coder.ExternalDependency.

2 Store the class definition file in a folder on the MATLAB path.
3 In your MATLAB code, use a method of the class to call an external function.
4 Generate code from your MATLAB code.

See Also
coder.ExternalDependency

Related Examples
• “Encapsulate Interface to an External C Library” on page 28-6

More About
• “Best Practices for Using coder.ExternalDependency” on page 28-4

28-3

28 External Code Integration

Best Practices for Using coder.ExternalDependency

In this section...

“Terminate Code Generation for Unsupported External Dependency” on page 28-4
“Parameterize Methods for MATLAB and Generated Code” on page 28-4
“Parameterize updateBuildInfo for Multiple Platforms” on page 28-5

Terminate Code Generation for Unsupported External Dependency

The isSupportedContext method returns true if the external code interface is
supported in the build context. If the external code interface is not supported, do not
return false. Instead, use error to terminate code generation with an error message. For
example:

function tf = isSupportedContext(ctx)

 if ctx.isMatlabHostTarget()

 tf = true;

 else

 error('MyLibrary is not available for this target');

 end

end

Parameterize Methods for MATLAB and Generated Code

Parameterize methods that call external functions so that the methods run in MATLAB.
For example:

...

if coder.target('MATLAB')

 % running in MATLAB, use built-in addition

 c = a + b;

else

 % running in generated code, call library function

 coder.ceval('adder_initialize');

end

...

28-4

 Best Practices for Using coder.ExternalDependency

Parameterize updateBuildInfo for Multiple Platforms

Parameterize the updateBuildInfo method to support multiple platforms. For
example, use coder.BuildConfig.getStdLibInfo to get the platform-specific library
file extensions.

...

 [~, linkLibExt, execLibExt, ~] = ctx.getStdLibInfo()

% Link files

linkFiles = strcat('adder', linkLibExt);

buildInfo.addLinkObjects(linkFiles, linkPath, linkPriority, ...

 linkPrecompiled, linkLinkOnly, group);

...

See Also
coder.BuildConfig | coder.ExternalDependency | error

Related Examples
• “Encapsulate Interface to an External C Library” on page 28-6

28-5

28 External Code Integration

Encapsulate Interface to an External C Library
Use coder.ExternalDependency to encapsulate the interface to an external C
dynamic linked library .

Write a function adder that returns the sum of its inputs.

function c = adder(a,b)

 %#codegen

 c = a + b;

end

Generate a library that contains adder.

codegen('adder','-args', {-2,5}, '-config:dll', '-report');

Write the class definition file AdderAPI.m to encapsulate the library interface.

%==

% This class abstracts the API to an external Adder library.

% It implements static methods for updating the build information

% at compile time and build time.

%==

classdef AdderAPI < coder.ExternalDependency

 %#codegen

 methods (Static)

 function bName = getDescriptiveName(~)

 bName = 'AdderAPI';

 end

 function tf = isSupportedContext(ctx)

 if ctx.isMatlabHostTarget()

 tf = true;

 else

 error('adder library not available for this target');

 end

 end

 function updateBuildInfo(buildInfo, ctx)

 [~, linkLibExt, execLibExt, ~] = ctx.getStdLibInfo();

 % Header files

28-6

 Encapsulate Interface to an External C Library

 hdrFilePath = fullfile(pwd, 'codegen', 'dll', 'adder');

 buildInfo.addIncludePaths(hdrFilePath);

 % Link files

 linkFiles = strcat('adder', linkLibExt);

 linkPath = hdrFilePath;

 linkPriority = '';

 linkPrecompiled = true;

 linkLinkOnly = true;

 group = '';

 buildInfo.addLinkObjects(linkFiles, linkPath, ...

 linkPriority, linkPrecompiled, linkLinkOnly, group);

 % Non-build files

 nbFiles = 'adder';

 nbFiles = strcat(nbFiles, execLibExt);

 buildInfo.addNonBuildFiles(nbFiles,'','');

 end

 %API for library function 'adder'

 function c = adder(a, b)

 if coder.target('MATLAB')

 % running in MATLAB, use built-in addition

 c = a + b;

 else

 % running in generated code, call library function

 coder.cinclude('adder.h');

 % Because MATLAB Coder generated adder, use the

 % housekeeping functions before and after calling

 % adder with coder.ceval.

 % Call initialize function before calling adder for the

 % first time.

 coder.ceval('adder_initialize');

 c = 0;

 c = coder.ceval('adder', a, b);

 % Call the terminate function after

 % calling adder for the last time.

 coder.ceval('adder_terminate');

 end

28-7

28 External Code Integration

 end

 end

end

Write a function adder_main that calls the external library function adder.

function y = adder_main(x1, x2)

%#codegen

 y = AdderAPI.adder(x1, x2);

end

Generate a MEX function for adder_main. The MEX Function exercises the
coder.ExternalDependency methods.

codegen('adder_main', '-args', {7,9}, '-report')

Copy the library to the current folder using the file extension for your platform.

For Windows, use:

copyfile(fullfile(pwd, 'codegen', 'dll', 'adder', 'adder.dll'));

For Linux, use:

copyfile(fullfile(pwd, 'codegen', 'dll', 'adder', 'adder.so'));

For Mac, use:

copyfile(fullfile(pwd, 'codegen', 'dll', 'adder', 'adder.dylib'));

Run the MEX function and verify the result.

adder_main_mex(2,3)

See Also
coder.BuildConfig | coder.ExternalDependency | error

More About
• “Encapsulating the Interface to External Code” on page 28-3
• “Build Information Object” on page 21-139
• “Build Information Methods” on page 21-139

28-8

 Update Build Information from MATLAB code

Update Build Information from MATLAB code

You can control aspects of the build process that occur after code generation but before
compilation. For example, you can specify compiler or linker options.

To customize the build from your MATLAB code:

1 In your MATLAB code, call coder.updateBuildInfo to update the build
information object. You specify a build information object method and the input
arguments for the method.

2 Generate code from your MATLAB code.

See Also
coder.updateBuildInfo

28-9

28 External Code Integration

Call External Functions Encapsulated by coder.ExternalDependency

When a method of a class derived from coder.ExternalDependency defines the
interface to an external function, you call the external function by calling the method.

Suppose you define the following method for a class named AdderAPI:

function c = adder(a, b)

 coder.cinclude('adder.h');

 c = 0;

 c = coder.ceval('adder', a, b);

end

This method defines the interface to a function adder which has two inputs, a and b. In
your MATLAB code, call adder this way:

y = AdderAPI.adder(x1, x2);

See Also
coder.ExternalDependency

Related Examples
• “Encapsulate Interface to an External C Library” on page 28-6

More About
• “Encapsulating the Interface to External Code” on page 28-3

28-10

29

Generate Efficient and Reusable Code

• “Optimization Strategies” on page 29-3
• “Modularize MATLAB Code” on page 29-6
• “Eliminate Redundant Copies of Function Inputs” on page 29-7
• “Inline Code” on page 29-10
• “Control Inlining” on page 29-12
• “Fold Function Calls into Constants” on page 29-15
• “Control Stack Space Usage” on page 29-17
• “Stack Allocation and Performance” on page 29-18
• “Dynamic Memory Allocation and Performance” on page 29-19
• “Minimize Dynamic Memory Allocation” on page 29-20
• “Provide Maximum Size for Variable-Size Arrays” on page 29-21
• “Disable Dynamic Memory Allocation During Code Generation” on page 29-27
• “Set Dynamic Memory Allocation Threshold” on page 29-28
• “Excluding Unused Paths from Generated Code” on page 29-30
• “Prevent Code Generation for Unused Execution Paths” on page 29-31
• “Generate Code with Parallel for-Loops (parfor)” on page 29-33
• “Minimize Redundant Operations in Loops” on page 29-35
• “Unroll for-Loops” on page 29-37
• “Disable Support for Integer Overflow or Non-Finites” on page 29-40
• “Integrate External/Custom Code” on page 29-42
• “MATLAB Coder Optimizations in Generated Code” on page 29-48
• “memcpy Optimization” on page 29-52
• “memset Optimization” on page 29-54
• “Generate Reusable Code” on page 29-56
• “Reuse Large Arrays and Structures” on page 29-57

29 Generate Efficient and Reusable Code

• “LAPACK Calls in Generated Code” on page 29-59
• “Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls” on

page 29-60
• “Speed Up MEX Generation by Using JIT Compilation” on page 29-64

29-2

 Optimization Strategies

Optimization Strategies

MATLAB Coder introduces certain optimizations when generating C/C++ code or
MEX functions from your MATLAB code. For more information, see “MATLAB Coder
Optimizations in Generated Code” on page 29-48.

To optimize your generated code further, you can:

• Adapt your MATLAB code.
• Control code generation using the configuration object from the command-line or the

project settings dialog box.

To optimize the execution speed of generated code, for these conditions, perform the
following actions as necessary:

Condition Action

You have for-loops whose iterations are
independent of each other.

“Generate Code with Parallel for-Loops (parfor)”
on page 29-33

You have variable-size arrays in your MATLAB
code.

“Minimize Dynamic Memory Allocation” on page
29-20

You have multiple variable-size arrays in your
MATLAB code. You want dynamic memory
allocation for larger arrays and static allocation
for smaller ones.

“Set Dynamic Memory Allocation Threshold” on
page 29-28

You want your generated function to be called by
reference.

“Eliminate Redundant Copies of Function
Inputs” on page 29-7

You are calling small functions in your MATLAB
code.

“Inline Code” on page 29-10

You have limited target memory for your
generated code. You want to inline small
functions and generate separate code for larger
ones.

“Control Inlining” on page 29-12

You do not want to generate code for expressions
that contain constants only.

“Fold Function Calls into Constants” on page
29-15

You have loop operations in your MATLAB code
that do not depend on the loop index.

“Minimize Redundant Operations in Loops” on
page 29-35

29-3

29 Generate Efficient and Reusable Code

Condition Action

You have integer operations in your MATLAB
code. You know beforehand that integer
overflow does not occur during execution of your
generated code.

“Disable Support for Integer Overflow” on page
29-40

You know beforehand that Infs and NaNs do not
occur during execution of your generated code.

“Disable Support for Non-Finite Numbers” on
page 29-41

You have for-loops with few iterations. “Unroll for-Loops” on page 29-37
You already have legacy C/C++ code optimized
for your target environment.

“Integrate External/Custom Code” on page
29-42

You want to speed up the code generated for
linear algebra functions.

“Speed Up Linear Algebra in Generated
Standalone Code by Using LAPACK Calls” on
page 29-60

To optimize the memory usage of generated code, for these conditions, perform the
following actions as necessary:

Condition Action

You have if/else/elseif statements
or switch/case/otherwise statements
in your MATLAB code. You do not require
some branches of the statements in your
generated code.

“Prevent Code Generation for Unused
Execution Paths” on page 29-31

You want your generated function to be
called by reference.

“Eliminate Redundant Copies of Function
Inputs” on page 29-7

You have limited stack space for your
generated code.

“Control Stack Space Usage” on page
29-17

You are calling small functions in your
MATLAB code.

“Inline Code” on page 29-10

You have limited target memory for your
generated code. You want to inline small
functions and generate separate code for
larger ones.

“Control Inlining” on page 29-12

You do not want to generate code for
expressions that contain constants only.

“Fold Function Calls into Constants” on
page 29-15

29-4

 Optimization Strategies

Condition Action

You have loop operations in your MATLAB
code that do not depend on the loop index.

“Minimize Redundant Operations in Loops”
on page 29-35

You have integer operations in your
MATLAB code. You know beforehand that
integer overflow does not occur during
execution of your generated code.

“Disable Support for Integer Overflow” on
page 29-40

You know beforehand that Inf-s and NaN-
s does not occur during execution of your
generated code.

“Disable Support for Non-Finite Numbers”
on page 29-41

Your MATLAB code has variables that are
large arrays or structures. Your variables
are not reused in the generated code. They
are preserved. You want to see if the extra
memory required to preserve the variable
names of the large arrays or structures
affects performance.

“Reuse Large Arrays and Structures” on
page 29-57

29-5

29 Generate Efficient and Reusable Code

Modularize MATLAB Code

For large MATLAB code, streamline code generation by modularizing the code:

1 Break up your MATLAB code into smaller, self-contained sections.
2 Save each section in a MATLAB function.
3 Generate C/C++ code for each function.
4 Call the generated C/C++ functions in sequence from a wrapper MATLAB function

using coder.ceval.
5 Generate C/C++ code for the wrapper function.

Besides streamlining code generation for the original MATLAB code, this approach also
supplies you with C/C++ code for the individual sections. You can reuse the code for the
individual sections later by integrating them with other generated C/C++ code using
coder.ceval.

29-6

 Eliminate Redundant Copies of Function Inputs

Eliminate Redundant Copies of Function Inputs

You can reduce the number of copies in your generated code by writing functions that use
the same variable as both an input and an output. For example:

function A = foo(A, B) %#codegen

A = A * B;

end

This coding practice uses a reference parameter optimization. When a variable acts
as both input and output, the generated code passes the variable by reference instead
of redundantly copying the input to a temporary variable. In the preceding example,
input A is passed by reference in the generated code because it also acts as an output for
function foo:

...

/* Function Definitions */

void foo(double *A, double B)

{

 *A *= B;

}

...

The reference parameter optimization reduces memory usage and execution time,
especially when the variable passed by reference is a large data structure. To achieve
these benefits at the call site, call the function with the same variable as both input and
output.

By contrast, suppose that you rewrite function foo without the optimization:

function y = foo2(A, B) %#codegen

y = A * B;

end

The generated code passes the inputs by value and returns the value of the output:

...

/* Function Definitions */

double foo2(double A, double B)

{

 return A * B;

}

...

29-7

29 Generate Efficient and Reusable Code

In some cases, the output of the function cannot be a modified version of its inputs. If
you do not use the inputs later in the function, you can modify your code to operate on
the inputs instead of on a copy of the inputs. One method is to create additional return
values for the function. For example, consider the code:

function y1=foo(u1) %#codegen

 x1=u1+1;

 y1=bar(x1);

end

function y2=bar(u2)

 % Since foo does not use x1 later in the function,

 % it would be optimal to do this operation in place

 x2=u2.*2;

 % The change in dimensions in the following code

 % means that it cannot be done in place

 y2=[x2,x2];

end

You can modify this code to eliminate redundant copies.

function y1=foo(u1) %#codegen

 u1=u1+1;

 [y1, u1]=bar(u1);

end

function [y2, u2]=bar(u2)

 u2=u2.*2;

 % The change in dimensions in the following code

 % still means that it cannot be done in place

 y2=[u2,u2];

end

The reference parameter optimization does not apply to constant inputs. If the same
variable is an input and an output, and the input is constant, the code generator treats
the output as a separate variable. For example, consider the function foo:

function A = foo(A, B) %#codegen

A = A * B;

end

Generate code in which A has a constant value 2.

codegen -config:lib foo -args {coder.Constant(2) 3} -report

29-8

 Eliminate Redundant Copies of Function Inputs

The generated code defines the constant A and returns the value of the output.

...

#define A (2.0)

...

double foo(double B)

{

 return A * B;

}

...

Related Examples
• “Pass Structure Arguments by Reference or by Value in Generated Code” on page

21-178

29-9

29 Generate Efficient and Reusable Code

Inline Code

Inlining is a technique that replaces a function call with the contents (body) of that
function. Inlining eliminates the overhead of a function call, but can produce larger C/
C++ code. Inlining can create opportunities for further optimization of the generated C/
C++ code. The code generator uses internal heuristics to determine whether to inline
functions in the generated code. You can use the coder.inline directive to fine-tune
these heuristics for individual functions. For more information, see coder.inline.

In this section...

“Prevent Function Inlining” on page 29-10
“Use Inlining in Control Flow Statements” on page 29-10

Prevent Function Inlining

In this example, function foo is not inlined in the generated code:

function y = foo(x)

 coder.inline('never');

 y = x;

end

Use Inlining in Control Flow Statements

You can use coder.inline in control flow code. If the software detects contradictory
coder.inline directives, the generated code uses the default inlining heuristic and
issues a warning.

Suppose you want to generate code for a division function that will be embedded in
a system with limited memory. To optimize memory use in the generated code, the
following function, inline_division, manually controls inlining based on whether it
performs scalar division or vector division:

function y = inline_division(dividend, divisor)

% For scalar division, inlining produces smaller code

% than the function call itself.

if isscalar(dividend) && isscalar(divisor)

 coder.inline('always');

else

29-10

 Inline Code

% Vector division produces a for-loop.

% Prohibit inlining to reduce code size.

 coder.inline('never');

end

if any(divisor == 0)

 error('Can not divide by 0');

end

y = dividend / divisor;

Related Examples
• “Control Inlining” on page 29-12

29-11

29 Generate Efficient and Reusable Code

Control Inlining

Restrict inlining when:

• The size of generated code exceeds desired limits due to excessive inlining of
functions. Suppose that you include the statement, coder.inline('always'),
inside a certain function. You then call that function at many different sites in your
code. The generated code can be large due to the function being inlined every time it is
called.

The call sites must be different. For instance, inlining does not lead to large code if
the function to be inlined is called several times inside a loop.

• You have limited RAM or stack space.

In this section...

“Control Size of Functions Inlined” on page 29-12
“Control Size of Functions After Inlining” on page 29-13
“Control Stack Size Limit on Inlined Functions” on page 29-13

Control Size of Functions Inlined

You can use the MATLAB Coder app or the command-line interface to control the
maximum size of functions that can be inlined. The function size is measured in terms of
an abstract number of instructions, not actual MATLAB instructions or instructions in
the target processor. Experiment with this parameter to obtain the inlining behavior that
you want.

• Using the app, in the project settings dialog box, on the All Settings tab, set the
value of the field, Inline threshold, to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value of the
property, InlineThreshold, to the maximum size that you want.

cfg = coder.config('lib');

cfg.InlineThreshold = 100;

Generate code using this configuration object.

29-12

 Control Inlining

Control Size of Functions After Inlining

You can use the MATLAB Coder app or the command-line interface to control the
maximum size of functions after inlining. The function size is measured in terms of an
abstract number of instructions, not actual MATLAB instructions or instructions in the
target processor. Experiment with this parameter to obtain the inlining behavior that
you want.

• Using the app, in the project settings dialog box, on the All Settings tab, set the
value of the field, Inline threshold max, to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value of the
property, InlineThresholdMax, to the maximum size that you want.

cfg = coder.config('lib');

cfg.InlineThresholdMax = 100;

Generate code using this configuration object.

Control Stack Size Limit on Inlined Functions

Specifying a limit on the stack space constrains the amount of inlining allowed. For
out-of-line functions, stack space for variables local to the function is released when
the function returns. However, for inlined functions, stack space remains occupied
by the local variables even after the function is executed. The value of the property,
InlineStackLimit, is measured in bytes. Based on information from the target
hardware settings, the software estimates the number of stack variables that a certain
value of InlineStackLimit can accomodate. This estimate excludes possible C compiler
optimizations such as putting variables in registers.

You can use the MATLAB Coder app or the command-line interface to control the stack
size limit on inlined functions.

• Using the app, in the project settings dialog box, on the All Settings tab, set the
value of the field, Inline stack limit, to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value of the
property, InlineThresholdMax, to the maximum size that you want.

cfg = coder.config('lib');

cfg.InlineStackLimit = 2000;

Generate code using this configuration object.

29-13

29 Generate Efficient and Reusable Code

Related Examples
• “Inline Code” on page 29-10

29-14

 Fold Function Calls into Constants

Fold Function Calls into Constants

This example shows how to specify constants in generated code using coder.const. The
code generator folds an expression or a function call in a coder.const statement into
a constant in generated code. Because the generated code does not have to evaluate the
expression or call the function every time, this optimization reduces the execution time of
the generated code.

Write a function AddShift that takes an input Shift and adds it to the elements of
a vector. The vector consists of the square of the first 10 natural numbers. AddShift
generates this vector.

function y = AddShift(Shift) %#codegen

y = (1:10).^2+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation
Report.

codegen -config:lib -launchreport AddShift -args 0

The code generator produces code for creating the vector. It adds Shift to each element
of the vector during vector creation. The definition of AddShift in generated code looks
as follows:

void AddShift(double Shift, double y[10])

{

 int k;

 for (k = 0; k < 10; k++) {

 y[k] = (double)((1 + k) * (1 + k)) + Shift;

 }

}

Replace the statement

y = (1:10).^2+Shift;

with

y = coder.const((1:10).^2)+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation
Report.

29-15

29 Generate Efficient and Reusable Code

codegen -config:lib -launchreport AddShift -args 0

The code generator creates the vector containing the squares of the first 10 natural
numbers. In the generated code, it adds Shift to each element of this vector. The
definition of AddShift in generated code looks as follows:

void AddShift(double Shift, double y[10])

{

 int i0;

 static const signed char iv0[10] = { 1, 4, 9, 16, 25, 36,

 49, 64, 81, 100 };

 for (i0 = 0; i0 < 10; i0++) {

 y[i0] = (double)iv0[i0] + Shift;

 }

}

See Also
coder.const

29-16

 Control Stack Space Usage

Control Stack Space Usage

This example shows how to set the maximum stack space that the generated code uses.
Set the maximum stack usage when:

• You have limited stack space, for instance, in embedded targets.
• Your C compiler reports a run-time stack overflow.

The value of the property, StackUsageMax, is measured in bytes. Based on information
from the target hardware settings, the software estimates the number of stack variables
that a certain value of StackUsageMax can accomodate. This estimate excludes possible
C compiler optimizations such as putting variables in registers.

Control Stack Space Usage Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Set Build type to Source Code, Static Library, Dynamic Library, or

Executable (depending on your requirements).
3 Click More Settings.
4 On the Memory tab, set Stack usage max to the value that you want.

Control Stack Space Usage at the Command Line

1 Create a configuration object for code generation.

Use coder.config with arguments 'lib','dll', or 'exe' (depending on your
requirements). For example:

cfg = coder.config('lib');

2 Set the property, StackUsageMax, to the value that you want.

cfg.StackUsageMax=400000;

More About
• “Stack Allocation and Performance” on page 29-18

29-17

29 Generate Efficient and Reusable Code

Stack Allocation and Performance

By default, local variables are allocated on the stack. Large variables that do not fit on
the stack are statically allocated in memory.

Stack allocation typically uses memory more efficiently than static allocation. However,
stack space is sometimes limited, typically in embedded processors. MATLAB Coder
allows you to manually set a limit on the stack space usage to make your generated
code suitable for your target hardware. You can choose this limit based on the target
hardware configurations. For more information, see “Control Stack Space Usage” on page
29-17.

For limited stack space, you can choose to allocate large variables on the heap instead of
using static allocation. Heap allocation is slower but more memory-efficient than static
allocation. To allocate large variables on the heap, do one of the following:

Allocate Heap Space from Command Line

1 Create a configuration object. Set the property, MultiInstanceCode, to true.

cfg = coder.config('exe');

cfg.MultiInstanceCode = true;

2 Generate code using this configuration object.

Allocate Heap Space Using the MATLAB Coder App

1 Using the MATLAB Coder app, in the project settings dialog box, on the Memory
tab, select the Generate re-entrant code check box.

• Generate code.

29-18

 Dynamic Memory Allocation and Performance

Dynamic Memory Allocation and Performance

To achieve faster execution of generated code, minimize dynamic (or run-time) memory
allocation of arrays.

MATLAB Coder does not provide a size for unbounded arrays in generated code. Instead,
such arrays are referenced indirectly through pointers. For such arrays, memory cannot
be allocated during compilation of generated code. Based on storage requirements
for the arrays, memory is allocated and freed at run time as required. This run-time
allocation and freeing of memory leads to slower execution of the generated code. For
more information on dynamic memory allocation, see “Bounded Versus Unbounded
Variable-Size Data” on page 7-4.

When Dynamic Memory Allocation Occurs

Dynamic memory allocation occurs when the code generator cannot find upper bounds
for variable-size arrays. The software cannot find upper bounds when you specify the size
of an array using a variable that is not a compile-time constant. An example of such a
variable is an input variable (or a variable computed from an input variable).

Instances in the MATLAB code that can lead to dynamic memory allocation are:

• Array initialization: You specify array size using a variable whose value is known only
at run time.

• After initialization of an array:

• You declare the array as variable-size using coder.varsize without explicit
upper bounds. After this declaration, you expand the array by concatenation inside
a loop. The number of loop runs is known only at run time.

• You use a reshape function on the array. At least one of the size arguments to the
reshape function is known only at run time.

If you know the maximum size of the array, you can avoid dynamic memory allocation.
You can then provide an upper bound for the array and prevent dynamic memory
allocation in generated code. For more information, see “Minimize Dynamic Memory
Allocation” on page 29-20.

29-19

29 Generate Efficient and Reusable Code

Minimize Dynamic Memory Allocation

When possible, minimize dynamic memory allocation because it leads to slower execution
of generated code. Dynamic memory allocation occurs when the code generator cannot
find upper bounds for variable-size arrays.

If you know the maximum size of a variable-size array, you can avoid dynamic memory
allocation. Follow these steps:

1 “Provide Maximum Size for Variable-Size Arrays” on page 29-21.
2 Depending on your requirements, do one of the following:

• “Disable Dynamic Memory Allocation During Code Generation” on page
29-27.

• “Set Dynamic Memory Allocation Threshold” on page 29-28

Caution If a variable-size array in the MATLAB code does not have a maximum size,
disabling dynamic memory allocation leads to a code generation error. Before disabling
dynamic memory allocation, you must provide a maximum size for variable-size arrays in
your MATLAB code.

More About
• “Dynamic Memory Allocation and Performance” on page 29-19

29-20

 Provide Maximum Size for Variable-Size Arrays

Provide Maximum Size for Variable-Size Arrays

To constrain array size for variable-size arrays, do one of the following:

• Constrain Array Size Using assert Statements

If the variable specifying array size is not a compile-time constant, use an assert
statement with relational operators to constrain the variable. Doing so helps the code
generator to determine a maximum size for the array.

The following examples constrain array size using assert statements:

• When Array Size Is Specified by Input Variables

Define a function array_init which initializes an array y with input variable N:

function y = array_init (N)

 assert(N <= 25); % Generates exception if N > 25

 y = zeros(1,N);

The assert statement constrains input N to a maximum size of 25. In the absence
of the assert statement, y is assigned a pointer to an array in the generated code,
thus allowing dynamic memory allocation.

• When Array Size Is Obtained from Computation Using Input Variables

Define a function, array_init_from_prod, which takes two input variables, M
and N, and uses their product to specify the maximum size of an array, y.

function y = array_init_from_prod (M,N)

 size=M*N;

 assert(size <= 25); % Generates exception if size > 25

 y=zeros(1,size);

The assert statement constrains the product of M and N to a maximum of 25.

Alternatively, if you restrict M and N individually, it leads to dynamic memory
allocation:

function y = array_init_from_prod (M,N)

 assert(M <= 5);

 assert(N <= 5);

 size=M*N;

 y=zeros(1,size);

29-21

29 Generate Efficient and Reusable Code

This code causes dynamic memory allocation because M and N can both have
unbounded negative values. Therefore, their product can be unbounded and
positive even though, individually, their positive values are bounded.

Tip Place the assert statement on a variable immediately before it is used to
specify array size.

Tip You can use assert statements to restrict array sizes in most cases. When
expanding an array inside a loop, this strategy does not work if the number of loop
runs is known only at run time.

• Restrict Concatenations in a Loop Using coder.varsize with Upper Bounds

You can expand arrays beyond their initial size by concatenation. When you
concatenate additional elements inside a loop, there are two syntax rules for
expanding arrays.

1 Array size during initialization is not a compile-time constant

If the size of an array during initialization is not a compile-time constant, you can
expand it by concatenating additional elements:

function out=ExpandArray(in) % Expand an array by five elements

 out = zeros(1,in);

 for i=1:5

 out = [out 0];

 end

2 Array size during initialization is a compile-time constant

Before concatenating elements, you have to declare the array as variable-size
using coder.varsize:

function out=ExpandArray() % Expand an array by five elements

 out = zeros(1,5);

 coder.varsize('out');

 for i=1:5

 out = [out 0];

 end

29-22

 Provide Maximum Size for Variable-Size Arrays

Either case leads to dynamic memory allocation. To prevent dynamic memory
allocation in such cases, use coder.varsize with explicit upper bounds. This
example shows how to use coder.varsize with explicit upper bounds:

Restrict Concatenations Using coder.varsize with Upper Bounds

1 Define a function, RunningAverage, that calculates the running average of an N-
element subset of an array:

 function avg=RunningAverage(N)

% Array whose elements are to be averaged

 NumArray=[1 6 8 2 5 3];

% Initialize average:

% These will also be the first two elements of the function output

 avg=[0 0];

% Place a bound on the argument

 coder.varsize('avg',[1 8]);

% Loop to calculate running average

 for i=1:N

 s=0;

 s=s+sum(NumArray(1:i));

 avg=[avg s/i];

 % Increase the size of avg as required by concatenation

 end

The output, avg, is an array that you can expand as required to accommodate
the running averages. As a new running average is calculated, it is added to the
array avg through concatenation, thereby expanding the array.

Because the maximum number of running averages is equal to the number of
elements in NumArray, you can supply an explicit upper bound for avg in the
coder.varsize statement. In this example, the upper bound is 8 (the two initial
elements plus the six elements of NumArray).

2 Generate code for RunningAverage with input argument of type double:

codegen -config:lib -report RunningAverage -args 2

29-23

29 Generate Efficient and Reusable Code

In the generated code, avg is assigned an array of size 8 (static memory
allocation). The function definition for RunningAverage appears as follows
(using built-in C types):

void RunningAverage (double N, double avg_data[8], int avg_size[2])

3 By contrast, if you remove the explicit upper bound, the generated code
dynamically allocates avg.

Replace the statement

coder.varsize('avg',[1 8]);

with:

coder.varsize('avg');

4 Generate code for RunningAverage with input argument of type double:

codegen -config:lib -report RunningAverage -args 2

In the generated code, avg is assigned a pointer to an array, thereby allowing
dynamic memory allocation. The function definition for RunningAverage
appears as follows (using built-in C types):

void Test(double N, emxArray_real_T *avg)

Note: Dynamic memory allocation also occurs if you precede
coder.varsize('avg') with the following assert statement:

assert(N < 6);

The assert statement does not restrict the number of concatenations within the
loop.

• Constrain Array Size When Rearranging a Matrix

The statement out = reshape(in,m,n,...) takes an array, in, as an argument
and returns array, out, having the same elements as in, but reshaped as an m-by-n-
by-... matrix. If one of the size variables m,n,.... is not a compile-time constant,
then dynamic memory allocation of out takes place.

29-24

 Provide Maximum Size for Variable-Size Arrays

To avoid dynamic memory allocation, use an assert statement before the reshape
statement to restrict the size variables m,n,... to numel(in). This example shows
how to use an assert statement before a reshape statement:

Rearrange a Matrix into Given Number of Rows

1 Define a function, ReshapeMatrix, which takes an input variable, N, and
reshapes a matrix, mat, to have N rows:

 function [out1,out2] = ReshapeMatrix(N)

 mat = [1 2 3 4 5; 4 5 6 7 8]

% Since mat has 10 elements, N must be a factor of 10

% to pass as argument to reshape

 out1 = reshape(mat,N,[]);

% N is not restricted

 assert(N < numel(mat));

% N is restricted to number of elements in mat

 out2 = reshape(mat,N,[]);

2 Generate code for ReshapeArray using the codegen command (the input
argument does not have to be a factor of 10):

codegen -config:lib -report ReshapeArray -args 3

While out1 is dynamically allocated, out2 is assigned an array with size 100
(=10 X 10) in the generated code.

Tip If your system has limited memory, do not use the assert statement in this
way. For an n-element matrix, the assert statement creates an n-by-n matrix,
which might be large.

Related Examples
• on page 29-20
• on page 29-27
• on page 29-28

29-25

29 Generate Efficient and Reusable Code

More About
• on page 29-19

29-26

 Disable Dynamic Memory Allocation During Code Generation

Disable Dynamic Memory Allocation During Code Generation

To disable dynamic memory allocation using the MATLAB Coder app:

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the Memory tab, under Variable Sizing Support, set Dynamic memory

allocation to Never.

To disable dynamic memory allocation at the command line:

1 In the MATLAB workspace, define the configuration object:

cfg=coder.config('lib');

2 Set the DynamicMemoryAllocation property of the configuration object to Off:

cfg.DynamicMemoryAllocation = 'Off';

If a variable-size array in the MATLAB code does not have a maximum upper bound,
disabling dynamic memory allocation leads to a code generation error. Therefore, you can
identify variable-size arrays in your MATLAB code that do not have a maximum upper
bound. These arrays are the arrays that are dynamically allocated in the generated code.

Related Examples
• “Minimize Dynamic Memory Allocation” on page 29-20
• “Provide Maximum Size for Variable-Size Arrays” on page 29-21
• “Set Dynamic Memory Allocation Threshold” on page 29-28

More About
• “Dynamic Memory Allocation and Performance” on page 29-19

29-27

29 Generate Efficient and Reusable Code

Set Dynamic Memory Allocation Threshold

This example shows how to specify a dynamic memory allocation threshold for variable-
size arrays. Dynamic memory allocation optimizes storage requirements for variable-
size arrays, but causes slower execution of generated code. Instead of disabling dynamic
memory allocation for all variable-size arrays, you can disable dynamic memory
allocation for arrays less than a certain size.

Specify this threshold when you want to:

• Disable dynamic memory allocation for smaller arrays. For smaller arrays, static
memory allocation can speed up generated code. Static memory allocation can lead to
unused storage space. However, you can decide that the unused storage space is not a
significant consideration for smaller arrays.

• Enable dynamic memory allocation for larger arrays. For larger arrays, when you use
dynamic memory allocation, you can significantly reduce storage requirements.

Set Dynamic Memory Allocation Threshold Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the Memory tab, select the Enable variable-sizing check box.
4 Set Dynamic memory allocation to For arrays with max size at or

above threshold.
5 Set Dynamic memory allocation threshold to the value that you want.

29-28

 Set Dynamic Memory Allocation Threshold

The Dynamic memory allocation threshold value is measured in bytes. Based
on information from the target hardware settings, the software estimates the size
of the array that a certain value of DynamicMemoryAllocationThreshold can
accomodate. This estimate excludes possible C compiler optimizations such as
putting variables in registers.

Set Dynamic Memory Allocation Threshold at the Command Line

1 Create a configuration object for code generation. Use coder.config with
arguments 'lib','dll', or 'exe' (depending on your requirements). For example:

cfg = coder.config('lib');

2 Set DynamicMemoryAllocation to 'Threshold'.

cfg.DynamicMemoryAllocation='Threshold';

3 Set the property, DynamicMemoryAllocationThreshold, to the value that you
want.

cfg.DynamicMemoryAllocationThreshold = 40000;

The value stored in DynamicMemoryAllocationThreshold is measured in bytes.
Based on information from the target hardware settings, the software estimates the
size of the array that a certain value of DynamicMemoryAllocationThreshold
can accomodate. This estimate excludes possible C compiler optimizations such as
putting variables in registers.

Related Examples
• “Minimize Dynamic Memory Allocation” on page 29-20
• “Provide Maximum Size for Variable-Size Arrays” on page 29-21
• “Disable Dynamic Memory Allocation During Code Generation” on page 29-27

More About
• “Dynamic Memory Allocation and Performance” on page 29-19

29-29

29 Generate Efficient and Reusable Code

Excluding Unused Paths from Generated Code

In certain situations, you do not need some branches of an: if, elseif, else
statement, or a switch, case, otherwise statement in your generated code. For
instance:

• You have a MATLAB function that performs multiple tasks determined by a control-
flow variable. You might not need some of the tasks in the code generated from this
function.

• You have an if/elseif/if statement in a MATLAB function performing different
tasks based on the nature (type/value) of the input. In some cases, you know the
nature of the input beforehand. If so, you do not need some branches of the if
statement.

You can prevent code generation for the unused branches of an if/elseif/else
statement or a switch/case/otherwise statement. Declare the control-flow variable
as a constant. The code generator produces code only for the branch that the control-flow
variable chooses.

Related Examples
• “Prevent Code Generation for Unused Execution Paths” on page 29-31

29-30

 Prevent Code Generation for Unused Execution Paths

Prevent Code Generation for Unused Execution Paths

In this section...

“Prevent Code Generation When Local Variable Controls Flow” on page 29-31
“Prevent Code Generation When Input Variable Controls Flow” on page 29-32

If a variable controls the flow of an: if, elseif, else statement, or a switch,
case, otherwise statement, declare it as constant so that code generation takes place
for one branch of the statement only.

Depending on the nature of the control-flow variable, you can declare it as constant in
two ways:

• If the variable is local to the MATLAB function, assign it to a constant value in the
MATLAB code. For an example, see “Prevent Code Generation When Local Variable
Controls Flow” on page 29-31.

• If the variable is an input to the MATLAB function, you can declare it as constant
using coder.Constant. For an example, see “Prevent Code Generation When Input
Variable Controls Flow” on page 29-32.

Prevent Code Generation When Local Variable Controls Flow

1 Define a function SquareOrCube which takes an input variable, in, and squares or
cubes its elements based on whether the choice variable, ch, is set to s or c:

function out = SquareOrCube(ch,in) %#codegen

 if ch=='s'

 out = in.^2;

 elseif ch=='c'

 out = in.^3;

 else

 out = 0;

 end

2 Generate code for SquareOrCube using the codegen command:

codegen -config:lib SquareOrCube -args {'s',zeros(2,2)}

The generated C code squares or cubes the elements of a 2-by-2 matrix based on the
input for ch.

29-31

29 Generate Efficient and Reusable Code

3 Add the following line to the definition of SquareOrCube:

ch = 's';

The generated C code squares the elements of a 2-by-2 matrix. The choice variable,
ch, and the other branches of the if/elseif/if statement do not appear in the
generated code.

Prevent Code Generation When Input Variable Controls Flow

1 Define a function MathFunc, which performs different mathematical operations on
an input, in, depending on the value of the input, flag:

function out = MathFunc(flag,in) %#codegen

 %# codegen

 switch flag

 case 1

 out=sin(in);

 case 2

 out=cos(in);

 otherwise

 out=sqrt(in);

 end

2 Generate code for MathFunc using the codegen command:

codegen -config:lib MathFunc -args {1,zeros(2,2)}

The generated C code performs different math operations on the elements of a 2-by-2
matrix based on the input for flag.

3 Generate code for MathFunc, declaring the argument, flag, as a constant using
coder.Constant:

codegen -config:lib MathFunc -args {coder.Constant(1),zeros(2,2)}

The generated C code finds the sine of the elements of a 2-by-2 matrix. The variable,
flag, and the switch/case/otherwise statement do not appear in the generated
code.

More About
• “Excluding Unused Paths from Generated Code” on page 29-30

29-32

 Generate Code with Parallel for-Loops (parfor)

Generate Code with Parallel for-Loops (parfor)

This example shows how to generate C code for a MATLAB algorithm that contains a
parfor-loop.

1 Write a MATLAB function that contains a parfor-loop. For example:

function a = test_parfor %#codegen

a=ones(10,256);

r=rand(10,256);

parfor i=1:10

 a(i,:)=real(fft(r(i,:)));

end

2 Generate C code for test_parfor. At the MATLAB command line, enter:

codegen -config:lib test_parfor

Because you did not specify the maximum number of threads to use, the generated C
code executes the loop iterations in parallel on the available number of cores.

3 To specify a maximum number of threads, rewrite the function test_parfor as
follows:

function a = test_parfor(u) %#codegen

a=ones(10,256);

r=rand(10,256);

parfor (i=1:10,u)

 a(i,:)=real(fft(r(i,:)));

end

4 Generate C code for test_parfor. Use -args 0 to specify that the input, u, is a
scalar double. At the MATLAB command line, enter:

codegen -config:lib test_parfor -args 0

In the generated code, the iterations of the parfor-loop run on at most the number
of cores specified by the input, u. If less than u cores are available, the iterations run
on the cores available at the time of the call.

More About
• “Algorithm Acceleration Using Parallel for-Loops (parfor)” on page 26-18
• “Classification of Variables in parfor-Loops” on page 26-26

29-33

29 Generate Efficient and Reusable Code

• “Reduction Assignments in parfor-Loops” on page 26-25

29-34

 Minimize Redundant Operations in Loops

Minimize Redundant Operations in Loops

This example shows how to minimize redundant operations in loops. When a loop
operation does not depend on the loop index, performing it inside a loop is redundant.
This redundancy often goes unnoticed when you are performing multiple operations in a
single MATLAB statement inside a loop. For example, in the following code, the inverse
of the matrix B is being calculated 100 times inside the loop although it does not depend
on the loop index:

for i=1:100

 C=C + inv(B)*A^i*B;

 end

Performing such redundant loop operations can lead to unnecessary processing. To avoid
unnecessary processing, move operations outside loops as long as they do not depend on
the loop index.

1 Define a function, SeriesFunc(A,B,n), that calculates the sum of n terms in the
following power series expansion:

C B AB B A B= + + +
- -

1
1 1 2

...

 function C=SeriesFunc(A,B,n)

% Initialize C with a matrix having same dimensions as A

 C=zeros(size(A));

% Perform the series sum

 for i=1:n

 C=C+inv(B)*A^i*B;

 end

2 Generate code for SeriesFunc with 4-by-4 matrices passed as input arguments for A
and B:

X = coder.typeof(zeros(4));

codegen -config:lib -launchreport SeriesFunc -args {X,X,10}

In the generated code, the inversion of B is performed n times inside the loop. It is
more economical to perform the inversion operation once outside the loop because it
does not depend on the loop index.

3 Modify SeriesFunc as follows:

29-35

29 Generate Efficient and Reusable Code

 function C=SeriesFunc(A,B,n)

% Initialize C with a matrix having same dimensions as A

 C=zeros(size(A));

% Perform the inversion outside the loop

 inv_B=inv(B);

% Perform the series sum

 for i=1:n

 C=C+inv_B*A^i*B;

 end

This procedure performs the inversion of B only once, leading to faster execution of
the generated code.

29-36

 Unroll for-Loops

Unroll for-Loops

Unrolling for-loops eliminates the loop logic by creating a separate copy of the loop body
in the generated code for each iteration. Within each iteration, the loop index variable
becomes a constant.

You can also force loop unrolling for individual functions by wrapping the loop header in
a coder.unroll function. For more information, see coder.unroll.

Limit Copying the for-loop Body in Generated Code

To limit the number of times that you copy the body of a for-loop in generated code:

1 Write a MATLAB function getrand(n) that uses a for-loop to generate a vector
of length n and assign random numbers to specific elements. Add a test function
test_unroll. This function calls getrand(n) with n equal to values both less than
and greater than the threshold for copying the for-loop in generated code.

function [y1, y2] = test_unroll() %#codegen

% The directive %#codegen indicates that the function

% is intended for code generation

 % Calling getrand 8 times triggers unroll

 y1 = getrand(8);

 % Calling getrand 50 times does not trigger unroll

 y2 = getrand(50);

function y = getrand(n)

 % Turn off inlining to make

 % generated code easier to read

 coder.inline('never');

 % Set flag variable dounroll to repeat loop body

 % only for fewer than 10 iterations

 dounroll = n < 10;

 % Declare size, class, and complexity

 % of variable y by assignment

 y = zeros(n, 1);

 % Loop body begins

 for i = coder.unroll(1:2:n, dounroll)

 if (i > 2) && (i < n-2)

 y(i) = rand();

 end;

29-37

29 Generate Efficient and Reusable Code

 end;

 % Loop body ends

2 Disable support for

In the default output folder, codegen/lib/test_unroll, generate C static library
code for test_unroll:

codegen -config:lib test_unroll

In test_unroll.c, the generated C code for getrand(8) repeats the body of the
for-loop (unrolls the loop) because the number of iterations is less than 10:

static void getrand(double y[8])

{

 /* Turn off inlining to make */

 /* generated code easier to read */

 /* Set flag variable dounroll to repeat loop body */

 /* only for fewer than 10 iterations */

 /* Declare size, class, and complexity */

 /* of variable y by assignment */

 memset(&y[0], 0, sizeof(double) << 3);

 /* Loop body begins */

 y[2] = b_rand();

 y[4] = b_rand();

 /* Loop body ends */

}

The generated C code for getrand(50) does not unroll the for-loop because the
number of iterations is greater than 10:

static void b_getrand(double y[50])

{

 int i;

 int b_i;

 /* Turn off inlining to make */

 /* generated code easier to read */

 /* Set flag variable dounroll to repeat loop body */

 /* only for fewer than 10 iterations */

 /* Declare size, class, and complexity */

 /* of variable y by assignment */

 memset(&y[0], 0, 50U * sizeof(double));

29-38

 Unroll for-Loops

 /* Loop body begins */

 for (i = 0; i < 25; i++) {

 b_i = (i << 1) + 1;

 if ((b_i > 2) && (b_i < 48)) {

 y[b_i - 1] = b_rand();

 }

 }

3

29-39

29 Generate Efficient and Reusable Code

Disable Support for Integer Overflow or Non-Finites

The code generator produces supporting code for the following situations:

• The result of an integer operation falls outside the range that a data type can
represent. This situation is known as integer overflow.

• An operation generates non-finite values (inf and NaN). The supporting code is
contained in the files rt_nonfinite.c, rtGetInf.c, and rtGetNaN.c (with
corresponding header files).

If you know that these situations do not occur, you can suppress generation of the
supporting code. You therefore reduce the size of the generated code and increase its
speed. However, if one of these situations occurs, it is possible that the generated code
does not match the behavior of the original MATLAB code.

Disable Support for Integer Overflow

You can use the MATLAB Coder app or the command-line interface to disable support for
integer overflow. When you disable this support, the overflow behavior of your generated
code depends on your target C compiler. Most C compilers wrap on overflow.

• Using the app:

1 To open the Generate dialog box, on the Generate Code page, click the

Generate arrow .
2 Click More Settings.
3 On the Speed tab, clear Saturate on integer overflow.

• At the command line:

1 Create a configuration object for code generation. Use coder.config with
arguments 'lib', 'dll', or 'exe' (depending on your requirements). For
example:

cfg = coder.config('lib');

2 Set the SaturateOnIntegerOverflow property to false.

cfg.SaturateOnIntegerOverflow = false;

29-40

 Disable Support for Integer Overflow or Non-Finites

Disable Support for Non-Finite Numbers

You can use the MATLAB Coder app or the command-line interface to disable support for
non-finite numbers(inf and NaN).

• Using the app:

1 To open the Generate dialog box, on the Generate Code page, click the

Generate arrow .
2 Set Build type to Source Code, Static Library, Dynamic Library, or

Executable (depending on your requirements).
3 Click More Settings.
4 On the Speed tab, clear the Support non-finite numbers check box.

• At the command line:

1 Create a configuration object for code generation. Use coder.config with
arguments 'lib', 'dll', or 'exe' (depending on your requirements). For
example:

cfg = coder.config('lib');

2 Set the SupportNonFinite property to false.

cfg.SupportNonFinite = false;

29-41

29 Generate Efficient and Reusable Code

Integrate External/Custom Code

This example shows how to integrate external or custom code to enhance performance
of generated code. Although MATLAB Coder generates optimized code for most
applications, you might have custom code optimized for your specific requirements. For
example:

• You have custom libraries optimized for your target environment.
• You have custom libraries for functions not supported by MATLAB Coder.
• You have custom libraries that meet standards set by your company.

In such cases, you can integrate your custom code with the code generated by MATLAB
Coder.

This example illustrates how to integrate the function cublasSgemm from the NVIDIA®

CUDA® Basic Linear Algebra Subroutines (CUBLAS) library in generated code. This
function performs matrix multiplication on a Graphics Processing Unit (GPU).

1 Define a class ExternalLib_API that derives from the class
coder.ExternalDependency. ExternalLib_API defines an interface to the
CUBLAS library through the following methods:

• getDescriptiveName: Returns a descriptive name for ExternalLib_API to be
used for error messages.

• isSupportedContext: Determines if the build context supports the CUBLAS
library.

• updateBuildInfo: Adds header file paths and link files to the build
information.

• GPU_MatrixMultiply: Defines the interface to the CUBLAS library function
cublasSgemm.

ExternalLib_API.m

classdef ExternalLib_API < coder.ExternalDependency

 %#codegen

 methods (Static)

 function bName = getDescriptiveName(~)

 bName = 'ExternalLib_API';

29-42

 Integrate External/Custom Code

 end

 function tf = isSupportedContext(ctx)

 if ctx.isMatlabHostTarget()

 tf = true;

 else

 error('CUBLAS library not available for this target');

 end

 end

 function updateBuildInfo(buildInfo, ctx)

 [~, linkLibExt, ~, ~] = ctx.getStdLibInfo();

 % Include header file path

 % Include header files later using coder.cinclude

 hdrFilePath = 'C:\My_Includes';

 buildInfo.addIncludePaths(hdrFilePath);

 % Include link files

 linkFiles = strcat('libcublas', linkLibExt);

 linkPath = 'C:\My_Libs';

 linkPriority = '';

 linkPrecompiled = true;

 linkLinkOnly = true;

 group = '';

 buildInfo.addLinkObjects(linkFiles, linkPath, ...

 linkPriority, linkPrecompiled, linkLinkOnly, group);

 linkFiles = strcat('libcudart', linkLibExt);

 buildInfo.addLinkObjects(linkFiles, linkPath, ...

 linkPriority, linkPrecompiled, linkLinkOnly, group);

 end

 %API for library function 'cuda_MatrixMultiply'

 function C = GPU_MatrixMultiply(A, B)

 assert(isa(A,'single'), 'A must be single.');

 assert(isa(B,'single'), 'B must be single.');

 if(coder.target('MATLAB'))

 C=A*B;

 else

 % Include header files

29-43

29 Generate Efficient and Reusable Code

 % for external functions and typedefs

 % Header path included earlier using updateBuildInfo

 coder.cinclude('"cuda_runtime.h"');

 coder.cinclude('"cublas_v2.h"');

 % Compute dimensions of input matrices

 m = int32(size(A, 1));

 k = int32(size(A, 2));

 n = int32(size(B, 2));

 % Declare pointers to matrices on destination GPU

 d_A = coder.opaque('float*');

 d_B = coder.opaque('float*');

 d_C = coder.opaque('float*');

 % Compute memory to be allocated for matrices

 % Single = 4 bytes

 size_A = m*k*4;

 size_B = k*n*4;

 size_C = m*n*4;

 % Define error variables

 error = coder.opaque('cudaError_t');

 cudaSuccessV = coder.opaque('cudaError_t', ...

 'cudaSuccess');

 % Assign memory on destination GPU

 error = coder.ceval('cudaMalloc', ...

 coder.wref(d_A), size_A);

 assert(error == cudaSuccessV, ...

 'cudaMalloc(A) failed');

 error = coder.ceval('cudaMalloc', ...

 coder.wref(d_B), size_B);

 assert(error == cudaSuccessV, ...

 'cudaMalloc(B) failed');

 error = coder.ceval('cudaMalloc', ...

 coder.wref(d_C), size_C);

 assert(error == cudaSuccessV, ...

 'cudaMalloc(C) failed');

 % Define direction of copying

 hostToDevice = coder.opaque('cudaMemcpyKind', ...

 'cudaMemcpyHostToDevice');

29-44

 Integrate External/Custom Code

 % Copy matrices to destination GPU

 error = coder.ceval('cudaMemcpy', ...

 d_A, coder.rref(A), size_A, hostToDevice);

 assert(error == cudaSuccessV, 'cudaMemcpy(A) failed');

 error = coder.ceval('cudaMemcpy', ...

 d_B, coder.rref(B), size_B, hostToDevice);

 assert(error == cudaSuccessV, 'cudaMemcpy(B) failed');

 % Define type and size for result

 C = zeros(m, n, 'single');

 error = coder.ceval('cudaMemcpy', ...

 d_C, coder.rref(C), size_C, hostToDevice);

 assert(error == cudaSuccessV, 'cudaMemcpy(C) failed');

 % Define handle variables for external library

 handle = coder.opaque('cublasHandle_t');

 blasSuccess = coder.opaque('cublasStatus_t', ...

 'CUBLAS_STATUS_SUCCESS');

 % Initialize external library

 ret = coder.opaque('cublasStatus_t');

 ret = coder.ceval('cublasCreate', coder.wref(handle));

 assert(ret == blasSuccess, 'cublasCreate failed');

 TRANSA = coder.opaque('cublasOperation_t', ...

 'CUBLAS_OP_N');

 alpha = single(1);

 beta = single(0);

 % Multiply matrices on GPU

 ret = coder.ceval('cublasSgemm', handle, ...

 TRANSA,TRANSA,m,n,k, ...

 coder.rref(alpha),d_A,m, ...

 d_B,k, ...

 coder.rref(beta),d_C,k);

 assert(ret == blasSuccess, 'cublasSgemm failed');

 % Copy result back to local host

 deviceToHost = coder.opaque('cudaMemcpyKind', ...

 'cudaMemcpyDeviceToHost');

29-45

29 Generate Efficient and Reusable Code

 error = coder.ceval('cudaMemcpy', coder.wref(C), ...

 d_C, size_C, deviceToHost);

 assert(error == cudaSuccessV, 'cudaMemcpy(C) failed');

 end

 end

 end

end

2 To perform the matrix multiplication using the interface defined in method
GPU_MatrixMultiply and the build information in ExternalLib_API, include the
following line in your MATLAB code:

C= ExternalLib_API.GPU_MatrixMultiply(A,B);

For instance, you can define a MATLAB function Matrix_Multiply that solely
performs this matrix multiplication.

function C = Matrix_Multiply(A, B) %#codegen

 C= ExternalLib_API.GPU_MatrixMultiply(A,B);

3 Define a MEX configuration object using coder.config. For using the CUBLAS
libraries, set the target language for code generation to C++.

cfg=coder.config('mex');

cfg.TargetLang='C++';

4 Generate code for Matrix_Multiply using cfg as the configuration object and two
2 X 2 matrices of type single as arguments. Since cublasSgemm supports matrix
multiplication for data type float, the corresponding MATLAB matrices must have
type single.

codegen -config cfg Matrix_Multiply ...

 -args {ones(2,'single'),ones(2,'single')}

5 Test the generated MEX function Matrix_Multiply_mex using two 2 X 2 identity
matrices of type single.

Matrix_Multiply_mex(eye(2,'single'),eye(2,'single'))

The output is also a 2 X 2 identity matrix.

See Also
coder.BuildConfig | assert | coder.ceval | coder.ExternalDependency |
coder.opaque | coder.rref | coder.wref

29-46

 Integrate External/Custom Code

Related Examples
• “Encapsulate Interface to an External C Library” on page 28-6

More About
• “Encapsulating the Interface to External Code” on page 28-3

29-47

29 Generate Efficient and Reusable Code

MATLAB Coder Optimizations in Generated Code

In this section...

“Constant Folding” on page 29-48
“Loop Fusion” on page 29-49
“Successive Matrix Operations Combined” on page 29-49
“Unreachable Code Elimination” on page 29-50
“memcpy Calls” on page 29-50
“memset Calls” on page 29-51

In order to improve the execution speed and memory usage of generated code, MATLAB
Coder introduces the following optimizations:

Constant Folding

When possible, the code generator evaluates expressions in your MATLAB code that
involve compile-time constants only. In the generated code, it replaces these expressions
with the result of the evaluations. This behavior is known as constant folding. Because
of constant folding, the generated code does not have to evaluate the constants during
execution.

The following example shows MATLAB code that is constant-folded during code
generation. The function MultiplyConstant multiplies every element in a matrix by a
scalar constant. The function evaluates this constant using the product of three compile-
time constants, a, b, and c.

function out=MultiplyConstant(in) %#codegen

 a=pi^4;

 b=1/factorial(4);

 c=exp(-1);

 out=in.*(a*b*c);

end

The code generator evaluates the expressions involving compile-time constants, a,b, and
c. It replaces these expressions with the result of the evaluation in generated code.

Constant folding can occur when the expressions involve scalars only. To explicitly
enforce constant folding of expressions in other cases, use the coder.const function.
For more information, see “Fold Function Calls into Constants” on page 29-15.

29-48

 MATLAB Coder Optimizations in Generated Code

Control Constant Folding

You can control the maximum number of instructions that can be constant-folded from
the command line or the project settings dialog box.

• At the command line, create a configuration object for code generation. Set the
property ConstantFoldingTimeout to the value that you want.

cfg=coder.config('lib');

cfg.ConstantFoldingTimeout = 200;

• Using the app, in the project settings dialog box, on the All Settings tab, set the field
Constant folding timeout to the value that you want.

Loop Fusion

When possible, the code generator fuses successive loops with the same number of runs
into a single loop in the generated code. This optimization reduces loop overhead.

The following code contains successive loops, which are fused during code generation.
The function SumAndProduct evaluates the sum and product of the elements in an array
Arr. The function uses two separate loops to evaluate the sum y_f_sum and product
y_f_prod.

function [y_f_sum,y_f_prod] = SumAndProduct(Arr) %#codegen

 y_f_sum = 0;

 y_f_prod = 1;

 for i = 1:length(Arr)

 y_f_sum = y_f_sum+Arr(i);

 end

 for i = 1:length(Arr)

 y_f_prod = y_f_prod*Arr(i);

 end

The code generated from this MATLAB code evaluates the sum and product in a single
loop.

Successive Matrix Operations Combined

When possible, the code generator converts successive matrix operations in your
MATLAB code into a single loop operation in generated code. This optimization reduces
excess loop overhead involved in performing the matrix operations in separate loops.

29-49

29 Generate Efficient and Reusable Code

The following example contains code where successive matrix operations take place. The
function ManipulateMatrix multiplies every element of a matrix Mat with a factor.
To every element in the result, the function then adds a shift:

function Res=ManipulateMatrix(Mat,factor,shift)

 Res=Mat*factor;

 Res=Res+shift;

end

The generated code combines the multiplication and addition into a single loop operation.

Unreachable Code Elimination

When possible, the code generator suppresses code generation from unreachable
procedures in your MATLAB code. For instance, if a branch of an if, elseif, else
statement is unreachable, then code is not generated for that branch.

The following example contains unreachable code, which is eliminated during code
generation. The function SaturateValue returns a value based on the range of its input
x.

function y_b = SaturateValue(x) %#codegen

 if x>0

 y_b = x;

 elseif x>10 %This is redundant

 y_b = 10;

 else

 y_b = -x;

 end

The second branch of the if, elseif, else statement is unreachable. If the variable
x is greater than 10, it is also greater than 0. Therefore, the first branch is executed in
preference to the second branch.

MATLAB Coder does not generate code for the unreachable second branch.

memcpy Calls

To optimize generated code that copies consecutive array elements, the code generator
tries to replace the code with a memcpy call. A memcpy call can be more efficient than
code, such as a for-loop or multiple, consecutive element assignments.

29-50

 MATLAB Coder Optimizations in Generated Code

See “memcpy Optimization” on page 29-52.

memset Calls

To optimize generated code that assigns a literal constant to consecutive array elements,
the code generator tries to replace the code with a memset call. A memset call can
be more efficient than code, such as a for-loop or multiple, consecutive element
assignments.

See “memset Optimization” on page 29-54.

29-51

29 Generate Efficient and Reusable Code

memcpy Optimization

To optimize generated code that copies consecutive array elements, the code generator
tries to replace the code with a memcpy call. A memcpy call can be more efficient than
code, such as a for-loop or multiple, consecutive element assignments.

Code Generated with the memcpy
Optimization

Code Generated without the memcpy
Optimization

 memcpy(&C[0], &A[0], 10000U * sizeof(double)); for (i0 = 0; i0 < 10000; i0++) {

 C[i0] = A[i0];

 memcpy(&Z[0], &X[0],1000U * sizeof(double)); Z[0] = X[0];

Z[1] = X[1];

Z[2] = X[2];

...

Z[999] = X[999];

The code generator invokes the memcpy optimization if the following conditions are true:

• The memcpy optimization is enabled.
• The number of bytes to copy is greater than or equal to the memcpy threshold. The

number of bytes to copy is the number of array elements multiplied by the number of
bytes required for the C/C++ data type.

To enable or disable the memcpy optimization:

• At the command line, set the code configuration object property EnableMemcpy to
true or false, respectively. The default value is true.

• In the MATLAB Coder app, set Use memcpy for vector assignment to Yes or No
respectively. The default value is Yes.

The default memcpy threshold is 64 bytes. To change the threshold:

• At the command line, set the code configuration object property MemcpyThreshold.
• In the MATLAB Coder app, set Memcpy threshold (bytes).

The memset optimization also uses the memcpy threshold.

More About
• “memset Optimization” on page 29-54
• “MATLAB Coder Optimizations in Generated Code” on page 29-48

29-52

 memcpy Optimization

• “Optimization Strategies” on page 29-3

29-53

29 Generate Efficient and Reusable Code

memset Optimization

To optimize generated code that assigns a literal constant to consecutive array elements,
the code generator tries to replace the code with a memset call. A memset call can
be more efficient than code, such as a for-loop or multiple, consecutive element
assignments.

Code Generated with the memset
Optimization

Code Generated without the memset
Optimization

 memset(&Y[0], 125, 100U * sizeof(signed char)); for (i = 0; i < 100; i++) {

 Y[i] = 125;

memset(&Y[0], 0, 10000U * sizeof(double)); for (i0 = 0; i0 < 10000; i0++) {

 Y[i0] = 0.0;

memset(&Z[0], 0, 1000U * sizeof(double)); Z[0] = 0.0;

Z[1] = 0.0;

Z[2] = 0.0;

...

Z[999] = 0.0;

memset Optimization for an Integer Constant

To assign an integer constant to consecutive array elements, the code generator invokes
the memset optimization when the following conditions are true:

• The constant is a literal constant. For example, X[i] = 5.
• For a nonzero constant:

• The type of the constant is not multiword.
• The length in bits of the type of the constant is the same as the length in bits of

the C char type that the hardware supports.
• The number of bytes to assign is greater than or equal to the memset optimization

threshold. The number of bytes to assign is the number of array elements multiplied
by the number of bytes required for the C/C++ data type.

The memset optimization threshold is the same as the memcpy optimization threshold.
The default threshold is 64 bytes. To change the threshold:

• At the command line, set the code configuration object property MemcpyThreshold.
• In the MATLAB Coder app, set Memcpy threshold (bytes).

29-54

 memset Optimization

memset Optimization for Float or Double Zero

To assign a float or double 0 to consecutive array elements, the code generator invokes
the memset optimization when the following conditions are true:

• The constant is a literal constant. For example, X[i] = 0.0.
• The memset optimization is enabled for assignment of float or double 0 to consecutive

array elements.
• The number of bytes to assign is greater than or equal to the memset optimization

threshold. The number of bytes to assign is the number of array elements multiplied
by the number of bytes required for the C/C++ data type.

To enable or disable the memset optimization for assignment of float or double 0 to
consecutive array elements:

• At the command line, set the code configuration object property
InitFltsAndDblsToZero to true or false, respectively. The default value is true.

• In the MATLAB Coder app, set Use memset to initialize floats and doubles to
0.0 to Yes or No respectively. The default value is Yes.

The memset optimization threshold is the same as the memcpy optimization threshold.
The default threshold is 64 bytes. To change the threshold:

• At the command line, set the code configuration object property MemcpyThreshold.
• In the MATLAB Coder app, set Memcpy threshold (bytes).

More About
• “memcpy Optimization” on page 29-52
• “MATLAB Coder Optimizations in Generated Code” on page 29-48
• “Optimization Strategies” on page 29-3

29-55

29 Generate Efficient and Reusable Code

Generate Reusable Code

With MATLAB, you can generate reusable code in the following ways:

• Write reusable functions using standard MATLAB function file names which you can
call from different locations, for example, in a Simulink model or MATLAB function
library.

• Compile external functions on the MATLAB path and integrate them into generated
C code for embedded targets.

See “Resolution of Function Calls for Code Generation” on page 14-2.

Common applications include:

• Overriding generated library function with a custom implementation.
• Implementing a reusable library on top of standard library functions that can be used

with Simulink.
• Swapping between different implementations of the same function.

29-56

 Reuse Large Arrays and Structures

Reuse Large Arrays and Structures

Variable reuse can reduce memory usage or improve execution speed, especially when
your code has large structures or arrays. However, variable reuse results in less readable
code. If reduced memory usage is more important than code readability, specify that you
want the code generator to reuse your variables in the generated code.

The code generator can reuse the name and memory of one variable for another variable
when:

• Both variables have the same memory requirements.
• Memory access for one variable does not interfere with memory access for the other

variable.

The code generator reuses your variable names for other variables or reuses other
variable names for your variables. For example, for code such as:

if (s>0)

 myvar1 = 0;

 ...

else

 myvar2 = 0;

 ...

end

the generated code can look like this code:

 if (s > 0.0) {

 myvar2 = 0.0;

 ...

 } else {

 myvar2 = 0.0;

 ...

 }

To specify that you want the code generator to reuse your variables:

• In a code generation configuration object, set the PreserveVariableNames
parameter to 'None'.

• In the MATLAB Coder app, set Preserve variable names to None.

29-57

29 Generate Efficient and Reusable Code

More About
• “Preserve Variable Names in Generated Code” on page 21-44
• “Optimization Strategies” on page 29-3
• “Configure Build Settings” on page 21-26

29-58

 LAPACK Calls in Generated Code

LAPACK Calls in Generated Code

To improve the execution speed of code generated for certain linear algebra functions,
MATLAB Coder can generate calls to LAPACK functions instead of generating the code
for the linear algebra functions. LAPACK is a software library for numerical linear
algebra. MATLAB Coder uses the LAPACKE C interface to LAPACK.

For MEX generation, if the input arrays for the linear algebra functions meet certain
criteria, the code generator produces LAPACK calls. For standalone code (library or
executable program), by default, the code generator does not produce LAPACK calls. If
you specify that you want to generate LAPACK calls, and the input arrays for the linear
algebra functions meet the criteria, the code generator produces LAPACK calls. See
“Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls” on
page 29-60.

For MEX functions, the code generator uses the LAPACK library that is included with
MATLAB. MATLAB uses LAPACK in some linear algebra functions such as eig and
svd. For standalone code, the code generator uses the LAPACK library that you specify.
See “Specify LAPACK Library” on page 29-60.

More About
• “Optimization Strategies” on page 29-3

External Websites
• www.netlib.org/lapack

29-59

http://www.netlib.org/lapack
http://www.netlib.org/lapack/lapacke.html
http://www.netlib.org/lapack

29 Generate Efficient and Reusable Code

Speed Up Linear Algebra in Generated Standalone Code by Using
LAPACK Calls

To improve the execution speed of code generated for certain linear algebra functions in
standalone (library or executable program) code, specify that you want MATLAB Coder
to generate LAPACK calls. LAPACK is a software library for numerical linear algebra.
MATLAB Coder uses the LAPACKE C interface to LAPACK. If you specify that you want
to generate LAPACK calls, and the input arrays for the linear algebra functions meet
certain criteria, the code generator produces the LAPACK calls. Otherwise, the code
generator produces code for the linear algebra functions.

For LAPACK calls in standalone code, MATLAB Coder uses the
LAPACK library that you specify. Specify a LAPACK library that is
optimized for your execution environment. See www.netlib.org/lapack/
faq.html#_what_and_where_are_the_lapack_vendors_implementations.

Specify LAPACK Library

To generate LAPACK calls in standalone code, you must have access to a LAPACK
callback class. A LAPACK callback class specifies the LAPACK library and LAPACKE
header file for the LAPACK calls. To indicate that you want to generate LAPACK calls
and that you want to use a specific LAPACK library, specify the name of the LAPACK
callback class.

• At the command line, set the code configuration object property
CustomLAPACKCallback to the name of the callback class.

• In the MATLAB Coder app, set Custom LAPACK library callback to the name of
the callback class.

Write LAPACK Callback Class

To specify the locations of a particular LAPACK library and LAPACKE header file, write
a LAPACK callback class. Share the callback class with others who want to use this
LAPACK library for LAPACK calls in standalone code.

The callback class must derive from the abstract class coder.LAPACKCallback. Use the
following example callback class as a template.

classdef useMyLAPACK < coder.LAPACKCallback

29-60

http://www.netlib.org/lapack
http://www.netlib.org/lapack/lapacke.html
http://www.netlib.org/lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations
http://www.netlib.org/lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations

 Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls

 methods (Static)

 function hn = getHeaderFilename()

 hn = 'mylapacke_custom.h';

 end

 function updateBuildInfo(buildInfo, buildctx)

 buildInfo.addIncludePaths(fullfile(pwd,'include'));

 libName = 'mylapack';

 libPath = fullfile(pwd,'lib');

 [~,linkLibExt] = buildctx.getStdLibInfo();

 buildInfo.addLinkObjects([libName linkLibExt], libPath, ...

 '', true, true);

 buildInfo.addDefines('HAVE_LAPACK_CONFIG_H');

 buildInfo.addDefines('LAPACK_COMPLEX_STRUCTURE');

 end

 end

end

You must provide the getHeaderFilename and updateBuildInfo methods. The
getHeaderFilename method returns the LAPACKE header file name. In the example
callback class, replace mylapacke_custom.h with the name of your LAPACKE header
file. The updateBuildInfo method provides the information required for the build
process to link to the LAPACK library. Use code like the code in the template to specify
the location of header files and the full path name of the LAPACK library. In the
example callback class, replace mylapack with the name of your LAPACK library.

If your compiler supports only complex data types that are represented as structures,
include these lines in the updateBuildInfo method.

buildInfo.addDefines('HAVE_LAPACK_CONFIG_H');

buildInfo.addDefines('LAPACK_COMPLEX_STRUCTURE');

Generate LAPACK Calls by Specifying a LAPACK Callback Class

This example shows how to generate code that calls LAPACK functions in a specific
LAPACK library. For this example, assume that the LAPACK callback class
useMyLAPACK specifies the LAPACK library that you want to use.

1 Write a MATLAB function that calls a linear algebra function. For example, write a
function mysvd that calls the MATLAB function svd.

function s = mysvd(A)

 %#codegen

 s = svd(A);

29-61

29 Generate Efficient and Reusable Code

end

2 Define a code configuration object for a static library, dynamically linked library, or
executable program. For example, define a configuration object for a dynamically
linked library on a Windows platform.

cfg = coder.config('dll');

3 Specify the LAPACK callback class useMyLAPACK.

cfg.CustomLAPACKCallback = 'useMyLAPACK';

The callback class must be on the MATLAB path.
4 Generate code. Specify that the input A is a 500-by-500 array of doubles.

codegen test -args {zeros(500)} -config cfg -report

If A is large enough, the code generator produces a LAPACK call for svd. Here is an
example of a call to the LAPACK library function for svd.

info_t = LAPACKE_dgesvd(LAPACK_COL_MAJOR, 'N', 'N', (lapack_int)500,

 (lapack_int)500, &A[0], (lapack_int)500, &S[0], NULL, (lapack_int)1, NULL,

 (lapack_int)1, &superb[0]);

Locate LAPACK Library in Execution Environment

The LAPACK library must be available in your execution environment. If your LAPACK
library is shared, use environment variables or linker options to specify the location of
the LAPACK library.

• On a Windows platform, modify the PATH environment variable.
• On a Linux platform, modify the LD_LIBRARY_PATH environment variable or use

the rpath linker option.
• On a Mac OS X, modify the DYLD_LIBRARY_PATH environment variable or use the

rpath linker option.

To specify the rpath linker option, you can use the build information addLinkFlags
method in the updateBuildInfo method of your coder.LAPACKCallback class. For
example, for a GCC compiler:

buildInfo.addLinkFlags(sprintf('-Wl,-rpath,"%s"',libPath));

See Also
coder.LAPACKCallback

29-62

 Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls

More About
• “LAPACK Calls in Generated Code” on page 29-59
• “Optimization Strategies” on page 29-3

External Websites
• www.netlib.org/lapack
• www.netlib.org/lapack/

faq.html#_what_and_where_are_the_lapack_vendors_implementations

29-63

http://www.netlib.org/lapack
http://www.netlib.org/lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations
http://www.netlib.org/lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations

29 Generate Efficient and Reusable Code

Speed Up MEX Generation by Using JIT Compilation

In this section...

“Specify Use of JIT Compilation in the MATLAB Coder App” on page 29-64
“Specify Use of JIT Compilation at the Command Line” on page 29-64
“JIT Compilation Incompatibilities” on page 29-65

To speed up generation of a MEX function, specify use of just-in-time (JIT) compilation
technology. When you iterate between modifying MATLAB code and testing the MEX
code, using this option can save time.

By default, MATLAB Coder creates a C/C++ MEX function by generating and compiling
C/C++ code. When you specify JIT compilation, MATLAB Coder creates a JIT MEX
function that contains an abstract representation of the MATLAB code. When you run
the JIT MEX function, MATLAB generates the executable code in memory.

JIT compilation is incompatible with certain code generation features or options. See
“JIT Compilation Incompatibilities” on page 29-65. If JIT compilation is enabled,
the absence of warning or error messages during code generation indicates successful
JIT compilation. The C code tab of the code generation report indicates the use of JIT
compilation.

Specify Use of JIT Compilation in the MATLAB Coder App

1 To open the Generate dialog box, click the Generate arrow .
2 Set Build type to MEX.
3 Select the Use JIT compilation check box.

Specify Use of JIT Compilation at the Command Line

Use the -jit option of the codegen command. For example, specify JIT compilation for
myfunction:

codegen -config:mex myfunction -jit -report

Alternatively, use the EnableJIT code configuration parameter.

cfg = coder.config('mex');

29-64

 Speed Up MEX Generation by Using JIT Compilation

cfg.EnableJIT = true;

codegen -config cfg myfunction -report

JIT Compilation Incompatibilities

The following table summarizes code generation features or options that are
incompatible with JIT compilation.

Incompatibility Message Type Generated MEX Action

Custom Code Warning C/C++ MEX To avoid the
warning, disable
JIT compilation.

Updating build information
(coder.updateBuildInfo)

Warning C/C++ MEX To avoid the
warning, disable
JIT compilation.

Use of OpenMP application
interface for parallelization of
for-loops (parfor)

Warning • JIT MEX
• No

parallelization

If you want
parallelization of
for-loops, disable
JIT compilation.

Generation of C/C++ source
code only

Error None Specify either JIT
compilation or
generation of C/C
++ code only.

See Also
coder.MexCodeConfig | codegen | coder.updateBuildInfo | parfor

More About
• “JIT MEX Incompatibility Warning” on page 31-2
• “JIT Compilation Does Not Support OpenMP” on page 31-3
• “Speed Up Compilation by Generating Only Code” on page 21-79
• “Algorithm Acceleration Using Parallel for-Loops (parfor)” on page 26-18

29-65

30

Generating Reentrant C Code from
MATLAB Code

• “Generate Reentrant C Code from MATLAB Code” on page 30-2
• “Reentrant Code” on page 30-10
• “Specify Generation of Reentrant Code” on page 30-12
• “API for Generated Reusable Code” on page 30-14
• “Call Reentrant Code in a Single-Threaded Environment” on page 30-15
• “Call Reentrant Code in a Multithreaded Environment” on page 30-16
• “Call Reentrant Code with No Persistent or Global Data (UNIX Only)” on page

30-17
• “Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)” on

page 30-22
• “Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)” on page

30-27

30 Generating Reentrant C Code from MATLAB Code

Generate Reentrant C Code from MATLAB Code

In this section...

“About This Tutorial” on page 30-2
“Copying Files Locally” on page 30-3
“About the Example” on page 30-4
“Providing a C main Function” on page 30-5
“Configuring Build Parameters” on page 30-6
“Generating the C Code” on page 30-7
“Viewing the Generated C Code” on page 30-7
“Running the Code” on page 30-8
“Key Points to Remember” on page 30-8
“Learn More” on page 30-9

About This Tutorial

Learning Objectives

This tutorial shows you how to:

• Generate reentrant code from MATLAB code that does not use persistent or global
data.

• Automatically generate C code from your MATLAB code.
• Define function input properties at the command line.
• Specify code generation properties.
• Generate a code generation report that you can use to view and debug your MATLAB

code.

Note: This example runs on Windows only.

Prerequisites

To complete this example, install the following products:

30-2

 Generate Reentrant C Code from MATLAB Code

• MATLAB
• MATLAB Coder
• C compiler (for most platforms, a default C compiler is supplied with MATLAB).

MATLAB Coder locates and uses a supported installed compiler. For the current list
of supported compilers, see http://www.mathworks.com/support/compilers/
current_release/ on the MathWorks website.

You can use mex -setup to change the default compiler. See “Change Default
Compiler”.

Required Files

Type Name Description

Function code matrix_exp.m MATLAB function that
computes matrix exponential
of the input matrix using
Taylor series and returns the
computed output.

C main function main.c Calls the reentrant code.

Copying Files Locally

Copy the tutorial files to a local working folder.

1 Create a local working folder, for example, c:\coder\work.
2 Change to the matlabroot\help\toolbox\coder\examples folder. At the

MATLAB command prompt, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

3 Copy the reentrant_win folder to your local working folder.

Your work folder now contains the files for the tutorial.
4 Set your MATLAB current folder to the work folder that contains your files for this

tutorial. At the MATLAB command prompt, enter:

cd work

work is the full path of the work folder containing your files.

30-3

30 Generating Reentrant C Code from MATLAB Code

About the Example

This example requires libraries that are specific to the Microsoft Windows operating
system and, therefore, runs only on Windows platforms. It is a simple, multithreaded
example that does not use persistent or global data. Two threads call the MATLAB
function matrix_exp with different sets of input data.

Contents of matrix_exp.m

function Y = matrix_exp(X) %#codegen

 %

 % The function matrix_exp computes matrix exponential of

 % the input matrix using Taylor series and returns the

 % computed output.

 E = zeros(size(X));

 F = eye(size(X));

 k = 1;

 while norm(E+F-E,1) > 0

 E = E + F;

 F = X*F/k;

 k = k+1;

 end

 Y = E;

When you generate reusable, reentrant code, MATLAB Coder supports dynamic
allocation of:

• Function variables that are too large for the stack
• Persistent variables
• Global variables

MATLAB Coder generates a header file, primary_function_name_types.h, that
you must include when using the generated code. This header file contains the following
structures:

• primary_function_nameStackData

Contains the user allocated memory. Pass a pointer to this structure as the first
parameter to functions that use it:

• Directly (the function uses a field in the structure)
• Indirectly (the function passes the structure to a called function)

If the algorithm uses persistent or global data, the
primary_function_nameStackData structure also contains a pointer to the

30-4

 Generate Reentrant C Code from MATLAB Code

primary_function_namePersistentData structure. If you include this pointer,
you have to pass only one parameter to each calling function.

• primary_function_namePersistentData

If your algorithm uses persistent or global variables, MATLAB Coder provides a
separate structure for them. The memory allocation structure contains a pointer to
this persistent data structure.Because you have a separate structure for persistent
and global variables, you can allocate memory for these variables once and share
them with all threads. However, if the threads do not communicate, you can allocate
memory for these variables per thread or per application.

Providing a C main Function

To call the reentrant code, provide a main function that:

• Includes the generated header file matrix_exp.h. This file includes the generated
header file, matrix_exp_types.h.

• For each thread, allocates memory for stack data.
• Calls the matrix_exp_initialize housekeeping function. For more information,

see “Calling Initialize and Terminate Functions” on page 25-9.
• Calls matrix_exp.
• Calls matrix_exp_terminate.
• Frees up the for stack data memory.

Contents of main.c

#include <stdio.h>

#include <stdlib.h>

#include <windows.h>

#include "matrix_exp.h"

#include "matrix_exp_initialize.h"

#include "matrix_exp_terminate.h"

#include "rtwtypes.h"

#define NUMELEMENTS (160*160)

typedef struct {

 real_T in[NUMELEMENTS];

 real_T out[NUMELEMENTS];

 matrix_expStackData* spillData;

} IODATA;

/* The thread_function calls the matrix_exp function written in MATLAB */

DWORD WINAPI thread_function(PVOID dummyPtr) {

 IODATA *myIOData = (IODATA*)dummyPtr;

 matrix_exp_initialize();

 matrix_exp(myIOData->spillData, myIOData->in, myIOData->out);

30-5

30 Generating Reentrant C Code from MATLAB Code

 matrix_exp_terminate();

 return 0;

}

void main() {

 HANDLE thread1, thread2;

 IODATA data1;

 IODATA data2;

 int32_T i;

 /*Initializing data for passing to the 2 threads*/

 matrix_expStackData* sd1 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

 matrix_expStackData* sd2 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

 data1.spillData = sd1;

 data2.spillData = sd2;

 for (i=0;i<NUMELEMENTS;i++) {

 data1.in[i] = 1;

 data1.out[i] = 0;

 data2.in[i] = 1.1;

 data2.out[i] = 0;

 }

 /*Initializing the 2 threads and passing data to the thread functions*/

 printf("Starting thread 1...\n");

 thread1 = CreateThread(NULL , 0, thread_function, (PVOID) &data1, 0, NULL);

 if (thread1 == NULL){

 perror("Thread 1 creation failed.");

 exit(EXIT_FAILURE);

 }

 printf("Starting thread 2...\n");

 thread2 = CreateThread(NULL, 0, thread_function, (PVOID) &data2, 0, NULL);

 if (thread2 == NULL){

 perror("Thread 2 creation failed.");

 exit(EXIT_FAILURE);

 }

 /*Wait for both the threads to finish execution*/

 if (WaitForSingleObject(thread1, INFINITE) != WAIT_OBJECT_0){

 perror("Thread 1 join failed.");

 exit(EXIT_FAILURE);

 }

 if (WaitForSingleObject(thread2, INFINITE) != WAIT_OBJECT_0){

 perror("Thread 2 join failed.");

 exit(EXIT_FAILURE);

 }

 free(sd1);

 free(sd2);

 printf("Finished Execution!\n");

 exit(EXIT_SUCCESS);

 }

Configuring Build Parameters

You can enable generation of reentrant code using a code generation configuration object.

30-6

 Generate Reentrant C Code from MATLAB Code

1 Create a configuration object.

cfg = coder.config('exe');

2 Enable reentrant code generation.

cfg.MultiInstanceCode = true;

Generating the C Code

Call the codegen function to generate C code, with the following options:

• -config to pass in the code generation configuration object cfg.
• main.c to include this file in the compilation.
• -report to create a code generation report.
• -args to specify the class, size, and complexity of input arguments using example

data.

codegen -config cfg main.c -report matrix_exp.m -args ones(160,160)

codegen generates a C executable, matrix_exp.exe, in the current folder and C code
in the /codegen/exe/matrix_exp subfolder. Because you selected report generation,
codegen provides a link to the report.

Viewing the Generated C Code

codegen generates a header file matrix_exp_types.h, which defines the
matrix_expStackData global structure. This structure contains local variables that are
too large to fit on the stack.

To view this header file:

1 Click the View report link to open the code generation report.
2 In the report, click the C code tab.
3 On this tab, click the link to matrix_exp_types.h.

/*

 * matrix_exp_types.h

 *

 * Code generation for function 'matrix_exp'

 *

 */

30-7

30 Generating Reentrant C Code from MATLAB Code

#ifndef __MATRIX_EXP_TYPES_H__

#define __MATRIX_EXP_TYPES_H__

/* Include files */

#include "rtwtypes.h"

/* Type Definitions */

#ifndef typedef_matrix_expStackData

#define typedef_matrix_expStackData

typedef struct {

 struct {

 double F[25600];

 double Y[25600];

 double X[25600];

 } f0;

} matrix_expStackData;

#endif /*typedef_matrix_expStackData*/

#endif

/* End of code generation (matrix_exp_types.h) */

Running the Code

Verify that the example is running on Windows platforms and call the code.

% This example can only be run on Windows platforms

if ~ispc

 error('This example requires Windows-specific libraries and can only be run on Windows.');

end

system('matrix_exp.exe')

The executable runs and reports completion.

Key Points to Remember

• Create a main function that:

• Includes the generated header file, primary_function_name_types.h. This file
defines the primary_function_nameStackData global structure. This structure
contains local variables that are too large to fit on the stack.

• For each thread, allocates memory for stack data.
• Calls primary_function_name_initialize.
• Calls primary_function_name.

30-8

 Generate Reentrant C Code from MATLAB Code

• Calls primary_function_name_terminate.
• Frees the stack data memory.

• Use the -config option to pass the code generation configuration object to the
codegen function.

• Use the -args option to specify input parameters at the command line.
• Use the -report option to create a code generation report.

Learn More

To See

Learn more about the generated code API “API for Generated Reusable Code” on page
30-14

Call reentrant code without persistent or global
data on UNIX

“Call Reentrant Code with No Persistent or
Global Data (UNIX Only)” on page 30-17

Call reentrant code with persistent data on
Windows

“Call Reentrant Code — Multithreaded with
Persistent Data (Windows Only)” on page
30-22

Call reentrant code with persistent data on
UNIX

“Call Reentrant Code — Multithreaded with
Persistent Data (UNIX Only)” on page 30-27

30-9

30 Generating Reentrant C Code from MATLAB Code

Reentrant Code

Reentrant code is a reusable programming routine that multiple programs can use
simultaneously. Operating systems and other system software that use multithreading
to handle concurrent events use reentrant code. In a concurrent environment, multiple
threads or processes can attempt to read and write static data simultaneously. Therefore,
sharing code that uses persistent or static data is difficult. Reentrant code does not
contain static data. Calling programs maintain their state variables and pass them into
the function. Therefore, any number of threads or processes can share one copy of a
reentrant routine.

Generate reentrant code when you want to:

• Deploy your code in multithreaded environments.
• Use an algorithm with persistent data belonging to different processes or threads.
• Compile code that uses function variables that are too large to fit on the stack.

If you do not specify reentrant code, MATLAB Coder generates code that uses statically
allocated memory for:

• Function variables that are too large to fit on the stack
• Global variables
• Persistent variables

If the generated code uses static memory allocation for these variables, you cannot deploy
the generated code in environments that require reentrant code. If you cannot adjust
the static memory allocation size, the generated code can result in static memory size
overflow.

When you generate reentrant code, MATLAB Coder creates input data structures for:

• Function variables that are too large to fit on the stack
• Persistent variables
• Global variables

You can then dynamically allocate memory for these input structures. The use
of dynamic memory allocation means that you can deploy the code in reentrant
environments.

30-10

 Reentrant Code

Related Examples
• “Specify Generation of Reentrant Code” on page 30-12
• “Generate Reentrant C Code from MATLAB Code” on page 30-2
• “Call Reentrant Code with No Persistent or Global Data (UNIX Only)” on page

30-17
• “Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)” on

page 30-22
• “Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)” on page

30-27

30-11

30 Generating Reentrant C Code from MATLAB Code

Specify Generation of Reentrant Code

In this section...

“Specify Generation of Reentrant Code Using the MATLAB Coder App” on page
30-12
“Specify Generation of Reentrant Code Using the Command-Line Interface” on page
30-12

Specify Generation of Reentrant Code Using the MATLAB Coder App

1 On the Generate Code page, click the Generate arrow .
2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

• Executable (.exe)

3 Click More Settings.
4 On the Memory tab, select the Generate re-entrant code check box.

Specify Generation of Reentrant Code Using the Command-Line Interface

1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib'); % or dll or exe

2 Set the MultiInstanceCode property to true. For example:

cfg.MultiInstanceCode = true;

Related Examples
• “Generate Reentrant C Code from MATLAB Code” on page 30-2
• “Call Reentrant Code with No Persistent or Global Data (UNIX Only)” on page

30-17
• “Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)” on

page 30-22

30-12

 Specify Generation of Reentrant Code

• “Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)” on page
30-27

More About
• “Reentrant Code” on page 30-10

30-13

30 Generating Reentrant C Code from MATLAB Code

API for Generated Reusable Code

When you generate reusable code, MATLAB Coder supports dynamic allocation of:

• Function variables that are too large for the stack
• Persistent variables
• Global variables

It generates a header file, primary_function_name_types.h, that you must include
when using the generated code. This header file contains the following structures:

• primary_function_nameStackData

This structure contains the user-allocated memory. You must pass a pointer to this
structure as the first parameter to all functions that use it:

• Directly, because the function uses a field in the structure.
• Indirectly, because the function passes the structure to a called function.

If the algorithm uses persistent or global data, the
primary_function_nameStackData structure also contains a pointer to the
primary_function_namePersistentData structure. If you include this pointer,
you only have to pass one parameter to each calling function.

• primary_function_namePersistentData

If your algorithm uses persistent or global variables, MATLAB Coder provides a
separate structure for them. The memory allocation structure contains a pointer
to this structure. Because you have a separate structure for persistent and global
variables, you can allocate memory for these variables once and share them with all
threads. However, if there is no communication between threads, you can choose to
allocate memory for these variables per thread or per application.

For more information on using these global structures, see “Multithreaded Examples” on
page 30-16.

30-14

 Call Reentrant Code in a Single-Threaded Environment

Call Reentrant Code in a Single-Threaded Environment

To call reentrant code in a single-threaded environment, create a main function that:

• Includes the header file primary_function_name.h.
• Allocates memory for the global memory allocation structure

primary_function_nameStackData.
• If the algorithm uses persistent or global data, allocates memory for the global

structure primary_function_namePersistentData.
• Calls these functions:

• primary_function_name_initialize.
• primary_function_name.
• primary_function_name_terminate.

When you convert a MATLAB function to a C/C++ library function or a C/C++
executable, MATLAB Coder generates two housekeeping functions. Call these
housekeeping functions in the code that calls the generated C/C++ function. For more
information, see “Calling Initialize and Terminate Functions” on page 25-9.

• Frees the memory used for global structures.

30-15

30 Generating Reentrant C Code from MATLAB Code

Call Reentrant Code in a Multithreaded Environment

To call reentrant code, create a main function that:

• Includes the header file primary_function_name.h.
• For each thread, allocates memory for the global memory allocation structure

primary_function_nameStackData.
• If the algorithm uses persistent or global data, allocates memory for the global

structure primary_function_namePersistentData. If the threads communicate,
allocate this memory once for the application. Otherwise, you can choose to allocate
memory per thread or per application.

• Contains a thread function that calls these functions:

• primary_function_name_initialize.
• primary_function_name.
• primary_function_name_terminate.

When you convert a MATLAB function to a C/C++ library function or a C/C++
executable, MATLAB Coder generates two housekeeping functions. Call these
functions in the code that calls the generated C/C++ function. For more information,
see “Calling Initialize and Terminate Functions” on page 25-9.

• Initializes each thread and passes in a pointer to the memory allocation structure as
the first parameter to the thread function.

• Frees up the memory used for global structures.

Multithreaded Examples

Type of Reentrant Code Platform Reference

Windows “Generate Reentrant C Code from MATLAB Code” on
page 30-2

Multithreaded without
persistent or global data

UNIX “Call Reentrant Code with No Persistent or Global Data
(UNIX Only)” on page 30-17

Windows “Call Reentrant Code — Multithreaded with Persistent
Data (Windows Only)” on page 30-22

Multithreaded with
persistent or global data

UNIX “Call Reentrant Code — Multithreaded with Persistent
Data (UNIX Only)” on page 30-27

30-16

 Call Reentrant Code with No Persistent or Global Data (UNIX Only)

Call Reentrant Code with No Persistent or Global Data (UNIX Only)

In this section...

“Provide a Main Function” on page 30-17
“Generate Reentrant C Code” on page 30-19
“Examine the Generated Code” on page 30-20
“Run the Code” on page 30-21

This example requires POSIX thread (pthread) libraries and, therefore, runs only on
UNIX platforms. It is a simple multithreaded example that uses no persistent or global
data. Two threads call the MATLAB function matrix_exp with different sets of input
data.

Provide a Main Function

To call the reentrant code, provide a main function that:

• Includes the header file matrix_exp.h.
• For each thread, allocates memory for stack data.
• Calls the matrix_exp_initialize housekeeping function. For more information,

see “Calling Initialize and Terminate Functions” on page 25-9.
• Calls matrix_exp.
• Calls matrix_exp_terminate.
• Frees the memory used for stack data.

For this example, main.c contains:

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include "matrix_exp.h"

#include "matrix_exp_initialize.h"

#include "matrix_exp_terminate.h"

#include "rtwtypes.h"

#define NUMELEMENTS (160*160)

typedef struct {

 real_T in[NUMELEMENTS];

 real_T out[NUMELEMENTS];

 matrix_expStackData* spillData;

} IODATA;

30-17

30 Generating Reentrant C Code from MATLAB Code

/* The thread_function calls the matrix_exp function written in MATLAB */

void *thread_function(void *dummyPtr) {

 IODATA *myIOData = (IODATA*)dummyPtr;

 matrix_exp_initialize();

 matrix_exp(myIOData->spillData, myIOData->in, myIOData->out);

 matrix_exp_terminate();

}

int main() {

 pthread_t thread1, thread2;

 int iret1, iret2;

 IODATA data1;

 IODATA data2;

 int32_T i;

 /*Initializing data for passing to the 2 threads*/

 matrix_expStackData* sd1=(matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

 matrix_expStackData* sd2=(matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

 data1.spillData = sd1;

 data2.spillData = sd2;

 for (i=0;i<NUMELEMENTS;i++) {

 data1.in[i] = 1;

 data1.out[i] = 0;

 data2.in[i] = 1.1;

 data2.out[i] = 0;

 }

 /*Initializing the 2 threads and passing required data to the thread functions*/

 printf("Starting thread 1...\n");

 iret1 = pthread_create(&thread1, NULL, thread_function, (void*) &data1);

 if (iret1 != 0){

 perror("Thread 1 creation failed.");

 exit(EXIT_FAILURE);

 }

 printf("Starting thread 2...\n");

 iret2 = pthread_create(&thread2, NULL, thread_function, (void*) &data2);

 if (iret2 != 0){

 perror("Thread 2 creation failed.");

 exit(EXIT_FAILURE);

 }

 /*Wait for both the threads to finish execution*/

 iret1 = pthread_join(thread1, NULL);

 if (iret1 != 0){

 perror("Thread 1 join failed.");

 exit(EXIT_FAILURE);

 }

 iret2 = pthread_join(thread2, NULL);

 if (iret2 != 0){

 perror("Thread 2 join failed.");

30-18

 Call Reentrant Code with No Persistent or Global Data (UNIX Only)

 exit(EXIT_FAILURE);

 }

 free(sd1);

 free(sd2);

 printf("Finished Execution!\n");

 exit(EXIT_SUCCESS);

}

Generate Reentrant C Code

To generate code, run the following script at the MATLAB command prompt.

% This example can only be run on Unix platforms

if ~isunix

 error('This example requires pthread libraries and can only be run on Unix.');

end

% Setting the options for the Config object

% Create a code gen configuration object

cfg = coder.config('exe');

% Enable reentrant code generation

cfg.MultiInstanceCode = true;

% Set the post code generation command to be the 'setbuildargs' function

cfg.PostCodeGenCommand = 'setbuildargs(buildInfo)';

% Compiling

codegen -config cfg main.c matrix_exp.m -report -args ones(160,160)

This script:

• Generates an error message if the example is not running on a UNIX platform.
• Creates a code configuration object for generation of an executable.
• Enables the MultiInstanceCode option to generate reusable, reentrant code.
• Uses the PostCodeGenCommand option to set the post code generation command to

be the setbuildargs function. This function sets the -lpthread flag to specify that
the build include the pthread library.
function setbuildargs(buildInfo)

% The example being compiled requires pthread support.

% The -lpthread flag requests that the pthread library

% be included in the build

 linkFlags = {'-lpthread'};

30-19

30 Generating Reentrant C Code from MATLAB Code

 addLinkFlags(buildInfo, linkFlags);

For more information, see “Customize the Post-Code-Generation Build Process” on
page 21-138.

• Invokes codegen with the following options:

• -config to pass in the code generation configuration object cfg.
• main.c to include this file in the compilation.
• -report to create a code generation report.
• -args to specify an example input with class, size, and complexity.

Examine the Generated Code

codegen generates a header file matrix_exp_types.h, which defines the
matrix_expStackData global structure. This structure contains local variables that are
too large to fit on the stack.

/*

 * matrix_exp_types.h

 *

 * Code generation for function 'matrix_exp'

 *

 */

#ifndef __MATRIX_EXP_TYPES_H__

#define __MATRIX_EXP_TYPES_H__

/* Include files */

#include "rtwtypes.h"

/* Type Definitions */

#ifndef typedef_matrix_expStackData

#define typedef_matrix_expStackData

typedef struct {

 struct {

 double F[25600];

 double Y[25600];

 double X[25600];

 } f0;

} matrix_expStackData;

#endif /*typedef_matrix_expStackData*/

#endif

/* End of code generation (matrix_exp_types.h) */

30-20

 Call Reentrant Code with No Persistent or Global Data (UNIX Only)

Run the Code

Call the code using the command:
system('./matrix_exp')

The executable runs and reports completion.

30-21

30 Generating Reentrant C Code from MATLAB Code

Call Reentrant Code — Multithreaded with Persistent Data
(Windows Only)

In this section...

“MATLAB Code for This Example” on page 30-22
“Provide a Main Function” on page 30-23
“Generate Reentrant C Code” on page 30-25
“Examine the Generated Code” on page 30-25
“Run the Code” on page 30-26

This example requires libraries that are specific to the Microsoft Windows operating
system and, therefore, runs only on Windows platforms. It is a multithreaded example
that uses persistent data. Two threads call the MATLAB function matrix_exp with
different sets of input data.

MATLAB Code for This Example

function [Y,numTimes] = matrix_exp(X) %#codegen

 %

 % The function matrix_exp computes matrix exponential

 % of the input matrix using Taylor series and returns

 % the computed output. It also returns the number of

 % times this function has been called.

 %

 persistent count;

 if isempty(count)

 count = 0;

 end

 count = count+1;

 E = zeros(size(X));

 F = eye(size(X));

 k = 1;

 while norm(E+F-E,1) > 0

 E = E + F;

 F = X*F/k;

 k = k+1;

 end

 Y = E ;

 numTimes = count;

30-22

 Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)

Provide a Main Function

To call reentrant code that uses persistent data, provide a main function that:

• Includes the header file matrix_exp.h.
• For each thread, allocates memory for stack data.
• Allocates memory for persistent data, once per application if threads share data, and

once per thread otherwise.
• Calls the matrix_exp_initialize housekeeping function. For more information,

see “Calling Initialize and Terminate Functions” on page 25-9.
• Calls matrix_exp.
• Calls matrix_exp_terminate.
• Frees the memory used for stack and persistent data.

For this example, main.c contains:

#include <stdio.h>

#include <stdlib.h>

#include <windows.h>

#include "matrix_exp.h"

#include "matrix_exp_initialize.h"

#include "matrix_exp_terminate.h"

#include "rtwtypes.h"

#define NUMELEMENTS (160*160)

typedef struct {

 real_T in[NUMELEMENTS];

 real_T out[NUMELEMENTS];

 real_T numTimes;

 matrix_expStackData* spillData;

} IODATA;

/*The thread_function calls the matrix_exp function written in MATLAB*/

DWORD WINAPI thread_function(PVOID dummyPtr) {

 IODATA *myIOData = (IODATA*)dummyPtr;

 matrix_exp_initialize(myIOData->spillData);

 matrix_exp(myIOData->spillData, myIOData->in, myIOData->out, &myIOData->numTimes);

 printf("Number of times function matrix_exp is called is %g\n",myIOData->numTimes);

 matrix_exp_terminate();

 return 0;

}

void main() {

 HANDLE thread1, thread2;

 IODATA data1;

 IODATA data2;

 int32_T i;

30-23

30 Generating Reentrant C Code from MATLAB Code

 /*Initializing data for passing to the 2 threads*/

 matrix_expPersistentData* pd1 = (matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));

 matrix_expPersistentData* pd2 = (matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));

 matrix_expStackData* sd1 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

 matrix_expStackData* sd2 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

 sd1->pd = pd1;

 sd2->pd = pd2;

 data1.spillData = sd1;

 data2.spillData = sd2;

 for (i=0;i<NUMELEMENTS;i++) {

 data1.in[i] = 1;

 data1.out[i] = 0;

 data2.in[i] = 1.1;

 data2.out[i] = 0;

 }

 data1.numTimes = 0;

 data2.numTimes = 0;

 /*Initializing the 2 threads and passing required data to the thread functions*/

 printf("Starting thread 1...\n");

 thread1 = CreateThread(NULL, 0, thread_function, (PVOID) &data1, 0, NULL);

 if (thread1 == NULL){

 perror("Thread 1 creation failed.");

 exit(EXIT_FAILURE);

 }

 printf("Starting thread 2...\n");

 thread2 = CreateThread(NULL, 0, thread_function, (PVOID) &data2, 0, NULL);

 if (thread2 == NULL){

 perror("Thread 2 creation failed.");

 exit(EXIT_FAILURE);

 }

 /*Wait for both the threads to finish execution*/

 if (WaitForSingleObject(thread1, INFINITE) != WAIT_OBJECT_0){

 perror("Thread 1 join failed.");

 exit(EXIT_FAILURE);

 }

 if (WaitForSingleObject(thread2, INFINITE) != WAIT_OBJECT_0){

 perror("Thread 2 join failed.");

 exit(EXIT_FAILURE);

 }

 free(sd1);

 free(sd2);

 free(pd1);

 free(pd2);

 printf("Finished Execution!\n");

 exit(EXIT_SUCCESS);

30-24

 Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)

}

Generate Reentrant C Code

Run the following script at the MATLAB command prompt to generate code.

% This example can only be run on Windows platforms

if ~ispc

 error...

 ('This example requires Windows-specific libraries and can only be run on Windows.');

end

% Setting the options for the Config object

% Create a code gen configuration object

cfg = coder.config('exe');

% Enable reentrant code generation

cfg.MultiInstanceCode = true;

% Compiling

codegen -config cfg main.c -report matrix_exp.m -args ones(160,160)

This script:

• Generates an error message if the example is not running on a Windows platform.
• Creates a code generation configuration object for generation of an executable.
• Enables the MultiInstanceCode option to generate reusable, reentrant code.
• Invokes codegen with the following options:

• -config to pass in the code generation configuration object cfg.
• main.c to include this file in the compilation.
• -report to create a code generation report.
• -args to specify an example input with class, size, and complexity.

Examine the Generated Code

codegen generates a header file matrix_exp_types.h, that defines:

• The matrix_expStackData global structure that contains local variables that are
too large to fit on the stack and a pointer to the matrix_expPersistentData global
structure.

• The matrix_expPersistentData global structure that contains persistent data.

30-25

30 Generating Reentrant C Code from MATLAB Code

/*

 * matrix_exp_types.h

 *

 * Code generation for function 'matrix_exp'

 *

 */

#ifndef __MATRIX_EXP_TYPES_H__

#define __MATRIX_EXP_TYPES_H__

/* Include files */

#include "rtwtypes.h"

/* Type Definitions */

#ifndef typedef_matrix_expPersistentData

#define typedef_matrix_expPersistentData

typedef struct {

 double count;

} matrix_expPersistentData;

#endif /*typedef_matrix_expPersistentData*/

#ifndef typedef_matrix_expStackData

#define typedef_matrix_expStackData

typedef struct {

 struct {

 double F[25600];

 double Y[25600];

 double X[25600];

 } f0;

 matrix_expPersistentData *pd;

} matrix_expStackData;

#endif /*typedef_matrix_expStackData*/

#endif

/* End of code generation (matrix_exp_types.h) */

Run the Code

Call the code using the command:
system('matrix_exp.exe')

The executable runs and reports completion.

30-26

 Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)

Call Reentrant Code — Multithreaded with Persistent Data (UNIX
Only)

In this section...

“MATLAB Code for This Example” on page 30-27
“Provide a Main Function” on page 30-28
“Generate Reentrant C Code” on page 30-30
“Examine the Generated Code” on page 30-31
“Run the Code” on page 30-32

This example requires POSIX thread (pthread) libraries and, therefore, runs only on
UNIX platforms. It is a multithreaded example that uses persistent data. Two threads
call the MATLAB function matrix_exp with different sets of input data.

MATLAB Code for This Example

function [Y,numTimes] = matrix_exp(X) %#codegen

 %

 % The function matrix_exp computes matrix exponential

 % of the input matrix using Taylor series and returns

 % the computed output. It also returns the number of

 % times this function has been called.

 %

 persistent count;

 if isempty(count)

 count = 0;

 end

 count = count+1;

 E = zeros(size(X));

 F = eye(size(X));

 k = 1;

 while norm(E+F-E,1) > 0

 E = E + F;

 F = X*F/k;

 k = k+1;

 end

 Y = E ;

 numTimes = count;

30-27

30 Generating Reentrant C Code from MATLAB Code

Provide a Main Function

To call reentrant code that uses persistent data, provide a main function that:

• Includes the header file matrix_exp.h.
• For each thread, allocates memory for stack data.
• Allocates memory for persistent data, once per application if threads share data, and

once per thread otherwise.
• Calls the matrix_exp_initialize housekeeping function. For more information,

see “Calling Initialize and Terminate Functions” on page 25-9.
• Calls matrix_exp.
• Calls matrix_exp_terminate.
• Frees the memory used for stack and persistent data.

For this example, main.c contains:

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include "matrix_exp.h"

#include "matrix_exp_initialize.h"

#include "matrix_exp_terminate.h"

#include "rtwtypes.h"

#define NUMELEMENTS (160*160)

typedef struct {

 real_T in[NUMELEMENTS];

 real_T out[NUMELEMENTS];

 real_T numTimes;

 matrix_expStackData* spillData;

} IODATA;

/*The thread_function calls the matrix_exp function written in MATLAB*/

void *thread_function(void *dummyPtr) {

 IODATA *myIOData = (IODATA*)dummyPtr;

 matrix_exp_initialize(myIOData->spillData);

 matrix_exp(myIOData->spillData, myIOData->in, myIOData->out, &myIOData>numTimes);

 printf("Number of times function matrix_exp is called is %g\n",myIOData->numTimes);

 matrix_exp_terminate();

}

int main() {

 pthread_t thread1, thread2;

 int iret1, iret2;

 IODATA data1;

 IODATA data2;

 int32_T i;

30-28

 Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)

 /*Initializing data for passing to the 2 threads*/

 matrix_expPersistentData* pd1 =

 (matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));

 matrix_expPersistentData* pd2 =

 (matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));

 matrix_expStackData* sd1 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

 matrix_expStackData* sd2 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

 sd1->pd = pd1;

 sd2->pd = pd2;

 data1.spillData = sd1;

 data2.spillData = sd2;

 for (i=0;i<NUMELEMENTS;i++) {

 data1.in[i] = 1;

 data1.out[i] = 0;

 data2.in[i] = 1.1;

 data2.out[i] = 0;

 }

 data1.numTimes = 0;

 data2.numTimes = 0;

 /*Initializing the 2 threads and passing required data to the thread functions*/

 printf("Starting thread 1...\n");

 iret1 = pthread_create(&thread1, NULL, thread_function, (void*) &data1);

 if (iret1 != 0){

 perror("Thread 1 creation failed.");

exit(EXIT_FAILURE);

 }

 printf("Starting thread 2...\n");

 iret2 = pthread_create(&thread2, NULL, thread_function, (void*) &data2);

 if (iret2 != 0){

 perror("Thread 2 creation failed.");

 exit(EXIT_FAILURE);

 }

 /*Wait for both the threads to finish execution*/

 iret1 = pthread_join(thread1, NULL);

 if (iret1 != 0){

 perror("Thread 1 join failed.");

exit(EXIT_FAILURE);

 }

 iret2 = pthread_join(thread2, NULL);

 if (iret2 != 0){

 perror("Thread 2 join failed.");

exit(EXIT_FAILURE);

 }

 free(sd1);

 free(sd2);

 free(pd1);

 free(pd2);

30-29

30 Generating Reentrant C Code from MATLAB Code

 printf("Finished Execution!\n");

 return(0);

}

Generate Reentrant C Code

To generate code, run the following script at the MATLAB command prompt.

% This example can only be run on Unix platforms

if ~isunix

 error('This example requires pthread libraries and can only be run on Unix.');

end

% Setting the options for the Config object

% Specify an ERT target

cfg = coder.config('exe');

% Enable reentrant code generation

cfg.MultiInstanceCode = true;

% Set the post code generation command to be the 'setbuildargs' function

cfg.PostCodeGenCommand = 'setbuildargs(buildInfo)';

% Compiling

codegen -config cfg main.c -report matrix_exp.m -args ones(160,160)

This script:

• Generates an error message if the example is not running on a UNIX platform.
• Creates a code generation configuration object for generation of an executable.
• Enables the MultiInstanceCode option to generate reusable, reentrant code.
• Uses the PostCodeGenCommand option to set the post-code-generation command to

be the setbuildargs function. This function sets the -lpthread flag to specify that
the build include the pthread library.
function setbuildargs(buildInfo)

% The example being compiled requires pthread support.

% The -lpthread flag requests that the pthread library

% be included in the build

 linkFlags = {'-lpthread'};

 addLinkFlags(buildInfo, linkFlags);

For more information, see “Customize the Post-Code-Generation Build Process” on
page 21-138.

• Invokes codegen with the following options:

30-30

 Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)

• -config to pass in the code generation configuration object cfg.
• main.c to include this file in the compilation.
• -report to create a code generation report.
• -args to specify an example input with class, size, and complexity.

Examine the Generated Code

codegen generates a header file matrix_exp_types.h, which defines:

• The matrix_expStackData global structure that contains local variables that are
too large to fit on the stack and a pointer to the matrix_expPersistentData global
structure.

• The matrix_expPersistentData global structure that contains persistent data.

/*

 * matrix_exp_types.h

 *

 * Code generation for function 'matrix_exp'

 *

 */

#ifndef __MATRIX_EXP_TYPES_H__

#define __MATRIX_EXP_TYPES_H__

/* Include files */

#include "rtwtypes.h"

/* Type Definitions */

#ifndef typedef_matrix_expPersistentData

#define typedef_matrix_expPersistentData

typedef struct {

 double count;

} matrix_expPersistentData;

#endif /*typedef_matrix_expPersistentData*/

#ifndef typedef_matrix_expStackData

#define typedef_matrix_expStackData

typedef struct {

 struct {

 double F[25600];

 double Y[25600];

 double X[25600];

 } f0;

30-31

30 Generating Reentrant C Code from MATLAB Code

 matrix_expPersistentData *pd;

} matrix_expStackData;

#endif /*typedef_matrix_expStackData*/

#endif

/* End of code generation (matrix_exp_types.h) */

Run the Code

Call the code using the command:
system('./matrix_exp')

30-32

31

Troubleshooting Code Generation
Problems

• “JIT MEX Incompatibility Warning” on page 31-2
• “JIT Compilation Does Not Support OpenMP” on page 31-3
• “Output Variable Must Be Assigned Before Run-Time Recursive Call” on page

31-4
• “Compile-Time Recursion Limit Reached” on page 31-7
• “Unable to Determine That Every Element of Cell Array Is Assigned” on page

31-10

31 Troubleshooting Code Generation Problems

JIT MEX Incompatibility Warning

Issue

When you generate a MEX function, you see a warning message that starts with:

JIT compilation is incompatible with

MATLAB Coder generates a C/C++ MEX function instead of a JIT MEX function.

Cause

JIT compilation is incompatible with certain code generation features and options. If you
include custom code or update the build information, you cannot generate a JIT MEX
function. In these cases, MATLAB Coder generates a C/C++ MEX function instead of a
JIT MEX function.

Solution

To eliminate the warning, disable JIT compilation.

More About
• “Speed Up MEX Generation by Using JIT Compilation” on page 29-64

31-2

 JIT Compilation Does Not Support OpenMP

JIT Compilation Does Not Support OpenMP

Issue

When you generate a MEX function for code that contains parfor, you see this warning
message:

JIT technology does not support using OpenMP library, this loop will not be parallelized.

MATLAB Coder generates a JIT MEX function and treats the parfor-loop as a for-loop.

Cause

JIT compilation and use of the OpenMP application interface are enabled. JIT
compilation is incompatible with the OpenMP application interface.

Solution

If you want to parallelize for-loops, disable JIT compilation.

See Also
parfor

More About
• “Speed Up MEX Generation by Using JIT Compilation” on page 29-64
• “Algorithm Acceleration Using Parallel for-Loops (parfor)” on page 26-18

31-3

31 Troubleshooting Code Generation Problems

Output Variable Must Be Assigned Before Run-Time Recursive Call

Issue

You see this error message:

All outputs must be assigned before any run-time recursive call. Output 'y' is not assigned here.

Cause

Run-time recursion produces a recursive function in the generated code. The code
generator is unable to use run-time recursion for a recursive function in your MATLAB
code because an output is not assigned before the first recursive call.

Solution

Rewrite the code so that it assigns the output before the recursive call.

Direct Recursion Example

In the following code, the statement y = A(1) assigns a value to the output y. This
statement occurs after the recursive call y = A(1)+ mysum(A(2:end)).

function z = call_mysum(A)

B = A;

coder.varsize('B');

z = mysum(B);

end

function y = mysum(A)

coder.inline('never');

if size(A,2) > 1

 y = A(1)+ mysum(A(2:end));

else

 y = A(1);

end

end

Rewrite the code so that assignment y = A(1) occurs in the if block and the recursive
call occurs in the else block.

31-4

 Output Variable Must Be Assigned Before Run-Time Recursive Call

function z = call_mysum(A)

B = A;

coder.varsize('B');

z = mysum(B);

end

function y = mysum(A)

coder.inline('never');

if size(A,2) == 1

 y = A(1);

else

 y = A(1)+ mysum(A(2:end));

end

end

Alternatively, before the if block, add an assignment, for example, y = 0.

function z = call_mysum(A)

B = A;

coder.varsize('B');

z = mysum(B);

end

function y = mysum(A)

coder.inline('never');

y = 0;

if size(A,2) > 1

 y = A(1)+ mysum(A(2:end));

else

 y = A(1);

end

end

Indirect Recursion Example

In the following code, rec1 calls rec2 before the assignment y = 0.

function y = rec1(x)

%#codegen

if x >= 0

 y = rec2(x-1)+1;

else

31-5

31 Troubleshooting Code Generation Problems

 y = 0;

end

end

function y = rec2(x)

y = rec1(x-1)+2;

end

Rewrite this code so that in rec1, the assignment y = 0 occurs in the if block and the
recursive call occurs in the else block.

function y = rec1(x)

%#codegen

if x < 0

 y = 0;

else

 y = rec2(x-1)+1;

end

end

function y = rec2(x)

y = rec1(x-1)+2;

end

More About
• “Code Generation for Recursive Functions” on page 14-20

31-6

 Compile-Time Recursion Limit Reached

Compile-Time Recursion Limit Reached

Issue

You see this error message:

Compile-time recursion limit reached. Increase CompileTimeRecursionLimit.

Cause

With compile-time recursion, the code generator produces copies of the recursive function
instead of producing a recursive function in the generated code. The code generator is
unable to use compile-time recursion for a recursive function in your MATLAB code
because the number of function copies exceeds the limit.

Solution

To address this issue, try one of these solutions:

• “Use Run-Time Recursion by Making the Recursive Function Input Variable-Size” on
page 31-7

• “Increase the Compile-Time Recursion Limit” on page 31-8

Use Run-Time Recursion by Making the Recursive Function Input Variable-Size

Consider this function:

function z = call_mysum(A)

%#codegen

z = mysum(A);

end

function y = mysum(A)

coder.inline('never');

if size(A,2) == 1

 y = A(1);

else

 y = A(1)+ mysum(A(2:end));

end

31-7

31 Troubleshooting Code Generation Problems

end

If the input to mysum is fixed-size, the code generator uses compile-time recursion. If A
is large enough, the number of function copies exceeds the default limit of 50. To cause
the code generator to use run-time conversion, make the input to mysum variable-size by
using coder.varsize.

function z = call_mysum(A)

%#codegen

B = A;

coder.varsize('B');

z = mysum(B);

end

function y = mysum(A)

coder.inline('never');

if size(A,2) == 1

 y = A(1);

else

 y = A(1)+ mysum(A(2:end));

end

end

Increase the Compile-Time Recursion Limit

The default compile-time recursion limit of 50 is high enough for most recursive functions
that require compile-time recursion. Usually, increasing the limit does not fix the issue.
However, if you can determine the number of recursive calls and you want compile-time
recursion, increase the limit. For example, consider this function:

function z = call_mysum()

%#codegen

B = 1:125;

z = mysum(B);

end

function y = mysum(A)

coder.inline('never');

if size(A,2) == 1

 y = A(1);

else

 y = A(1)+ mysum(A(2:end));

end

end

31-8

 Compile-Time Recursion Limit Reached

You can determine that the code generator produces 125 copies of the mysum function. In
this case, if you want compile-time recursion, increase the compile-time recursion limit to
125.

To increase the compile-time recursion limit:

• At the command line, in a code generation configuration object, increase the value of
the CompileTimeRecursionLimit configuration parameter.

• In the MATLAB Coder app, increase the value of the Compile-time recursion limit
setting.

More About
• “Code Generation for Recursive Functions” on page 14-20
• “Configure Build Settings” on page 21-26

31-9

31 Troubleshooting Code Generation Problems

Unable to Determine That Every Element of Cell Array Is Assigned

Issue

You see one of these messages:

Unable to determine that every element of 'y' is assigned before this line.

Unable to determine that every element of 'y' is assigned before exiting the function.

Unable to determine that every element of 'y' is assigned before exiting the recursively called function.

Cause

For code generation, before you use a cell array element, you must assign a value to
it. When you use cell to create a variable-size cell array, for example, cell(1,n),
MATLAB assigns an empty matrix to each element. However, for code generation, the
elements are unassigned. For code generation, after you use cell to create a variable-
size cell array, you must assign all elements of the cell array before any use of the cell
array.

The code generator analyzes your code to determine whether all elements are assigned
before the first use of the cell array. The code generator detects that all elements are
assigned when the code follows this pattern:

function z = mycell(n, j)

%#codegen

x = cell(1,n);

for i = 1:n

 x{i} = i;

end

z = x{j};

end

Here is the pattern for a multidimensional cell array:

function z = mycell(m,n,p)

%#codegen

x = cell(m,n,p);

for i = 1:m

 for j =1:n

 for k = 1:p

 x{i,j,k} = i+j+k;

31-10

 Unable to Determine That Every Element of Cell Array Is Assigned

 end

 end

end

z = x{m,n,p};

end

If the code generator detects that some elements are not assigned, code generation fails.
Sometimes, even though your code assigns all elements of the cell array, code generation
fails because the analysis does not detect that all elements are assigned.

Here are examples where the code generator is unable to detect that elements are
assigned:

• Elements are assigned in different loops

...

x = cell(1,n)

for i = 1:5

 x{i} = 5;

end

for i = 6:n

 x{i} = 7;

end

...

• The variable that defines the loop end value is not the same as the variable that
defines the cell dimension.

...

x = cell(1,n);

m = n;

for i = 1:m

 x{i} = 2;

end

...

For more information, see “Definition of Variable-Size Cell Array by Using cell” on page
9-11.

Solution

Try one of these solutions:

• “Use recognized pattern for assigning elements” on page 31-12

31-11

31 Troubleshooting Code Generation Problems

• “Use repmat” on page 31-12
• “Use coder.nullcopy” on page 31-13

Use recognized pattern for assigning elements

If possible, rewrite your code to follow this pattern:

...

x = cell(1,n);

for i = 1:n

 x{i} = i;

end

z = x{j};

...

Use repmat

Sometimes, you can use repmat to define the variable-size cell array.

Consider this code that defines a variable-size cell array. It assigns the value 1 to odd
elements and the value 2 to even elements.

function z = mycell2(n, j)

%#codegen

c =cell(1,n);

for i = 1:2:n-1

 c{i} = 1;

end

for i = 2:2:n

 c{i} = 2;

end

z = c{j};

Code generation does not allow this code because:

• More than one loop assigns the elements.
• The loop counter does not increment by 1.

Rewrite the code to first use cell to create a 1-by-2 cell array whose first element is 1
and whose second element is 2. Then, use repmat to create a variable-size cell array
whose element values alternate between 1 and 2.

function z = mycell2(n, j)

%#codegen

31-12

 Unable to Determine That Every Element of Cell Array Is Assigned

c = cell(1,2);

c{1} = 1;

c{2} = 2;

c1= repmat(c,1,n);

z = c1{j};

end

Use coder.nullcopy

As a last resort, you can use coder.nullcopy to indicate that the code generator can
allocate the memory for your cell array without initializing the memory. For example:

function z = mycell3(n, j)

%#codegen

c =cell(1,n);

c1 = coder.nullcopy(c);

for i = 1:4

 c1{i} = 1;

end

for i = 5:n

 c1{i} = 2;

end

z = c1{j};

end

Use coder.nullcopy with caution. If you access uninitialized memory, results are
unpredictable.

See Also
cell | coder.nullcopy | repmat

More About
• “Cell Array Limitations for Code Generation” on page 9-10

31-13

